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Abstract: With the rapid development of smart campus, this paper studies the attitude tracking control
of flexible manipulator (FM) in colleges and universities under elastic vibration and external distur-
bances. First, different from the traditional modeling based on ordinary differential equations (ODEs),
the partial differential equations (PDEs) dynamic model of a manipulator system is established based
on the Hamilton principle (HP). Second, the boundary control condition of the end system of the manip-
ulator is introduced to adjust the vibration of the manipulator. Furthermore, a Proportional-Derivative
(PD) boundary control (PDBC) strategy is proposed by the Lyapunov function to suppress the vibra-
tion of the manipulator. Finally, a numerical comparison simulation based on MATLAB/SIMULINK
further verifies the robustness and anti-disturbance performance of the control method proposed in this
paper.
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1. Introduction

Manipulators imitate human arms to grab and either carry objects or perform tasks in dangerous en-
vironments with fixed procedures (see References [1–5]). In terms of campus education and intelligent
construction, it is important to deepen the application of manipulators in teaching management and re-
search, skills training, campus safety and logistics distribution (see Reference [6]). The new generation
of robot technology needs to adopt flexible and light materials and design them into slender structures.
A flexible system is more susceptible to external disturbances and deformation, which undoubtedly
increases the difficulty of control and reduces the accuracy of control. (see References [7–11]).

As we all know, a flexible manipulator (FM) has the characteristics of strong coupling and high
nonlinearity (see References [12, 13].) Therefore, the research on anti-disturbance control of FM has
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always been a hot issue in the field of control engineering (see References [14–16]). In Reference [17],
an adaptive sliding mode fault tolerant control (ASMFTC) approach based on the Takagi-Sugeno (TS)
fuzzy disturbance observer (TSFDO) is presented as an attitude control system (ACS) under environ-
mental disturbance torque and elastic modal generated by flexible appendages. In recent decades, some
scholars have designed many control methods for FM, such as Proportional-Integral-Derivative (PID)
control (see References [18–20]), adaptive control (see References [21,22]), sliding mode control (see
References [23, 24]) and so on. In recent years, alongside the rapid development of artificial intelli-
gence, some intelligent algorithms have also appeared in the design of system controllers. A fuzzy
PID positioning controller based on particle swarm optimization (PSO) is designed to improve the ro-
bustness of manipulator control system. This method is very interesting and has a good engineering
application value (see Reference [25]). Similar to Reference [25], in Reference [26], a PSO active dis-
turbance rejection control (ADRC) algorithm is proposed to solve the problem that parameters depend
on manual experience adjustment, thus further improving the robustness of underwater vehicle.

However, most of the documents mentioned above are based on ordinary differential equations
(ODEs). Although the ODE model is relatively simple, there are some defects in describing the dy-
namic characteristics. Especially for distributed parameter systems (DPS) such as FM systems, the
applicability of the ODE model is poor. The dynamic characteristics of FM systems are usually de-
scribed by PDEs, so it is difficult for traditional rigid system control strategies to be directly applied
to FM systems. FM is essentially a DPS. At present, there are three commonly used control methods
for DPS (see References [27, 28]), including, modal control (see Reference [29]), distributed control
(see Reference [16]) and boundary control (see Reference [30]). However, distributed control requires
a considerable number of actuators and sensors, which undoubtedly increases the difficulty of the con-
troller design. Compared with distributed control, boundary control is a more effective control method.

There are essential differences between ODEs and PDEs. If the unknown function is a univariate
function, it is called an ODE, and if the unknown function is a multivariate function, it is called a PDE.
The asymptotic behavior of the partial states of coupled ODEs and PDEs is studied in [31]. In order
to solve the vibration suppression control problem of an FM system modeled by PDEs, the boundary
vibration deflection constraint problem is solved by using a barrier Lyapunov function (BLF). Under
this control method, not only is the control efficiency is improved, but the system also has good robust-
ness (see Reference [32]). In Reference [33], the complex satellite attitude system model is truncated
based on ODEs, and then an adaptive fault-tolerant control method based on disturbance observer is
proposed for the satellite attitude control system subject to elastic model and external disturbances.
Different from the above documents, in [34], a boundary output feedback controller based on PDEs
is designed for one-dimensional Euler-Bernoulli beams with general external disturbances. In Refer-
ence [35], according to the extended HP, the flexible hose for aerial refueling is modeled as a DPS
described by PDEs. Then, based on the original PDEs, a scheme to adjust the vibration of the hose is
proposed. Numerical simulations verify that effectiveness of the proposed boundary control method.
In [36], based on the PDEs, the dynamic model of the flexible system is established, and a vibration
observer which can estimate the infinite state is designed to increase the stability of closed-loop sys-
tem. In [37], boundary compound controller based on output feedback is proposed to solve the control
problems caused by the infinite dynamic model of FM. Similar to Reference [37] , the dynamic model
of a rigid-flexible manipulator with ODEs-PDEs parameter uncertainty is established by HP. Different
from the traditional PD control method, a boundary control scheme based on adaptive iterative learning
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is proposed to deal with unmodeled dynamics and unknown external disturbances (see Reference [38]).
Inspired by the literatures above, one must realize the vibration suppression of FM under external

disturbances. In this paper, the PDE dynamic model of an FM system is established by HP. Further-
more, a PDBC based on a PDE model can effectively realize the control of flexible system. The main
contributions of this paper are as follows:

1) Different from the dynamic research of traditional rigid manipulators (see References [39–43]),
FM belongs to DPS in essence. In this paper, the flexible manipulator is modeled based on PDEs,
which can describe the dynamic characteristics of FM more accurately. Furthermore, the problem
of overflow instability caused by modeling based on ODEs are avoided.

2) For the control of DPS, boundary control (see References [44–47]) can effectively realize the control
of an FM system. Compared with the discrete distributed control, boundary control only needs a
few actuators to achieve an improved control effect.

3) The boundary control is carried out at the end boundary of the FM, and the PDBC law is designed
by designing Lyapunov function to meet the requirements of y (x, t) → 0 and ẏ (x, t) → 0. Using
the boundary control based on Lyapunov direct method, the control performance of the system will
be further improved.

The remainder of this paper is organized as follows. In Section II, the PDE model of the FM is
established based on HP. In Section III, by designing a Lyapunov function, the boundary control law
based on PD is designed to adjust the vibration of the FM. In Section IV, the numerical comparison
simulation based on MATLAB/SIMULINK further verifies the robustness and anti-disturbance per-
formance of the control method proposed in this paper. Finally, the paper is summarized in Section
V.

2. Modeling of flexible manipulator

2.1. Mathematical description

The control research of FM is mostly based on the ODE dynamic model. The advantage of HP is
to avoid a complicated force analysis of the system, and not only the PDE equation of the system but
also the corresponding boundary conditions of the system can be directly obtained by mathematical
derivation. The research object is a single-link FM that moves horizontally, which is shown in Figure
1. From Figure 1, we can see that the end of the flexible mechanical arm has a boundary to control the
input u(t) and that the external disturbance d(t). y(x, t) represents the elastic deformation at the x point.

Remark 1: For clarity, notations, the time t symbol is omitted in the full-text function variable. For
example, θ (t) = θ, (∗)x =

∂(∗)
∂x , (∗)t =

∂(∗)
∂t .

2.2. Modeling based on PDE

y (0, t) is obtained by bending the origin flexibly to zero at any time. yx (0, t) can be obtained from
the zero change rate of the origin flexible bending along the x axis at any time, and the boundary
condition is expressed as

y (0) = yx (0) = 0. (2.1)
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Figure 1. The structural schematic diagram of flexible manipulator.

Any point
[

x y (x, t)
]

on the FM in the follow-up coordinate system, xOy can be approximately
expressed in the inertial coordinate system XOY as

η (x) = y (x) + xθ (2.2)

where η (x) is the offset of the FM.
According to Eqs (2.1) and (2.2), it can be seen that

η (0) = 0 (2.3)

ηx (0) = θ (2.4)

∂nη (x)
∂xn =

∂ny (x)
∂xn , n ≥ 2. (2.5)

According to HP,

∫ t2

t1

(
δQk − δQp + δQn

)
dt = 0 (2.6)

where, δQk, δQp and δQn represent the variation of kinetic energy (KE), potential energy (PE) and
non-conservative force (NF), respectively. θ (t) is the joint rotation angle without considering elastic
deformation and y (x, t) is the elastic deformation of the FM at point x.
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The rotational KE of the flexible joint is 1
2 Ihθ̇

2, and the kinetic energy and load kinetic energy of the
FM are 1

2

∫ L

0
ρη̇2 (x)dx and 1

2mη̇2 (L), respectively,
where L is the length of the FM, Ih is the central moment of inertia, m is the terminal load mass of the
FM and ρ is the mass per unit length of the rod.

The total KE of the FM is

Qk =
1
2

(
mη̇2 (L) + Ihθ̇

2 +

∫ L

0
ρη̇2 (x) dx

)
. (2.7)

The PE of a FM can be expressed as

Qp =
1
2

∫ L

0
EIy2

xx (x) dx (2.8)

where EI is the bending stiffness of the uniform beam. For the convenience of writing, we will abbre-
viate EI as ϖ.

The NF work of the system is expressed as

Qc = τθ + Fη (L) , (2.9)

where τ is the motor control input torque at the initial end point and F is the motor control input torque
of the end load.

The first item of Eq (2.6) is expanded∫ t2

t1
δQk dt =

∫ t2

t1
δ

(
1
2

Ihθ̇
2 +
ρ

2

∫ L

0
η̇(x)2 dx +

1
2

mη̇(L)2
)

dt

=

∫ t2

t1
δ

(
1
2

Ihθ̇
2
)

dt +
ρ

2

∫ t2

t1

∫ L

0
δη̇(x)2 dx dt +

∫ t2

t1
δ

(
1
2

mη̇(L)2
)

dt
(2.10)

with

∫ t2

t1
δ

(
1
2

Ihθ̇
2
)

dt =
∫ t2

t1
Ihθ̇δθ̇dt = Ihθ̇δθ

∣∣∣t2
t1
−

∫ t2

t1
Ihθ̈δθdtdt = −

∫ t2

t1
Ihθ̈δθdt

Then, we can obtain the following equation

ρ

2

∫ t2

t1

∫ L

0
δη̇(x)2 dx dt =

∫ L

0

∫ t2

t1
ρη̇(x)δη̇(x)dt dx

=

∫ L

0

(
ρη̇(x)δη(x)|t2t1 −

∫ t2

t1
ρη̈(x)δη(x)dt

)
dx

= −

∫ L

0

∫ t2

t1
ρη̈(x)δη(x)dt dx

= −

∫ t2

t1

∫ L

0
ρη̈(x)δη(x)dx dt,

(2.11)
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where
∫ L

0

∫ t2
t1
ρη̈(x)δη(x)dt dx =

∫ t2
t1

∫ L

0
ρη̈(x)δη(x)dx dt.

Then,

δ

∫ t2

t1
Qkdt = −

∫ t2

t1
Ihθ̈δθdt −

∫ t2

t1

∫ L

0
ρη̈(x)δη(x)dx dt −

∫ t2

t1
mη̈(L)δη(L)dt. (2.12)

According to ηxx (x) = yxx (x), and then expand the second item of Eq (2.6), the following is ob-
tained:

−δ

∫ t2

t1
Qpdt = − δ

∫ t2

t1

ϖ

2

∫ 2

0
(ηxx(x))2 dx dt

= −ϖ

∫ t2

t1

∫ L

0
ηxx(x)δηxx(x)dx dt

= −ϖ

∫ t2

t1

(
ηxx(x)δηx(x)|L0 −

∫ L

0
ηxxx(x)δηx(x)dx

)
dt

= −ϖ

∫ t2

t1
(ηxx(L)δηx(L) − ηxx(0)δηx(0)) dt +ϖ

∫ t2

t1

∫ L

0
ηxxx(x)δηx(x)dx dt

= −ϖ

∫ t2

L1

(ηxx(L)δηx(L) − ηxx(0)δηx(0)) dt

+ϖ

∫ t2

t1

(
ηxxx(x)δη(x)|L0 −

∫ L

0
ηxxxx(x)δη(x)dx

)
dt

= −ϖ

∫ t2

t1
(ηxx(L)δηx(L) − ηxx(0)δηx(0)) dt

+ϖ

∫ t2

t1
ηxxx(L)δη(L)dt −ϖ

∫ t2

t1

∫ L

0
ηxxxx(x)δη(x)dx dt.

(2.13)

Finally, the third item of Eq (2.6) is expanded to obtain

δ

∫ t2

t1
Qcdt = δ

∫ t2

t1
(τθ + Fη(L))dt. (2.14)

According to the above analysis, we can get

∫ t2

t1

(
δQk − δQp + δQc

)
dt = −

∫ t2

t1
Ihθ̈δθdt −

∫ t2

t1

∫ L

0
ρη̈(x)δη(x)dx dt −

∫ t2

t1
mη̈(L)δη(L)dt

−ϖ

∫ t2

t1
(ηxx(L)δηx(L) − ηxx(0)δηx(0)) dt

+ϖ

∫ t2

t1
ηxxx(L)δη(L)dt −ϖ

∫ t2

t1

∫ L

0
ηxxxx(x)δη(x)dx dt

+ δ

∫ t2

t1
τθ + Fη(L)dt.

(2.15)
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According to η(0) = 0, ηx(0) = θ, η̈x(0) = θ̈ and ∂nη(x)
∂xn =

∂ny(x)
∂xn , we can subsequently obtain the

following equation:

∫ t2

t1

(
δQk − δQp + δQc

)
dt = −

∫ t2

L1

∫ L

0
(ρη̈(x) +ϖηxxxx(x)) δη(x)dx dt

−

∫ t2

t1

(
Ihθ̈ −ϖηxx(0) − τ

)
δηx(0)dt

−

∫ t2

t1
(mη̈(L) −ϖηxxx(L) − F) δη(L)dt

−

∫ t2

t1
ϖηxx(L)δηx(L)dt

= −

∫ t2

t1

∫ L

0
Θ1δη(x)dx dt −

∫ t2

t1
Θ2δηx(0)dt

−

∫ t2

t1
Θ3δη(L)dt −

∫ t2

t1
Θ4δηx(L)dt

(2.16)

where

Θ1 = ρη̈ (x) +ϖηxxxx (x) (2.17)

Θ2 = Ihη̈x (0) +ϖηxx (0) (2.18)

Θ3 = mη̈ (L) −ϖηxxx (L) (2.19)

Θ4 = ϖηxx (L) . (2.20)

According to HP, have

−

∫ t2

t1

∫ L

0
Θ1δη(x)dx dt −

∫ t2

t1
Θ2δηx(0)dt −

∫ t2

t1
Θ3δ η(L)dt −

∫ t2

t1
Θ4δηx(L)dt = 0. (2.21)

Therefore, the PDE dynamic model is as follows:

ρη̈ (x) = −ϖηxxxx (x) (2.22)

τ = Ihη̇x (0) −ϖηxx (0) (2.23)

F = mη̈ (L) −ϖηxxx (L) (2.24)

ηxx (L) = 0 (2.25)

where, η̈ (x) = xθ̈ + ÿ (x), η̈ (L) = Lθ̈ + ÿ (L).
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Figure 2. The structure diagram of control system based on PDE model.

2.3. Control objective

Considering that the dynamic characteristics of the flexible systems cannot be accurately described
based on ODEs, this paper establishes a PDE dynamic model of complex flexible systems based on
HP. The PDBC is designed to adjust the vibration of the FM and realize y (x, t)→ 0, ẏ (x, t)→ 0.

In order to better show the control logic, Figure 2 shows the control structure of this paper. The
control structure diagram includes an attitude measurement sensor, an actuator, an FM based on PDE
modeling and a boundary controller.

3. Boundary controller design

The greater the elastic vibration of the FM, the more likely it will lead to the instability of the
manipulator system. Therefore, understanding how to suppress the elastic vibration of the FM is
challenging.

Lemama 1 [48]: Letℑ1 (x, t), ℑ2 (x, t) ∈ R, ∀ (x, t) ∈
[

0 L
]
×
[

0 ∞
]
, the following inequalities

hold:

ℑ1 (x, t)ℑ2 (x, t) ≤
∣∣∣ℑ1 (x, t)ℑ2 (x, t)

∣∣∣ ≤ ℑ2
1 (x, t) + ℑ2

2 (x, t) (3.1)

ℑ1 (x, t)ℑ2 (x, t) ≤
1
λ
ℑ2

1 (x, t) + λℑ2
2 (x, t) (3.2)

where λ > 0.
Lemama 2: For ℵ (x, t) ∈ R, ∀ (x, t) ∈

[
0 L

]
×

[
0 ∞

]
. If ℵ (0, t) = 0, t ∈

[
0 ∞

)
, then

ℵ2 (x, t) ≤ L
∫ L

0
ℵ2

x (x, t)dx, x ∈
[

0 L
]
. (3.3)

Similarly, if ℵx (0, t) = 0, t ∈
[

0 ∞
)
, then

ℵ2
x (x, t) ≤ L

∫ L

0
ℵ2

xx (x, t)dx, x ∈
[

0 L
]
. (3.4)
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Lemama 3: Let Ξ :
[

0 ∞
)
∈ Rt ≥ t0 ≥ 0, if Ξ̇ ≤ −ςΞ + ℘, then

Ξ (t) ≤ e−ς(t−t0)Ξ (t0) +
∫ t

t0
e−ς(t−s)℘ (s) ds (3.5)

where ς > 0.

3.1. The design of boundary control law

For the PDE model (Eqs (2.17)–(2.20)), in order to realize the vibration angle response of the
manipulator and restrain the vibration deformation of FM, the boundary control law is selected as
follows:

τ = −kpe − kdė (3.6)

F = −kua + mη̇xxx (L) (3.7)

where kp > 0, kd > 0 and k > 0.
Then,

ua = η̇ (L) − ηxxx (L) . (3.8)

Let

e = θ − θd (3.9)

where θd is an ideal angle and a constant value.
Theorem 1: With control laws Eqs (3.6) and (3.7), the closed-loop system is stable. For t → ∞,

x ∈ [0, L], have θ → θd, θ̇ → 0, y (x)→ 0, ẏ (x)→ 0.
Proof: Select the Lyapunov function

V (t) = Φ1 + Φ2 + Φ3 (3.10)

where

Φ1 =
1
2

∫ L

0
ρη̇2 (x)dx +

1
2

EI
∫ L

0
y2

xx (x)dx (3.11)

Φ2 =
1
2

Ihė2 +
1
2

kpe2 +
1
2

mu2
a (3.12)

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14327–14352.
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Φ3 = αρ

∫ L

0
xη̇2 (x) η (x) ex (x)dx + αIheė, (3.13)

where, Φ1 is the sum of the KE and PE of the FM, indicating the inhibition index for the bending
deformation and bending change rate of the FM. The first two items in Φ2 represent the error index of
control, and the third item is an auxiliary item. Φ3 is an auxiliary item. α is a very small positive real
number and has


η (x, t) e (x) = xe + y (x)
η (x, t) ex (x) = e + yx (x)
η (x, t) exx (x) = yxx (x) = ηxx (x, t) .

(3.14)

According to Lemma 1, we can get

xη̇ (x, t) η (x, t) e (x) ≤ |x| η̇ (x, t) η (x, t) ≤ Lη̇2 (x, t) + Lη (x, t) e2
x (x) . (3.15)

According to Lemma 2, we can obtain

2αρL
∫ L

0
y2

x(x)dx ≤ 2αρL
∫ L

0
L
∫ L

0
y2

xx(x, t)dx dx = 2αρL3
∫ L

0
η2

xx (x, t)dx. (3.16)

Then,

|Φ3| ⩽ αρL
∫ L

0

(
η̇2(x) + ηe2

x(x)
)

dx + αIh

(
e2 + ė2

)
= αρL

∫ L

0

(
η̇2(x) + e2 + y2

x(x) + 2e · yx(x)
)

dx + αIh

(
e2 + ė2

)
⩽ αρL

∫ L

0

(
η̇2(x) + 2e2 + 2y2

x(x)
)

dx + αIb

(
e2 + ė2

)
= αρL

∫ L

0
η̇2(x)dx + 2αρL2e2 + 2αρL

∫ L

0
y2

x(x)dx + αIh

(
e2 + ė2

)
⩽ αρL

∫ L

0
η̇2(x)dx + 2αρL2e2 + 2αρL3

∫ L

0
η2

xx(x)dx + αIh

(
e2 + ė2

)
= αρL

∫ L

0
η̇2(x)dx + 2αρL3

∫ L

0
η2

xx(x)dx +
(
αIh + 2αρL2

)
e2 + αIhė2

⩽ α1 (Φ1 + Φ2)

(3.17)

where

α1 = max

2αL,
4αρL3

ϖ
,

2
(
αIh + 2αρL2

)
kp

, 2α
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and

−α1 (Φ1 + Φ2) ≤ Φ3 ≤ α1 (Φ1 + Φ2) . (3.18)

Select 0 < α1 < 1, it means that 0 < max
(
2αL, 4αρL3

ϖ
,

2(αIh+2αρL2)
kp

, 2α
)
< 1.

α can be designed as

0 < α <
1

max
(
2L, 2ρL3

ϖ
,

2(Ih+2ρL2)
kp

, 2
) . (3.19)

Let 0 < 1 − α1 = α2 < 1, 1 < 1 + α1 = α3 < 2, then

0 ≤ α2 (Φ1 + Φ2) ≤ Φ3 + Φ1 + Φ2 ≤ α3 (Φ1 + Φ2) . (3.20)

From Eq (3.20), it can be written as

0 ≤ α2 (Φ1 + Φ2) ≤ V (t) ≤ α3 (Φ1 + Φ2) . (3.21)

From the Eq (3.21), we can see that the Lyapunov function V(t) is a positive definite function, then

V̇ (t) = Φ̇1 + Φ̇2 + Φ̇3 (3.22)

where

Φ̇1 =

∫ L

0
ρη̇ (x, t) η̈ (x, t) dx +ϖ

∫ L

0
yxx(x)ẏxx(x)dx (3.23)

Φ̇2 = Ihėë + kpeė + muau̇a (3.24)

Φ̇3 = Φ̇31 + Φ̇32 + Φ̇33 (3.25)

where

Φ̇31 = αρ

∫ L

0
xη̈(x)ηex(x)dx (3.26)

Φ̇32 = αρ

∫ L

0
xη̇(x)η̇ex(x)dx (3.27)
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Φ̇33 = αIh

(
ė2 + eë

)
. (3.28)

The Eq (2.22) is brought into the Eq (3.23)

Φ̇1 = −ϖ

∫ L

0
η̇(x)ηxxxx(x)dx +ϖ

∫ L

0
yxx(x)ẏxx(x)dx∫ L

0
η̇(x)ηxxxx(x)dx =

∫ L

0
η̇(x)dηxxx(x)

= η̇(x)ηxxx(x)|L0 −
∫ L

0
ηxxx(x)η̇x(x)dx

= η̇(L)ηxxx(L) −
∫ L

0
ηxxx(x)η̇x(x)dx

(3.29)

∫ L

0
yxx(x)ẏxx(x)dx =

∫ L

0
ηxx(x)η̇xx(x)dx =

∫ L

0
ηxx(x)dη̇x(x)

= ηxx(x)η̇x(x)|L0 −
∫ L

0
η̇x(x)ηxxx(x)dx

= −ηxx(0)θ̇ −
∫ L

0
η̇x(x)ηxxx(x)dx

(3.30)

where ηxx (L) = 0, η̇x (0) = θ̇.
Then,

Φ̇1 = −ϖ

∫ L

0
η̇(x)ηxxxx(x)dx +ϖ

∫ L

0
yxx(x)ẏxx(x)dx

= −ϖ

(
η̇(L)ηxxx(L) −

∫ L

0
ηxxx(x)η̇x(x)dx

)
+ϖ

(
−ηxx(0)θ̇

−

∫ L

0
η̇x(x)ηxxx(x)dx

)
= −ϖη̇(L)yxxx(L) −ϖyxx(0)θ̇

(3.31)

and

Φ̇1 = −ϖyxxx(L)η̇(L) −ϖyxx(0)θ̇. (3.32)

According to Eqs (2.2)–(2.5), the following can be obtained:

Φ̇1 = −ϖηxxx(L)η̇(L) −ϖηxx(0)η̇
= −ϖηxx(0)ė −ϖη2

xxx(L) −ϖηxxx(L)ua.
(3.33)

Combining Eqs (3.33) and (3.24),
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Φ̇1 + Φ̇2 = −ϖηxx(0)ė −ϖη2
xxx(L) −ϖηxxx(L)ua + ė

(
Ihë + kpe

)
+ muau̇a

= ė
(
Ihë + kpe −ϖηxx(0)

)
−ϖη2

xxx(L) + ua (−ϖyxxx(L) + mu̇a)

= ė
(
τ + kpe

)
+ ua (F − mη̇xxx(L)) −ϖη2

xxx(L).

(3.34)

Substituting the control laws Eqs (3.6) and (3.7), then

Φ̇1 + Φ̇2 = −kdė2 −ϖη2
xxx (L) − ku2

a. (3.35)

Substituting Eq (2.22) into Eq (3.26), then

Φ̇31 = α

∫ L

0
x (−ϖηxxxx(x)) ηex(x)dx = −αϖ

∫ L

0
xηxxxx(x)ηex(x)dx. (3.36)

By integrating the above formula by parts and substituting the Eq (3.14), we can get

∫ L

0
xηxxxx(x)ηex(x)dx =

∫ L

0
xηex(x)dηxxx(x)

= xηex(x) · ηxxx(x)|L0 −
∫ L

0
ηxxx(x)d (xηex(x))

= Lηex(L) · ηxxx(L) −
∫ L

0
ηxxx(x) (ηex(x) + xηexx(x)) dx

= Lηex(L) · ηxxx(L) −
∫ L

0
ηxx(x)ηex(x)dx −

∫ L

0
ηxxx(x)xηexx(x)dx

= Ξ1 − Ξ2 − Ξ3

(3.37)

where

Ξ1 = Lη (x, t) ex (L) ηxxx (L) (3.38)

Ξ2 =

∫ L

0
ηxxx (x) η (x, t) ex (x) dx (3.39)

Ξ3 =

∫ L

0
ηxxx (x) xη (x, t) exx (x) dx. (3.40)

By using the partial integration method for Eqs (3.39) and (3.40), we can get

Ξ2 =

∫ L

0
ηxxx(x)ηex(x)dx =

∫ L

0
ηex(x)dηxx(x)

= ηex(x)ηxx(x)|L0 −
∫ L

0
ηexx(x)ηxx(x)dx = −eηxx(0) −

∫ L

0
η2

xx(x)dx
(3.41)
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Ξ3 =

∫ L

0
ηxxx(x)xηexx(x)dx = xηexx(x)ηxx(x)|L0 −

∫ L

0
ηxx(x)d (xηexx(x))

= −

∫ L

0
ηxx(x) (ηexx(x) + xηexxx(x)) dx

= −

∫ L

0
η2

xx(x)dx −
∫ L

0
ηxx(x)xηexxx(x)dx = −

∫ L

0
η2

xx(x)dx − Ξ3.

(3.42)

Through the above analysis, we can get

∫ L

0
xηxxxx(x)ηex(x)dx = (Ξ1 − Ξ2 − Ξ3)

= Lηex(L)ηxxx(L) +
3
2

∫ L

0
η2

xx(x)dx + eηxx(0).
(3.43)

Then,

Φ̇31 = −αϖ(Ξ1 − Ξ2 − Ξ3)

= −αϖLηex(L)ηxxx(L) −
3
2
αϖ

∫ L

0
η2

xx(x)dx − αϖeηxx(0).
(3.44)

Substituting Eqs (3.1), (3.3) and (3.14) into Eq (3.44), we can get

Φ̇31 ⩽αϖLηe2
x(L) + αϖLη2

xxx(L) −
3
2
αϖ

∫ L

0
η2

xx(x)dx

− αϖηxx(0) + αL
∫ L

0
ηe2

x(x)dx

=αϖLηe2
x(L) + αϖLη2

xxx(L) −
3
2
αϖ

∫ L

0
η2

xx(x)dx − αϖeηxx(0)

+ αL
∫ L

0

(
e2 + y2

x(x) + 2e · yx(x)
)

dx

⩽αϖL
(
2e2 + 2L

∫ L

0
z2

xx(x, t)dx
)
+ αϖLη2

xxx(L)

−
3
2
αϖ

∫ L

0
η2

xx(x)dx − αϖeηxx(0)

+ 2αe2L2 + 2αL3
∫ L

0
η2

xx(x, t)dx

⩽ −

(
3
2
α − 2αL2 −

2αL3

ϖ

) ∫ L

0
ϖη2

xx(x)dx + αϖLη2
xxx(L)

− αϖeηxx(0) +
(
2αϖL + 2αL2

)
e2.

(3.45)
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Then,

αϖLηe2
x(L) = αϖL

(
e2 + y2

x(L) + 2e · yx(L)
)

⩽ αϖL
(
2e2 + 2y2

x(L)
)
⩽ αϖL

(
2e2 + 2L

∫ L

0
η2

x(x, t)dx
) (3.46)

aL
∫ L

0

(
e2 + y2

x(x) + 2e · yx(x)
)

dx ⩽ αL
∫ L

0

(
2e2 + 2y2

x(x)
)

dx

⩽ αL
∫ L

0

(
2e2 + 2L

∫ L

0
η2

xx(x, t)dx
)

dx

⩽ 2αe2L2 + 2αL2
∫ L

0

∫ L

0
η2

x(x, t)dx dx

⩽ 2αe2L2 + 2αL3
∫ L

0
η2

xx(x, t)dx

(3.47)

αL
∫ L

0
ηe2

x(x)dx = αL
∫ L

0
(e + yx(x))2 dx = αL

∫ L

0

(
e2 + y2

x(x) + 2e · yx(x)
)

dx. (3.48)

According to the Eqs (3.14) and (3.27) , the following can be obtained by a partial integral:

Φ̇32 =
1
2
αρLη̇2(L) −

1
2
αρ

∫ L

0
η̇2(x)dx. (3.49)

It can be obtained from Lemma 1, we have

Φ̇33 = αIhė2 + αIheë

= αIhė2 + αeϖηxx(0) − αkpe2 − kdαeė

⩽ (αIh + kdα) ė2 −
(
αkp − kdα

)
e2 + αeϖηxx(0).

(3.50)

From Eqs (3.45), (3.49) and (3.50)

Φ̇3 =Φ̇31 + Φ̇32 + Φ̇33

⩽ −

(
3
2
α − 2αL2 −

2αL3

ϖ

) ∫ L

0
ϖη2

xx(x)dx + αϖLη2
xxx(L) +

(
2αϖL + 2αL2

)
e2

+
1
2
αρLη̇2(L) −

1
2
αρ

∫ L

0
η̇2(x)dx + (αIb + kdα) ė2 −

(
αkp − kdα

)
e2

= −

(
3
2
α − 2αL2 −

2αL2

ϖ

) ∫ L

0
ϖη2

xx(x)dx + αϖLη2
xx(L)

+
1
2
αρLη̇2(L) −

1
2
αρ

∫ L

0
η̇2(x)dx + (αIh + kdα) ė2

−
(
αkp − kdα − 2αϖL − 2aL2

)
e2.

(3.51)
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Then,

V̇ (t) =Φ̇1 + Φ̇2 + Φ̇3

⩽ − kdė2 − ku2
a −ϖη

2
xxx(L) −

(
3
2
α − 2αL2 −

2αL3

ϖ

) ∫ L

0
ϖη2

xx(x)dx

+ αϖLη2
xxx(L) +

1
2
αρLη̇2(L) −

1
2
αρ

∫ L

0
η̇2(x)dx + (αIh + kdα) ė2

−
(
αkp − kdα − 2αϖL − 2αL2

)
e2

= −

(
3
2
α − 2αL2 −

2αL3

ϖ

) ∫ L

0
ϖη2

xx(x)dx −
1
2
α

∫ L

0
ρη̇2(x)dx

− (kd − αIh − kdαα) ė2 −
(
αkp − kdα − 2αϖL − 2αL2

)
e2

− ku2
a +

1
2
αρLη̇2(L) − (ϖ − αϖL)η2

xxx(L).

(3.52)

By choosing the appropriate parameter α, then we have ϖ (1 − αL) > 1
2αρL, and the following

equation can be guaranteed to exist:

1
2
αρLη̇2(L) − (ϖ − αϖL)η2

xxx(L) ⩽ ϑ0 (η̇(L) − ηxxx(L))2 = ϑ0u2
a (3.53)

where ϑ0 > max
(
ϑ1,

ϑ1ϑ2
ϑ2−ϑ1

)
, ϑ1 and ϑ2 are appropriate parameters.

The solution of the above inequality Eq (3.52) is

V (t) ≤ V (0) e−λt. (3.54)

If V(0) is bounded, then when t → +∞, V (t) → 0 and converges exponentially. According to Eq
(3.21), we have Φ1 + Φ2 → 0, then e → 0, ė → 0, θ → θd and θ̇ → 0. Furthermore, η̇ (x) → 0 can be
obtained, and then ẏ (x)→ 0 and η (x) = xθ + y (x).

4. Simulation examples

4.1. Two existing methods for comparison

In this paper, an exponentially convergent boundary controller (marked as “PDBC”) is constructed
in essence based on the PDBC method. In order to demonstrate the superiority of ECBC method,
this section gives a distributed parameter boundary control method of flexible manipulator based on
LaSalle (marked as “LSBC”) for comparison. At the same time, the method based on the PDBC is
divided into two forms: open loop-closed loop, which can further verify the simulation effect under the
open loop state and the controller design proposed in this paper.

4.2. PDBC method

In this section, MATLAB/SIMULINK is used for numerical simulation to verify the effectiveness of
the exponentially convergent boundary controller (PDBC). The controller is used for boundary control
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at the end of the FM to adjust the vibration of the FM. The physical parameter of the machine is
selected as ϖ = 2.5 N · m2, and the mechanical arm terminal load mass is m = 0.25 kg. The length
of the mechanical arm and the mass per unit length of the rod are L = 0.1 m and ρ = 0.3 kg ·m−1,
respectively. The center moment of inertia of the mechanical arm is Ih = 0.15 kg ·m2. In the simulation
based on the PDBC method, in order to further prove the robustness and anti-disturbance performance
of the proposed method, this part includes two cases (open loop and closed loop). We take S = 2 as
the closed-loop test, and S = 1 as the open-loop test. At this time, the controllable input torque of the
motor at the initial end point is τ = 0 N · m. At the end of the load, the control input torque is selected
as F = 0.

4.3. LSBC method

On the basis of the original FM based on the PDE model, we consider the simultaneous boundary
control at the end of the manipulator. According to HP, if the viscous damping coefficient γ1 and γ2

caused by the speed signal is considered, then the dynamic model of the FM at this time includes the
following three parts:

1) The distributed force balance can be considered

ρ
(
xθ̈(t) + ÿ(x, t) + γ1ẏ(x, t)

)
= −ϖyxxxx(x, t) (4.1)

2) The force balance at the boundary point can be obtained

Ihθ̈(t) = τ +ϖyxx(0, t) (4.2)

3) The boundary conditions are

y(0, t) = 0, yx(0, t) = 0, yxx − (L, t) = 0 (4.3)

Taking the error information of angle signal as follows,

e = θ(t) − θd(t) (4.4)

ė = θ̇(t) − θ̇d(t) = θ̇(t) (4.5)

ë = θ̈(t) − θ̈d(t) = θ̈(t) (4.6)

Control objectives: θ(t) → θd(t), θ̇(t) → θ̇d(t), y(x, t) → 0, ẏ(x, t) → 0, where θd(t) is an ideal angle
signal and θd(t) is a constant value.

The design control law (LSBC) is

τ1 = −kpe − kdė (4.7)
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F1 = −kη̇(L, t) (4.8)

where kp > 0, kd > 0, k > 0, F1 is the control input torque of the end point.
Discrete time is taken as ∆t = 5 × 10−4 s, the discrete distance of the manipulator, the physical

parameters of the flexible manipulator and the initial state are the same as those of the PDBC method.
Select PDE dynamic model such as Eqs (2.22)–(2.25) and ignore the damping term (γ1 = γ2 = 0). The
LSBC laws are Eqs (4.7)–(4.8). The controller parameters and ideal angles are selected as θd = 0.50,
kp = 50, kd = 30, k = 20.
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Figure 3. The response diagram of joint angle and angular velocity under open loop.

In this section, the robustness of the proposed control method is further verified by comparative
simulation. First, the FM system is divided into open-loop and closed-loop situations. Figure 3 shows
the joint angle and angular velocity response of the FM under open loop. When M = 1 is selected, it
can be seen that there is a certain error between the joint angle and the ideal angle in the open loop.
Besides, under open loop, the response diagram of deformation and deformation rate are shown in
Figure 4. As can be seen from Figure 4, the FM deformation and deformation rate of the FM are
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large under open loop, and the plane is not smooth. Taking S = 2 as the closed-loop test, the model
described in Eqs (2.22)–(2.25) are adopted. The boundary control input based on open loop are shown
in Figure 5. Meanwhile, taking kp = 40, kd = 30, k = 20. The response diagram of joint angle tracking
and angular velocity under two control methods (PDBC method and LSBC method) in Figure 6. It can
be seen from the Figure 6 that although the given signal can be tracked under both control methods,
the PCBC method proposed in this paper has faster response.

Figure 4. The response diagram of deformation and deformation rate under open loop.

From Figures 7 and 8, we can see the response diagram of deformation and deformation rate under
PDBC method and LSBC method. It can be seen from Figures 7 and 8 that the vibration effect of the
flexible manipulator is similar under the two methods. However, it can be seen from Figure 9 that the
boundary control input in the PDBC control mode is smoother and more stable.
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Figure 5. The boundary control input based on open loop.

Figure 6. The response diagram of joint angle and angular velocity under two control meth-
ods.
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Figure 7. The response diagram of deformation and deformation rate under PDBC method.

Figure 8. The response diagram of deformation and deformation rate under LSBC method.
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Figure 9. The boundary control input under two control methods.

5. Conclusions

In this paper, a boundary-based control law is adopted to suppress the flexible vibration of FM.
Different from the traditional modeling method based on ordinary differential equations, this paper
establishes the PDE dynamic model of FM system by using HP. The boundary control method is used
to add boundary control input to the end boundary of FM. By designing a Lyapunov function and the
PD boundary control law, the vibration of flexible manipulator can be adjusted. Finally, the effective-
ness and robustness of the control method proposed in this paper are further verified by comparative
simulation.

Finally, this paper takes Wuxi Vocational College of Science and Technology as an example, rely-
ing on its own specialties such as intelligent product development and application, integrated circuits
and industrial robots. Meanwhile, the management thought of top-level design is combined with en-
gineering technology, and the FM is taken as the research object, which is devoted to serving and
building a smart campus and made contributions to the high-level school construction and high-quality
development of Wuxi Vocational College of Science and Technology.
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