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Abstract: In this work, we focus on a class of generalized time-space fractional nonlinear Schrödinger 
equations arising in mathematical physics. After utilizing the general mapping deformation method 
and theory of planar dynamical systems with the aid of symbolic computation, abundant new exact 
complex doubly periodic solutions, solitary wave solutions and rational function solutions are obtained. 
Some of them are found for the first time and can be degenerated to trigonometric function solutions. 
Furthermore, by applying the bifurcation theory method, the periodic wave solutions and traveling 
wave solutions with the corresponding phase orbits are easily obtained. Moreover, some numerical 
simulations of these solutions are portrayed, showing the novelty and visibility of the dynamical 
structure and propagation behavior of this model. 
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1. Introduction  

In recent years, due to the rapid development and wide applications in nonlinear science of 
fractional calculus theory, many problems of mathematical physics and engineering have been 
successfully modeled by fractional differential equations (FDEs), such as materials [1], plasma 
physics [2], chaotic oscillations [3], chemistry and biochemistry [4], hydrology [5] and so on [6–9]. 
To better understand the physical meanings of these models, people have constructed many efficient 
methods for finding the exact explicit solutions of these FDEs, including the Bäcklund 
transformation [10], Darboux transformation [11] and Hirota bilinear method [12], which can be used 
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to find N-soliton solutions. Furthermore, the general algebraic method [13], projective Riccati 
equations method [14], Jacobi elliptic function expansion method [15], '/G G -expansion method [16], 
sine-Gordon method [17], new Kudryashov method [18], fractional sub-equation method [19], 
fractional Hirota bilinear method [20], Riemann-Hilbert method [21], complex method [22], Bernoulli 

'/G G -expansion method [23], etc. [24–29] can be used to find doubly periodic solutions, solitary 
wave solutions and trigonometric solutions of these models.  

As we all know, the nonlinear Schrödinger equation is highly focused in nonlinear science, and it 
describes many phenomena, including plasma [30], electromagnetic wave propagation [31], quantum 
mechanics [32], optics of nonlinear media [33], underwater acoustics [34], etc. [35]. Hence, solving 
this equation is highly important for researchers.  

In this article, let us consider the following generalized time-space fractional nonlinear 
Schrödinger equation (GTSFNLS) mentioned in [36–46]: 

 
22 0,

s

t xiD u aD u u u vu     
  

0,0 , 1, 1.t s      (1) 

2 ( ), ( , ), 1x x xD u D D u u u x t i      , and , ,a v  are real parameters. When 1, 1,a s   2v    , 

Eq (1) turns into an unstable nonlinear Schrödinger equation describing the bilayer baroclinic 

instability of some long waves [36]. When 1, 1, 0a s v    , Eq (1) occurs in various fields of 

physics, including optical fiber communication, quantum mechanics, fluid mechanics, 
superconductivity, plasma physics, etc. [37–41]. The authors studied its approximate solution by 

Adomian expansion in [37]. When 
1

1, ,
2

a     1, 0s v  , some exact solutions were obtained 

by direct method in [38]. When 1   , 1, 1, 0a s v   , it translates into the classical nonlinear 

Schrödinger equation [39–41]. In addition, Eq (1) has many special cases, and related studies can be 
found in [42–48]. The main purpose of this paper is to find the new exact solution of Eq (1) under the 
famous Caputo fractional derivative definition by using the general mapping deformation method and 
to study the structure of these solutions by using the theory of planar dynamical systems. Next, let us 
review some definitions about classical fractional calculus [49–51].  

Definition 1. For a function ( ) :[0, )f t R  , we define the Riemann-Liouville fractional integral 

operator of order 0   as [49–51] 

 1 0

0

1
( ) ( ) ( ) , 0, 0, ( ) ( ).

( )

t

t tJ f t t f d t J f t f t    


    
    

It admits the following properties: 

 
( 1)

( ) ( ), ( ) ( ), .
( 1)

J J f t J f t J J f t J J f t J t t           
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Definition 2. For 0,   the Caputo fractional derivative operator of order   is defined as [49–51] 

 

1 ( )

0

( )

1
( ) ( ) , 1 , ,

( )
( ) ( )

( )
, .

t n n

n n

n

n

t f d n n n N
n

D f t J D f t
d f t

n N
dt



 

   




 



        
  


  

Moreover, we have the following properties: 

 
( 1)

, 1,
( 1)

0, 1.

t
D t

 
 

  
 
 

      
  

  

This article is organized as follows: The general mapping deformation method is described in 
Section 2. In Section 3, some new exact solutions and bifurcation structures of the GTSFNLS are found 
by utilizing the proposed method and the planar dynamic system theory method. Finally, the 
conclusion is presented in Section 4. 

2. The general mapping deformation method (GMDM) 

Consider the following partial differential equation: 

 ( , , , , ) 0.t x xxE u u u u   (2) 

We assume Eq (2) has solutions as follows: 

 
0 1

( ) ( ) ( ).
n n

i i
i i

i i

u A F A F  


 

    (3) 

n  is a balance number, and the coefficients iA  , iA   and variable function ( , )x t   are 

determined later. ( )F   satisfies the following auxiliary equation: 

 
4

2

0

' ( ) ( ).i
i

i

F a F 


  (4) 

Substituting Eqs (3) and (4) into Eq (2), collecting the coefficients of 
4

0

( ) ( )j i
i

i

F a F 

   and 

( )( 0, 1, 2, )iF i j    ,  to zero yields algebraic equations (AEs) for 0 1 2 3 4, , , , ,a a a a a  ,i iA A  and  . 

Utilizing mathematical software to solve the AEs and substituting each ( )F   into Eq (3), we obtain 
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the solutions of Eq (2). For finding some new general solutions of Eq (4), we assume 

 1 1 1 1
0 1 2 3 4 1 2 3 4( ) .F b b e b f b g b h b e b f b g b h    

             (5) 

( 0, 1, , 4)ib i     are undetermined coefficients, and the functions ( ), ( ),e e f f    

( ), ( )g g h h    are constructed as below [15,52,53]: 

1
, , , .

sn cn dn
e f g h

p qsn rcn ldn p qsn rcn ldn p qsn rcn ldn p qsn rcn ldn

  
           

   
           

 
 

, , ,p q r l  are undetermined coefficients, and , , ,e f g h  satisfy the nexus (4) and (5a–5d) mentioned 

in [15,52,53]. 
Remark 1. Our method proposed here can be used to extend many other traditional methods such as 
the generalized Jacobi elliptic functions expansion method [15,53], the extended projective Riccati 
equations method [14], many other algebra expansion methods [18,19,38,46], etc. 

3. Bifurcation and exact solutions for the GTSFNLS  

3.1. Exact solutions 

If we let 
2

2
2

,t x

u u
D u D u

t x

 
 

 

 
 
 

, Eq (1) can be rewritten as follows: 

 
2

2

2
0

su u
i a u u vu

t x

 

   
   

 
,   0,0 , 1, 1t s     . (6) 

Let us give a functional transformation [46,54,55] 

 ( ) ,iu e    (7) 

 1 1 2 2,
(1 ) (1 ) (1 ) (1 )

k x c t k x c t   

 
   

   
       

. (8) 

1 2 1 2, , ,k k c c  are parameters to be determined later. Substituting Eqs (7) and (8) into Eq (6), separating 

the real part and the imaginary part, we obtain 

 
2 2 2 1
2 1 1

2 1 2

( ) ( ) ( ) ( ) 0, (9.1)

( 2 ) ( ) 0. (9.2)

sak v c ak

c ak k





     

 

     


 
 (9) 
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Here, 
2

2

( ) ( )
( ) , ( )

d d

d d 
      
 

  . 

Using the transformation ( ) ( )s s         for (9.1) yields 

 2 2 2 2 2 2
2

2
12

4
1(( ) )( ) 01ak s ak s v c ak s s           . (10) 

Clearly, the balance number 1n  , and we assume solutions of Eq (10) have the form 

 1 1
0 1 1 0 1 1( ) ( ) ( )A A F A F A A F A F     

        , (11) 

where 
4

2

0

' , ( )i
i

i

F a F F F 


   and 
( )

'
dF

F
d




 . 

Substituting Eq (4) and (11) into Eq (10) and by utilizing the GMDM with the aid of mathematical 
software, we get the following solutions:  

Family 1. ( ) .C    

We find the trivial solution of Eq (6)  

 

1 12 ( )2
(1 ) (1 )1 1

0 , ( 0).
k x c t

is c ak v
u e

 

  



    

 
  

Remark 2. If we select 2
1 0 1 0, , 2 , 1s sc c a v k c a         in 0u , we have the solution 

1 1( )
01 0 ,i k x c tu c e   which can be obtained by many authors by using approximate methods such as VIM 

or HAM [37,39]. 

Family 2. 2 1 22 0.c ak k   

Case 1  

 2 24
0 1 2 1 2 1 2 1 2 2 1 1 3

2
1, 0, , 0, 2 , , 0.

aa
s A A k A c ak k c aa k ak v a a

 


              

Case 2 

 

4 0
0 1 2 1 2 2 1 2

2 2
1 2 0 4 2 1 1 3

2 2
1, 0, , , 2 ,

( 6 ) , 0.

aa aa
s A A k A k c ak k

c a a a a k ak v a a

 

 
       

     
  

We obtain two types of solutions for Eq (6): 



14382 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14377–14394. 

 

2 2
1 2 2 1( )

( )
(1 ) (1 )4 2 1 2

1 2

2 2
( ) ,

(1 ) (1 )

k x aa k ak v t
iaa k x ak k t

u k F e

 
 

 

  

 


   
  

      

 

2 2
2 0 4 2 11

14 2 1 2 0 2 1 2
2 2 2

( ( 6 ) )
( )

(1 ) (1 )

2 2 2 2
[ ( ) ( )] ,

(1 ) (1 ) (1 ) (1 )

.
a a a a k ak v tk x

i

aa k x ak k t aa k x ak k t
u k F k F E

E e



   

 

     


  


   

 
    

       

   

iF  is an arbitrary solution of the auxiliary equation 2 2 4
0 2 4'i i iF a a F a F    in 1 2,u u , and the 

coefficients 0 2 4, ,a a a  are arbitrary constants. Many types of iF  have been found in a large number 

of papers, such as [53,56,57]. Let us choose 2 2
0 21 , 2 1,a m a m     2

4 1,a m F cn   . Thus, 

 

2 2 2
1 2 1( (2 1) )2 ( )

(1 ) (1 )2 1 2
1.1 2

22
( ) ,

(1 ) (1 )

k x a m k ak v t
ik x ak k tam

u k cn e

 
 

 

  

  


     
   

  

and the solution 1.1u  is translated into a bell-soliton solution when 1, 1m    . 

 
2 2

1 2 1( ( ) )
1.2 2 2 1 2

2
sec ( 2 ) i k x ak ak v ta

u k h k x ak k t e


     .  

If we let 2 2
0 2 41, 1, ,a a m a m     0F sn , then 

 

2 2 2
1 2 1

2
2 1 2 2 1 2

2.1 2 2

( ( 1 6 ) )
( )

(1 ) (1 )

2 2 2 2
[ ( ) ( )] ,

(1 ) (1 ) (1 ) (1 )

.
k x a m m k ak v t

i

am k x ak k t a k x ak k t
u k sn k ns E

E e

 

   

 

     
    


   

 
    

       

   

Case 3  

 2 2
0 1 2 1 2 1 2 1 1 0 1 3 4

2
1, 0, , 0, 2 , , 0, .

a
s A A k q A c ak k c ak v a a a a q

 


               

 

Case 4 

 

2 2 2
0 2 1 1 2 2 1 2 1 2 1

2 2 2
0 1 2 3 4

1, , 0, , 2 , (1 ) ,
2 2

1 1 3
, 1, , 1 2 , 3 .

4 2 4

a a
s A k A A k c ak k c a m k ak v

a a a m a m a m
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Case 5 

 
2 2 2

0 2 1 1 2 2 1 2 1 2 1

2 2 4
0 1 2 3 4

2 2
1, , 0, , 2 , 2 (1 ) ,

1, 4, 8 2 , 8 4 , 4 .

a a
s A k A A k c ak k c a m k ak v

a a a m a m a m

 

 
          

         


  

We find the following solutions of Eq (6), respectively: 

 

2
1 1( )2 ( )

(1 ) (1 )
3

2 1 2

2

,
2

1 ( )
(1 ) (1 )

k x ak v t
i

a
k q

u e
k x ak k t

q

 

 
 



 

 


   





 

      

 

2 2 2
1 2 1

2 1 2 2 1 2
( (1 ) )

( )
(1 ) (1 )

4 2
2 1 2 2 1 2

2 2
1 ( ) ( )

(1 ) (1 ) (1 ) (1 )
[ ] ,

2 22
( ) 1 ( )

(1 ) (1 ) (1 ) (1 )

k x a m k ak v t
i

k x ak k t k x ak k t
cn sn

a
u k e

k x ak k t k x ak k t
sn cn

 

   

 
   
   


   

   


   

  
          

  
       



 

 

2 2 2
1 2 1(2 (1 ) )

( )
(1 ) (1 )2 1 2 2 1 2

5 2

2 22
( ) ( ) ,

(1 ) (1 ) (1 ) (1 )

k x a m k ak v t
ik x ak k t k x ak k ta

u k cs dn e

 
   

 

    

  


   
   

          

If we let 1m   or 0m  , solution 5u  is degenerated to the following form: 

 

2 2
1 2 1(4 )

( )
(1 ) (1 )2 1 2 2 1 2

5.1 2

2 22
csc ( )sec ( ) ,

(1 ) (1 ) (1 ) (1 )

k x ak ak v t
ik x ak k t k x ak k ta

u k h h e

 
   

 

    

 


   
   

         

 

2 2
1 2 1(2 )

( )
(1 ) (1 )2 1 2

5.2 2

2 2
cot( ) .

(1 ) (1 )

k x ak ak v t
ia k x ak k t

u k e

 
 

 

  

 


   
  

      

Case 6 

 

2 2
1 1 1 1

0 1 1 2 2 1 2

0 1 3 2 4

(1 )( )
0, , 0, , 2 ,

0, 1, 1.

s c ak v c ak v
A A A k s c ak k

a

a a a a a

 

    
       

     

  

Case 7 

 

2 2
22 2

0 1 1 1 1 2 1 22

0 1 3 2 4

1 (1 )
0, , 0, , 2 ,

0, 1, 1.

s ak ak
A A A c ak v c ak k

s s

a a a a a
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Case 8 

 

2 2
22 2

0 1 1 1 1 2 1 22

0 1 3 2 4

1 (1 )
0, , 0, , 2 ,

0, 1, 1.

s ak ak
A A A c ak v c ak k

s s

a a a a a

 


          

     

  

With the same process, we obtain 

 

1 1

2
1 1

12 ( )2
(1 ) (1 )1 1 1 2

6

(1 )( ) 2
sec ( ) ,

(1 ) (1 )

k x c t
is

s

c ak v
s x

s c ak v ak k tau h e

 


 

  


   

 
  

  
      

 

2
2 2
1 2

1
( )

12 ( )2
(1 ) (1 )2 2 1 2

7 2

(1 ) 2
c ( ) ,

(1 ) (1 )

ak
ak v t

k x sis
ss ak k x ak k t

u cs h e
s




 
 

  

 


   
   

      

 

2
2 2
1 2

1
( )

12 ( )2
(1 ) (1 )2 2 1 2

8.1 2

(1 ) 2
sec ( ) ,

(1 ) (1 )

ak
ak v t

k x sis
ss ak k x ak k t

u e
s




 
 

  

  


   
   

      

 

2
2 2
1 2

1
( )

12 ( )2
(1 ) (1 )2 2 1 2

8.2 2

(1 ) 2
c ( ) .

(1 ) (1 )

ak
ak v t

k x sis
s

s ak k x ak k t
u cs e

s




 
 

  

  


   
   

      

If selecting 1 0, 0k v   in 6u , we get 

 
1

2 1
(1 )1 1

6.1

(1 )
sec [ ] ,

(1 )

s c t
i

ss c c sx
u h e

a






 
 


 

  

Remark 3. If we select 1 0, 0k v  , 2 1

1
1, 1, 1, 1, ,

2

p
a k c s    

        , 6u  turns into the 

following solution mentioned in [58]. 

 
1 1 2

1 1 11 1
( ) sec [ ] .

2 2
i tp p p

scipio

p p
u h x e     

   

We simulate some structures of the periodic and solitary solutions for Eq (1) below. Some optical 
waves of the GTSFNLS are propagated by a periodic wave pattern in Figures 1 and 2 or a bright-
soliton wave pattern in Figure 3 and blow-up wave pattern in Figure 4 with the fractional order 

0.4, 0.8   . The density plots of 4 5 6Re , Im ,u u u  and 8.1u  are shown in Figure 5. 
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Figure 1. The real part of 4u  at 1 2 1, 1, 2, 0.5, 0.1, 0.6, 0.7k k a v m             

and 0 .0 1t  . 

 

Figure 2. The plot of Im 5u   at 1 2 1, 1, 2, 2, 0.1k k a v m              and 

0.05t  . 

 

Figure 3. The modulus plot of 6u  at 1 2 12, 1, 3, 1s k k a c v m             

and 1t  .  

10 5 5 10
x

2

1

1

2

Im u5

4 2 2 4 6
x

0.2

0.4

0.6

0.8

1.0

u6
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Figure 4. The modulus plot of 8.1u   at 1 2 12, 1,s k k a c v       

0.75, 0.4, 0.8,       and 1t  . 

 

Figure 5. The density plots of 4 5 6Re , Im ,u u u  and 8.1u . 

3.2. Bifurcation analysis 

Below, let us discuss the plane phase portrait structure of Eq (9) by using the plane dynamic 

system theory [59,60]. Without loss of generality, select 1 2 1,k k   20.5, 1a c   . Thus, 

 2 1
1( ) [1 2( )] ( ) 2 ( ) 0sc v          . (12) 

Let 
d

y
d



 , and clearly, Eq (12) is equivalent to the following regular system: 

 
2 1

1

,

[1 2( )] 2 .s

d
y

d

dy
c v

d




 




 

    


 (13) 

2 4 6 8 10 12 14
x

1.5

2.0

2.5

3.0

u8.1
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We can get the following Hamiltonian of Eq (13): 

 2 2 2 2
1

2
( , ) [1 2( )] , .

1
sH H y y c v h h R

s

          


 (14) 

Indeed, system (13) has three equilibrium points ( , ) ( , ')P y P    on the  -axis: 

 
2 2

1 1
0 1 2

1 2( ) 1 2( )
(0,0), ( ,0), ( ,0)

2 2

s sc v c v
P P P

 
   

 .  

The coefficient matrix of system (13) is defined as ( , )M y , and ( ) det ( , ), 0,1, 2i i iJ P M y i   is 

the determinant of ( , )M y  about iP .  

 2
12

1

0 1
( ) [1 2( )] 2 (2 1) .

1 2( ) 2 (2 1) 0
s

sJ P c v s
c v s

 
 

      
   

  

By the dynamical bifurcation theory of planar systems, as we all know, the equilibrium point iP  of 

system (13) is a center if ( ) 0iJ P  , it is a saddle if ( ) 0iJ P  , and it is a cusp if ( ) 0iJ P  . Let us 

analyze the bifurcation structures of system (13) by using mathematical software and the above facts. 

Case 1. 1

1
1, ,

2
c v s Z     . 

Notice that 0( ) 3 0J P    , 1 2( ) ( ) 6 0J P J P s   . Hence, 1 2,P P  are center points, and the origin 

0P  is a saddle point. Let us discuss three situations of Eq (14) with 1s   and 

2 4 21
( ) 3

2
h      . 

(i)  When 0, ( 4.5,0)h h   , we can find two clusters of doubly periodic solutions for the periodic 

orbits of Eq (13) defined by the following integral equation (see Figure 6(a)): 

4 2 2 2 2 2
1 2

1 1
3 ( )( )

2 2

d
h

d

      

          , 

Integrate this equation along the periodic orbits thus: 

2 2

2 2 2 2
4 2 1 2

1
.

21 ( )( )3
2

d d

h
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We get the following smooth doubly periodic solutions: 

2 2
2 1

0 2 2
2

1
[ , ],

2h dn
 

   



   

(1 )2 2 ( )
2 1 (1 ) (1 )

1. 0 2 2
2

1
[ ( ), ]

2 (1 ) (1 )

v tx
i

h

x t
u dn e


 

  
 

  




   



  

   
, 

where 1 23 9 2 , 3 9 2h h       . 

(ii)  When 0h  , there exist two clusters of bell-soliton wave solutions for the symmetric homoclinic 
orbits of system (13) with the following form: 

0 6 sec ( 3 )h h    , 

(1 )
( )

(1 ) (1 )
1. 0 6 sec [ 3( )]

(1 ) (1 )

v tx
i

h

x t
u h e


 

 

 




   
   

   
. 

(iii)  When 0h  , we obtain the Jacobi cosine wave solutions for the periodic orbit of system (13) 
with the following form: 

2 2 2
1 2 2

0 2 2 2
1 2

[ , ]
2h cn

    
 





, 

(1 )2 2 2 ( )
(1 ) (1 )1 2 2

1. 0 2 2 2
1 2

[ ( ), ]
2 (1 ) (1 )

v tx
i

h

x t
u cn e


 

   
   




   



 

    
, 

where 2 2
1 29 2 3, 9 2 3h h       . 

Case 2. 1

1
1, ,

2
c v s Z       . 

Clearly, 0( ) 1 0J P   , 1 2( ) ( ) 2 0J P J P s    . Hence, 1 2,P P  are saddle points, and 0P  is a center 

point (see Figure 6(b)). Let 2 4 21
1,( )

2
s h      , and we can discuss the solutions of Eq (12) 

with the same process. Due to space limitations, we only give the solutions. When (0,0.5)h , we can 

obtain two clusters of Jacobi sine wave solutions for the periodic orbits. When 0.5h  , there exist 
two kink and antikink solutions corresponding to the solutions of two symmetric heteroclinic orbits.  
When 0h  , there exist two blow-up wave solutions for the corresponding orbits. 

( 1)
( )

(1 ) (1 )1
2. 0 1 2

2

1
[ ( ), ] , (0,0.5)

2 (1 ) (1 )

x v t
i

h

x t
u sn e h

 
 

  
  




   
     

   
, 

where 1 21 1 2 , 1 1 2h h       . 
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( 1)
( )

(1 ) (1 )
2. 0.5

1
tanh[ ( )]

2 (1 ) (1 )

x v t
i

h

x t
u e

 
 

 

 


   

    
   

, 

( 1)2 2 2 ( )
(1 ) (1 )1 2 1

2. 0 2 2 2
1 2

[ ( ), ] ,
2 (1 ) (1 )

x v t
i

h

x t
u nc e

 
 

   
   




   



   

    
 

where 2 2
1 21 2 1, 1 2 1h h       . 

  
(a) (b) 

Figure 6. The phase graphs of system (13) for case 1 and case 2. 

  

(a) (b) 

Figure 7. The phase graphs of system (13) when 1s  . 
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Some planar phase graphs of system (13) with the parameter 1s   are shown in Figure 7. From 

Figure 7(a), ( 11.25, 4, 1.5c v s      ), and we can find that there exist a periodic solution and a 

bell-soliton solution, while there are not these two types of solutions in Figure 7(b) 

( 12.5, 0.5, 4c v s      ). 

Remark 4. It is notable that with the increase of h , the periodic wave solution is degenerated into a 
solitary wave solution and then into another periodic solution in Figure 6(a). The periodic wave 
solution is transformed into a kink or antikink wave solution and then into an unbounded solution in 
Figure 6(b). 

4. Conclusions 

In brief, many types of new exact solutions for the GTSFNLS have been found after utilizing the 
GMDM. Some dynamic behaviors of these solutions are discussed using bifurcation theory. We 
simulate the 3D plots, 2D plots, density plots and phase graphs of the partial solutions in Figures 1–7, 
which show that these doubly periodic wave solutions, solitary wave solutions and single periodic 
solutions can be mutually transformed along with the concomitant energy constant and its 
corresponding orbits. These efficient and significant two methods can be used for many other nonlinear 
models, such as the Korteweg–de Vries (KdV) equation, Ginzburg-Landau equation, Burgers-BBM 
(Benjamin-Bona-Mahony) equation, etc. 
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