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Abstract: To overcome the problem of easily falling into local extreme values of the whale swarm 
algorithm to solve the material emergency dispatching problem with changing road conditions, an 
improved whale swarm algorithm is proposed. First, an improved scan and Clarke-Wright algorithm 
is used to obtain the optimal vehicle path at the initial time. Then, the group movement strategy is 
designed to generate offspring individuals with an improved quality for refining the updating ability 
of individuals in the population. Finally, in order to maintain population diversity, a different weights 
strategy is used to expand individual search spaces, which can prevent individuals from prematurely 
gathering in a certain area. The experimental results show that the performance of the improved whale 
swarm algorithm is better than that of the ant colony system and the adaptive chaotic genetic algorithm, 
which can minimize the cost of material distribution and effectively eliminate the adverse effects 
caused by the change of road conditions. 
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1. Introduction 

Over the past few years, the frequent occurrences of natural disasters in the world have caused 
serious damage to social construction and economic development, such as the flood disaster in India 
in 2013, the hail disaster in Yancheng in 2016, the 2019 hill fires in Australia and Hurricane Laura in 
the United States in 2020 [1–3]. In China, 69,227 people died in the “5.12” Wenchuan earthquake in 
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2008, with direct economic losses of $119.7 billion [4]. The “7.20” extremely heavy rain disaster in 
Zhengzhou in 2021 affected 14.786 million people, with direct economic losses reaching $17 billion [5]. 
Since most sudden natural disasters cannot be predicted in advance, strengthening the guarantee of 
emergency supplies after disasters has become the key to improving rescue efficiency. Therefore, in 
order to ensure the smooth development of rescue work, it is necessary to formulate a scientific and 
reasonable material emergency dispatching (MED) scheme, which can minimize the subsequent losses 
from the disaster. 

With the in-depth study of MED, the combinations of MED and actual scenes have become the 
main research direction. Therefore, an array of variant problems have been derived, such as the 
problem with time windows [6,7], the problem with multiple distribution centers [8,9], the multi-
objective optimization problem [10,11] and the dynamic routing problem (DRP) [12]. Among them, 
the DRP has attracted high attention from researchers [13–16]. Psaraftis et al. [14] analyzed the impact 
of the new generation of information technology on DRP and summarized the research literature 
according to 11 classification standards. Reference [16] classified the DRP models into dynamic 
demand and dynamic road conditions and introduced the research progress of its route update strategies 
and solving algorithms. DRP is proposed relative to the static routing problem (SRP). In the SRP, 
relevant information such as distribution points, demand and road conditions are known and fixed 
before planning the distribution path, and the vehicle route will not be changed once it is determined. 
However, some of the information in the DRP may be changed, so its dynamics bring a great challenge 
in optimizing the material scheduling path. More specifically, due to the continuous impact of disasters 
and secondary disasters, the emergency situations that road blockage or destruction make impassable 
vehicles occur frequently in the disaster scenario, which makes it necessary to dynamically adjust the 
planned path according to real-time information during material scheduling. Therefore, it is more 
realistic to consider the “changing road conditions” in the study of emergency material dispatching. In 
addition, the essence of MED is a vehicle routing problem (VRP). As a classical combinatorial 
optimization problem, the VRP has been proved to be an NP-hard problem. Therefore, while paying 
attention to the construction strategy of the MED model, scholars have also conducted a lot of research 
on its solution algorithm. At present, there are mainly the exact algorithm [17–19] and the heuristic 
algorithm [20–22]. Among them, the exact algorithm establishes the corresponding mathematical 
model for a specific problem and uses mathematical methods to find the optimal solution. Although 
the exact algorithm can achieve better results in solving the problem, its computational time 
explosively increases with an increase of the problem size, which makes it only suitable for solving 
small-scale problems [23]. The heuristic algorithm can give a feasible solution for the combinatorial 
optimization problem within an acceptable range, which has better robustness and feasibility in dealing 
with large-scale problems compared to the exact algorithm. However, its solution performance is 
mostly limited by the hand-designed algorithm rules. Especially in the cases of single distribution 
centers, no time constraints and changes in road conditions, the stability of the heuristic algorithm 
is deficient [24,25]. 

Although the research on “changing road conditions” has been widely carried out, finding high-
performance algorithms to improve the execution efficiency, feasibility and reliability of the 
scheduling scheme is still an urgent practical demand problem in post-disaster material distribution. 
Therefore, considering the disadvantages of the traditional heuristic algorithm and the complexity of 
the material emergency dispatching with dynamic road conditions (MEDDRC) scheme, this paper 
proposes an improved whale swarm algorithm (IWSA) to solve the MEDDRC problem. The main 
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contributions of this study are as follows: 
1) The improved scan Clarke-Wright (ISCW) method is designed to plan the initial driving route 

of vehicles, which can obtain the initial scheduling scheme with minimum cost. 
2) The group movement rule is proposed to update the individuals, which not only ensures that 

individuals in the population carry out a detailed local search of in different regions, but also enhances 
the global search capability of individuals. 

3) To avoid individuals prematurely congregating in a certain area during the iterative process, a 
different weights strategy is constructed to expand the individual search space, which is helpful to 
maintain the population diversity. 

4) The feasibility of the proposed algorithm in solving material emergency dispatch under 
dynamic changes in road conditions is verified through extensive experiments. 

The remaining sections of this paper are organized as follows. Section 2 provides a review of the 
relevant literature on MED in recent years. Section 3 develops a mathematical model for the MEDDRC 
problem. A detailed description of the proposed IWSA and the main strategies are shown in Section 4. 
Section 5 analyzes the experimental results of the algorithm. Our conclusions and future work are 
given in Section 6. 

2. Literature review 

As a key part of emergency management, the merits and demerits of the MED scheme will directly 
affect the smooth development of subsequent rescue work. For this reason, scholars have carried out a 
lot of research work around the MED. According to the different focuses of the research, the existing 
works mainly include two aspects of the model construction and solution. 

As the specific situations of disasters are different, the objectives and influencing factors 
considered in material dispatching are also somewhat different. Therefore, in order to meet the special 
needs in different disaster situations, researchers have constructed corresponding mathematical 
models for specific application scenarios. For example, in solving the single-objective problem, 
Sung and Lee [26] achieved maximizing the number of rescuers with limited resources by modeling 
patient priority as an ambulance scheduling problem. Balcik et al. [27] proposed a mixed integer 
programming model for studying the last mile distribution problem, which can reduce the 
transportation cost to maximize the benefit of the recipients. However, in the actual disaster relief 
operations, there is a lack of comprehensive consideration of multiple objectives. For this reason, 
Vitoriano et al. [28] constructed a multi-criteria optimization model for the MED problem by 
considering objective criteria such as time, cost, security and equity. Zhang et al. [29] constructed a 
multi-objective optimization model for multiple reserve points and multiple relief supplies, which 
can solve the difficult problem of the allocation-scheduling of emergency relief supplies. In 
addition, Chen et al. [30] presented a multi-objective optimization model with a utility–priority–
economy allocation strategy, which can effectively solve the MED problem. However, due to the 
complexity of the situation in the disaster area and the uneven distribution of the locations of the 
affected points, it is difficult to meet the urgent time requirements of MED for a single rescue point. 
For this reason, Wex et al. [31] constructed a rescue unit allocation and scheduling model for multiple 
rescue points with the objective of minimizing the total completion time and obtained the optimal 
solution by using the heuristics algorithm. Meanwhile, Song et al. [32] introduced the emergency point 
satisfaction and materials lack loss coefficient and built an emergency material dispatching model with 
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a multi-emergency point, a multi-rescue point and multi-stage. However, most of the above models 
only consider the influence of static factors, without considering the time-variant of road conditions 
and traffic environment, which will lead to the vehicle not being able to smoothly complete the material 
distribution tasks according to the existing scheduling scheme. Therefore, Qu et al. [33] took the 
timeliness and fairness of emergency material distribution as the goal and established a multi-objective 
optimization model for distribution path planning under multi-period dynamic conditions. In addition, 
the update strategies of the scheduling scheme such as a fixed time interval [34] and a key point [35] 
are often adopted. For example, Okhrin et al. [36] adopted the method of updating the status of the 
current road section at regular intervals to solve the problem of real-time vehicle routing; however, it 
may cause an inconsistency between the time of information update and the time of actual route 
change. Therefore, Li et al. [37] proposed a new method of updating the route at key points to solve 
the problem of dynamic network vehicle distribution, which was more effective compared to the 
traditional updating mechanism. 

In problem-solving, the quality of the scheduling scheme depends on the algorithm for solving 
the problem; a high-performance solving algorithm can significantly increase the possibility of 
obtaining an efficient and reasonable scheduling scheme. For this reason, researchers have conducted 
a lot of research on how to improve the performance of problem-solving algorithms. For example, 
Zhang et al. [38] used a local search technique and high-priority rule to design an algorithm based on 
linear programming to solve the optimal allocation of emergency resources, which can reduce the 
problem complexity by improving the linear programming solution after relaxation. Meanwhile, 
Queiroga et al. [39] proposed two branch cut and price (BCP) algorithms based on the backhaul vehicle 
scheduling problem, which incorporated advanced elements such as strong branching and route 
enumeration to reduce the computation time of the problem. Although the above work has achieved 
good results, the used algorithms have a high complexity in solving large-scale problems; therefore, 
most heuristic algorithms are used to solve such problems. For example, Xiang et al. [40] proposed 
the ant colony system (ACS) algorithm based on pairwise proximity learning to solve dynamic VRPs, 
which can predict the local visiting order of customers after the occurrence of changes according to 
the optimal routes found before the changes occur. Wang et al. [41] designed a multi-objective cellular 
genetic algorithm (GA) to optimize the post-disaster emergency resource allocation model, which 
achieved a balance between global and local optimization by introducing the auxiliary population and 
neighborhood structure in the cellular automata. In addition, Zhang et al. [42] proposed an improved 
particle swarm optimization (PSO) algorithm to solve the optimal scheduling problem with multiple 
objectives, which can increase the population diversity and expand the search range by adding 
perturbation operations to the update process of particle velocity. Although the heuristic algorithm has 
a high feasibility, it suffers from the disadvantage of falling into a local optimum prematurely, which 
makes it difficult to obtain an approximate optimal solution in the global scope. To this end, scholars 
adopted the whale swarm algorithm (WSA) [43] with an improved performance to solve the problem, 
and amended it on the basis of its superior iteration rules to enhance the global solution ability of the 
algorithm. For example, Dong and Ye [44] designed a new individual position movement strategy and 
a multi-neighborhood search strategy for WSA to solve the flow shop scheduling problem, which can 
balance the global and local search abilities of the algorithm to improve the solution performance. 
However, with the update and iteration of the population, the population diversity will rapidly decrease. 
For this reason, Zhang et al. [45] proposed a discrete WSA to solve the flow shop scheduling problem, 
and improved the individual movement rules of the WSA by constructing five mutation operators, 
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which can maintain the diversity of the population and enhance the solving ability of the algorithm. 
In addition, the relevant literatures on model construction and solution algorithms for MED 

problems are listed in Table 1. Among them, the superior iteration rules of WSA make its performance 
better than the traditional heuristic algorithm. However, due to the discrete characteristics of the 
MEDDRC problem, the algorithm rule in the traditional WSA cannot well solve this problem. 
Moreover, during the iteration of the algorithm, the convergence of individual whale movements in 
the WSA makes the population individuals still gather quickly in a certain region of the solution space, 
which in turn limits the ability of individual whales to search for solutions in the global range. 
Therefore, in this paper, the algorithm rules of WSA will be improved in terms of the initial route 
generation strategy, the individual movement method and the search space expansion, which can adapt 
to the MEDDRC problem and enhance the effectiveness of the algorithm. 

Table 1. Relevant literatures on the construction and solution for MED model. 

Research Objectives Solving Methods Application Scenarios Literature 

Maximizing the number of people rescued Column generation approach Medical resource allocation [26] 

Minimizing transportation costs; Maximizing 
benefits to aid recipients 

GAMS/Cplex Humanitarian relief [27] 

Maximizing transportation safety and distribution 
equity; Minimizing transportation time and costs 

GAMS/Cplex Humanitarian relief [28] 

Minimizing distribution time; Maximizing material 
satisfaction and reliability 

ACS、GA 
Emergency relief supplies 
distribution and dispatch 

[29] 

Maximizing total allocation utility; Minimizing 
distribution costs 

Goal programming、Fuzzy 
analytic hierarchy process 

Multi-depot and multiple 
affected area emergency 
logistics system 

[30] 

Minimizing the sum of completion times Heuristic algorithm Natural disaster relief [31] 

Minimizing total dispatching cost; Maximizing 
emergency point satisfaction 

PSO 
Nonlinear continuous 
consumption MED problem 

[32] 

Minimizing transportation time; Maximizing 
distribution equity 

GA Post-earthquake MED problem [33] 

Minimizing travel time GA Dynamic VRP 
[35]; [36]; 
[37] 

Minimizing the rescue costs Linear programming 
Multiple-resource and multiple-
depot MED problem 

[38] 

Minimizing distribution costs BCP VRP with backhauls [39] 

Minimizing total driving costs ACS Dynamic VRP [40] 

Minimize the disaster losses and the total risks of 
the selected routes in the rescue process 

GA 
MED for multi-period post-
disaster 

[41] 

Minimizing distribution distance; Maximizing 
distribution equity 

PSO 
Emergency material allocation 
and vehicle routing plan 
generation 

[42] 

Minimizing completion costs WSA Flow shop scheduling problem [44]; [45] 

3. Problem description and model building 

3.1. Problem description 

For the MEDDRC problem studied in this paper, due to the existence of a dynamic factor such as 
the change of road conditions, it is difficult for the fixed vehicle scheduling scheme to complete the 
distribution task of all disaster-affected points in the shortest time. Therefore, in order to describe the 
dynamic characteristics of MEDDRC and to consider the complexity of information received by the 



14419 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14414–14437. 

vehicle while driving, the concept of a “key point” [46] is introduced and divided into two levels of 
key points. The first-level key point is the location of the disaster-affected point, and the second-level 
key point is the intersection of two roads (that is, the intersections of paths to different affected points 
are considered the secondary key points). The details are shown in Figure 1. 

 

Figure 1. Example of vehicle driving route. 

When a vehicle arrives at the first-level key point, the road condition information of the disaster 
area is updated, and the relevant information is used to judge whether the vehicle scheduling scheme 
needs to be redesigned to visit the disaster-affected points that has not been visited currently. Due to 
the different locations of the vehicles sent from the distribution center at the same time, it is necessary 
to determine the position of each vehicle when reformulating the vehicle scheduling plan. Assuming 
that at time t, vehicles 1k  and 2k  are located on the first-level key point and the path from disaster-

affected point i to j , respectively, and there are n second-level key points between i and j , the 

departure time of the vehicle at each key point are it , jt , pt ( p is the p -th second-level key point, 

1 p n  ), respectively. If i pt t t  , the key point p  is taken as the position of vehicle k , and if 

p jt t t  , the key point j  is taken as the position of vehicle k . Figure 1 shows an example of two 

vehicles performing a distribution task. At time t, vehicle 1 arrives at key point 2, and vehicle 2 is 
located between key points 3p  and 4p . When updating the vehicle scheduling scheme, the starting 

position of vehicle 1 is the first-level key point 2, and the starting position of vehicle 2 is the second-
level key point 4p . 

3.2. Mathematical model 

There are many complex factors in the disaster area environment, which have brought many 
influences to the solution of the MEDDRC problem. Therefore, in order to reduce the complexity of 
the problem, the following constraints are given in this paper: 1) only one vehicle completes the 
material distribution task at each disaster-affected point; 2) the total demand of each affected point 
visited by each vehicle cannot exceed the maximum load of the vehicle; 3) the vehicles are fully loaded 
when they depart from the distribution center; and 4) the vehicle must leave after completing the 
material distribution task at the affected point. In addition, the objective function of the MEDDRC 
problem is to minimize the time cost spent by the vehicle, so the mathematical model is constructed 
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as follows: 
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The notations in the above formula are defined as shown in Table 2. 

Table 2.  Notations for various parameters of the mathematical model. 

Sets Definition 

IS   Set of key points 
R  Set of disaster-affected points 
K  Set of vehicles 
Parameters  
0 Number of distribution center 
C  Maximum load of vehicle 
k  The k -th vehicle 
i j h、、  Node variable 

iq  Material demand of node i  

dc  The cost per unit time of vehicle travel 

ijd  Distance between nodes i  and j  

ijv  Running speed of the vehicle between nodes i  and j  

ijkt  Load of vehicle k when it reaches node j  from node i  
Variables  

ijkx  Path decision variable, ijkx =1 when vehicle k  goes from i  to j , and ijkx =0
otherwise 

iky  
Vehicle decision variable, iky  = 1 when disaster-affected point i is delivered by 
vehicle k , and iky  = 0 otherwise 

4. Model solving 

4.1. Overview of the IWSA 

In this paper, an IWSA is proposed to solve the MEDDRC problem. The framework of the IWSA 
is shown in Figure 2. Firstly, the ISCW algorithm is used to plan the initial driving route of the vehicle 
for obtaining a high-quality initial solution. Then, the group movement rule is used to update the 
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individuals to ensure the detailed local search of population individuals in different regions. In addition, 
the individual search space is extended by constructing the different weights strategy to maintain the 
population diversity. The details of the algorithm are shown in Sections 4.2 and 4.3. 

 

Figure 2. Flow chart of IWSA for solving MEDDRC problem. 

4.2. Generation of the initial path 

At the initial time, it is necessary to formulate the optimal path for the vehicle based on the current 
known location of the disaster-affected point, demand and road information. Assuming that the vehicle 
is running at a normal speed, the Clarke-Wright (C-W) algorithm [47] can generally be used to generate 
the initial path of the vehicle. Although the C-W algorithm has good results when used alone, its 
solution speed will decrease as the VRP scale increases. Therefore, in order to improve the 
performance of the algorithm to obtain a better initial path, this paper proposes an ISCW algorithm, 
which takes the angles between the lines connecting the disaster-affected points and the origin as the 
division basis, scans all disaster-affected points counterclockwise, and uses the improved C-W 
algorithm to plan the access path of the disaster-affected point. The basic idea is as follows: 

1) Calculate the angle of the disaster-affected point in polar coordinates. Taking the distribution 
center as the origin, the coordinates of the disaster-affected point are converted from a rectangular 
coordinate system to a polar coordinate system, and rays are made from the origin to all the disaster-



14422 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14414–14437. 

affected points, respectively. The line between the origin and a randomly selected disaster-affected 
point is taken as the polar axis. The remaining disaster-affected points are scanned counterclockwise 
starting from the polar axis, and the angle between the polar axis and the line connecting the disaster-
affected point and the origin is calculated. 

2) Determine the adjacent disaster-affected points with the largest included angle. Starting from 
the polar axis, the included angle between the lines formed by connecting the adjacent disaster-affected 
points to the origin is calculated in turn. The disaster-affected points corresponding to the two rays 
with the largest angle are selected, and their relative positions are judged (that is, the counterclockwise 
angle between the polar axis and the line connecting the origin and the disaster-affected point). 

3) Determine the starting point of scanning and group the disaster-affected points. According to 
the two disaster-affected points with the largest angle determined in 2), the disaster-affected point with 
the largest angle with the polar axis is selected as the scanning starting point of counterclockwise, and 
the remaining disaster-affected points are grouped according to the maximum load constraint of the 
vehicle. That is, if adding a new scanned disaster-affected point makes the total demand in the current 
group more than the maximum load of the vehicle, the disaster-affected point is added to a new group, 
and the remaining disaster-affected points are continue scanned. 

4) Determine the visiting order of the disaster-affected points. According to the grouping of the 
disaster-affected points, the improved C-W algorithm is used to determine the service order of the 
disaster-affected points in each group, that is, the visiting order is determined sequentially by the saving 
value. Specifically, for a group of disaster-affected points that do not violate the vehicle load constraint, 
when the two selected disaster-affected points with the largest savings value are not related to the 
planned disaster-affected points, the improved C-W algorithm directly adds them to the set of planned 
disaster-affected points instead of selecting new vehicles to visit. 

4.3. Update strategy of the path 

When the road conditions change, the main works of IWSA proposed in this paper include: 1) the 
initial population is generated based on the shortest path mutation to adapt to the dynamic 
characteristics of the problem; 2) when the population is iteratively updated, the guide individual and 
the specific movement mode of each individual in the population are determined by the group 
movement strategy; and 3) in the process of population iteration, when the population diversity is 
lower than a certain threshold, the method of moving individuals based on different weights is used to 
screen the individuals and generate new individuals. 

4.3.1. Population initialization method based on hybrid operator 

Due to the update of road condition information, the start node is not the distribution center when 
re-planning the unvisited disaster-affected points, and the vehicles are not necessarily fully loaded at 
this time. Therefore, in order to adapt to the specificity of the problem, this paper uses the hybrid 
operator based on the shortest path mutation to initialize the population. The shortest path algorithm is 
used to generate the initial solution of the subproblem, and the initial solution is expanded by using 
the 2-opt operator [48] and the split mutation operator [49] to obtain the initial population. The specific 
method is shown in Figure 3. 
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Figure 3. Principle of 2-opt operator and split mutation operator. 

In Figure 3, the 2-opt operator flips the order of nodes between two randomly selected positions 
1l  and 2l  to generate new individuals. The split mutation operator randomly selects a split point l, 

keeps the node order before and after the split point l  unchanged, and uses the improved C-W 
algorithm to replan the remaining nodes for generating two new individuals. 

4.3.2. Individual update method based on group movement strategy 

The individual movement method in WSA is mainly suitable for solving continuous problems; 
however, MEDDRC is a discrete problem. Therefore, in order to adapt to its discreteness and improve 
the quality of the problems solution, this paper constructs a group movement strategy for updating 
individuals. The main ideas are as follows: 

1) Grouping of individuals in the population. Hierarchical clustering is used to divide the 
individuals in the current population equally according to their differences, and to minimize the total 
individual differences within the group. The clustering objective is as in Eq (7), and the individual with 
the best quality in each group is recorded as bG . Eq (8) is used to calculate the difference between 

individuals i and j , and Eq (9) is used to measure the quality of individuals in the population P . 
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In Eq (7), c  is the class number, x  is the sample vector, iμ  is the mean vector of the i-th 

class samples, and iS  is the set of the i-th class samples. In Eq (8), ijr  represents the same path 

length traveled by vehicles in individual i and j , n is the total number of disaster-affected points, 

and im   and jm   are the number of vehicles used in individual i  and j  , respectively. In Eq (9), 

idist  is the total distance traveled by the vehicles to finish the material distribution task for all disaster-

affected points represented by individual i, and  qf i  represents the quality of individual i. 

2) Update the optimal individual in the long term memory unit (LTMU). If the current population 
is the initial population, the highest quality individual bW  and the higher quality individual with the 

largest difference from bW   are selected from it to join the LTMU; otherwise, the highest quality 
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individual bp  in the current population is found and compared with bW . If individual bp  is better 

than bW , the bW  is replaced by bp . 

3) Update other individuals in the LTMU. The high-quality individual with the largest difference 
from bW  is selected from the current population to be added to LTMU, and the remaining individuals 

except in the bW  original LTMU are deleted. 

4) Individual movement. Within the group, all individuals in the group except the optimal 
individual bG  are moved with bG  as the guide. Between groups, the individual from the LTMU, 

which is closest to the optimal individual bG  of each group and better quality, is selected as its guide 

individual and moved. For the optimal individual bp  in the population, if it is the same as the optimal 

individual bW  in LTMU, the 2-opt operator is used to generate its offspring individuals. 

In order to better illustrate the idea of the group movement strategy, Figure 4 shows an algorithm 
diagram with 12 disaster-affected points and LTMU size of 4. 

 

Figure 4. Diagram of the group movement strategy. 

According to their differences and similarities, when the individual moves to its guide individual, 
this paper adopts the following movement rules. First, the same path segment in individual i  and its 
guide individual j  is found, such as a b c  , and the path is regarded as a whole node A , whose 

initial visit position is node a  , and its end visit position is node c  . Then, the improved C-W 
algorithm is used to plan the path between the node A   and other nodes to obtain the offspring 
individual k . Figure 5 shows a specific example. 

 

Figure 5. Diagram of individual movement. 

In Figure 5, the same path segments of individual i  and guide individual j  are 1→2 and 6→7, 



14425 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14414–14437. 

so they are regarded as two whole nodes, and the path planning is carried out together with the 
remaining nodes, so as to obtain the new offspring individual k . 

4.3.3. Expand the search space based on different weights 

In the MEDDRC problem, the solution space of the problem grows explosively with the increase 
of the number of nodes. The movement of individual whale is a local small-range search based on the 
original individual and guided by the guide individual. Therefore, by iteratively updating of the 
population, the individuals gradually gather in a certain area, which makes it difficult for the 
superposition of the movable space of all individuals in the population to cover the entire solution 
space of the problem when the individual move toward the guide individual. If the individuals in the 
population gather in a certain area of the solution space prematurely, the population diversity will be 
lost, which may cause the algorithm to fall into a local optimum, making it difficult to find the global 
optimal solution of the problem. Therefore, in order to maintain a high population diversity and to 
ensure that individuals can be distributed in a large area of the solution space, this paper uses the 
strategy of different weight to expand the individual search space. When the population diversity is 
below a certain threshold, half of the individuals with a poor quality and a smaller total difference 
value in the current population are discarded. Then the search space of the remaining individuals in 
the population is expanded using different weight strategies to obtain new offspring individuals. 

Population diversity can be used to represent the differences among individuals in a population. 
When the individuals in the population gather in a certain area, the differences among individuals are 
small. The population diversity is currently low, which makes the total search space of the individual 
during moving is also smaller. On the contrary, when the individuals in the population are distributed 
in a large area of the solution space, the differences among individuals are larger. Currently, the 
population diversity is higher, which makes the total search space of the individual during moving is 
also larger. Therefore, the population diversity can be used to reflect the size of the total search space 
of the individuals in the population during moving, and the population diversity can be represented 
by inter-individual differences. In this paper, Eq (10) is constructed based on Eq (9) to measure 
population diversity. 

 2
ij

i j

D d s
 

   
 
  (10) 

In Eq (10), ijd  is the difference between individual i  and j  calculated by Eq (9), where s  

is the population size. 
Everyone in the population can reflect the number of vehicles required for material distribution to 

all the disaster-affected points and the order of vehicle visits to the disaster-affected sites. In addition, 
it can be known from Eq (8) that the individual quality is inversely proportional to the total distance 
traveled by the vehicle represented by the individual, that is, the longer the total distance traveled by 
the vehicle represented by the individual, the worse its quality. In the same individual, each vehicle 
departs from the distribution center and returns after completing the distribution task. Due to the 
different locations of the disaster-affected points, the distance traveled by each vehicle is different, so 
the distance traveled by each vehicle in the individual has a different degree of influence on its quality. 
In the same vehicle depot (the vehicle depot refers to the complete travel path of a vehicle, including 
the disaster location and distribution sequence of the vehicle), the relative position of the disaster-
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affected point influences the total distance traveled by the vehicle. This paper considers the influence 
of different parts of the individual when expanding the individual search space, and proposes a method 
for moving individuals based on different weights. The specific idea is as follows: 

1) For individuals in the population, Eq (11) is used to calculate the proportion of the running 
distance dist  of each vehicle in the individual in the total running distance Dist , thus the weight of 
each vehicle depot is obtained, and the vehicle depot cl  with the largest weight is selected. 

 /w dist Dist  (11) 

In Eq (11), if dist  is the driving distance of a certain vehicle depot, then Dist  is the total driving 
distance. If dist  is the running distance required by vehicles to visit a certain node, then Dist  is the 
running distance of the vehicle depot where the node is located. 

2) Equation (11) is used to calculate the proportion of the total distance dist   between the 
remaining nodes in cl  except the distribution center node and its anteroposterior nodes in the total 

running distance Dist  of cl , so as to obtain the weight of each node in cl . Then, the node a  with 

the largest weight is deleted, and the available load q  of the vehicles in the current vehicle depot is 

calculated. 
3) All the nodes except the distribution center in the remaining vehicle depots are traversed in turn, 

and node b  , which can minimize the total distance of cl   by inserting it at node a  , is selected. 

Meanwhile, it is satisfied that the demand of node b  does not exceed the available load of vehicles 
in cl , and the demand of node a  does not exceed the available load of the vehicle depot where node 

b  is located. The positions of nodes a  and b  are exchanged to generate new individuals. 

5. Experimental analysis 

The suddenness and destructiveness of natural disasters has brought severe challenges to 
governments around the world. Moreover, for a populous country with a complex geographical 
environment like China, a timely and effective post-disaster response is particularly important. 
Therefore, in order to provide decision support for managers to formulate effective disaster relief 
strategies, this paper constructs a MEDDRC model according to the rescue characteristics of natural 
disaster events, and designs the ISWA solving algorithm. In the following sections, the effectiveness 
of IWSA in solving the MEDDRC model will be verified through experiments. 

5.1. Experimental environment and parameter setting 

Our experiments were coded in Python 3.8, compiled on PyCharm, and run on an Intel (R) Core 
(TM) i5-8500T CPU @ 2.10GHz, Windows 10 operating system. In this paper, the experiments are 
conducted using the randomly generated dataset, and the change of road condition is represented 
by randomly modifying the distance between the affected points. The number of nodes in the data 
set is 10, 20, 50 and 100 respectively, and the size of the data set is 50. The node positions are randomly 
selected in [0,100]2, and the node demand is randomly generated in [1,9], and the vehicle loads 
corresponding to different node numbers are 20, 30, 40 and 50, respectively. 

The parameters in this paper mainly include the population size, the size of the long-term memory 
unit, the grouping number of individuals in the population and the threshold of population diversity, in 
which the relationship among the grouping number _g num , the population size _pop num  and the 
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number of hierarchical clustering n  can be shown in Eq (12). 

 _ _ / 2ng num pop num     (12) 

A larger number of groups means that the division of individuals in the population is more 
detailed, and the search space is relatively small when the individuals in the group move. A smaller 
number of groups means that the division of individuals in the population is wider, and the search 
space is relatively larger when the individuals in the group move. In order to achieve better 
performance of the algorithm, this paper used a pre-experimental method to determine some 
parameters, that is, combining the existing works and numerous tests to obtain a set of parameters 
with relatively good results. The pre-experiments were carried out with a node size of 20, a data 
set size of 50 and a vehicle load of 30. The final parameters are set as follows: the population size is 
30, the long-term memory unit size is 6, the number of groups is 2, and the population diversity 
threshold is 0.4. 

5.2. ISCW validity verification 

In order to verify the performance of the ISCW in the model, the ISCW, scan algorithm and C-W 
algorithm are used to generate the initial vehicle distribution routes of the MEDDRC problem 
respectively, and the results are shown in Table 3. 

Table 3. Performance comparison of initial paths generated by different algorithms. 

Scales Batches 

ISCW scan algorithm 
Average 
cost 
deviation 

C-W algorithm 
Average 
cost 
deviation 

Average 
distance 
(km) 

Average 
number of 
vehicles 

Average time 
(s) 

Average 
distance 
(km) 

Average 
number of 
vehicles 

Average time 
(s) 

Average 
distance 
(km) 

Average 
number of 
vehicles 

Average time 
(s) 

10 

1 540.810 3.33 3.758 × 10−3 561.839 3.3 2.299 × 10−4 3.743% 540.948 3.77 6.386 × 10−3 0.026% 

2 522.060 3.26 6.899 × 10−4 536.310 3.25 9.995 × 10−5 2.657% 525.022 3.74 2.098 × 10−3 0.564% 

3 534.432 3.09 7.496 × 10−4 545.404 3.09 5.995 × 10−5 2.012% 544.666 3.7 2.059 × 10−3 1.879% 

20 

1 776.420 3.97 1.669 × 10−3 840.303 4.01 9.993 × 10−5 7.602% 865.543 5.88 8.405 × 10−3 10.297% 

2 780.678 4.02 1.529 × 10−3 829.346 4.04 2.299 × 10−4 5.868% 859.095 5.83 8.454 × 10−3 9.128% 

3 778.583 4.12 1.739 × 10−3 826.095 4.07 1.199 × 10−4 5.751% 855.665 5.83 9.054 × 10−3 9.008% 

50 

1 1469.121 7.11 5.427 × 10−3 1725.696 7.11 3.899 × 10−4 14.868% 1707.334 12.25 7.152 × 10−2 13.952% 

2 1490.557 7.05 4.837 × 10−3 1743.931 7.1 3.000 × 10−4 14.529% 1750.497 12.46 6.466 × 10−2 14.849% 

3 1508.282 7.05 4.967 × 10−3 1780.993 7.04 3.600 × 10−4 15.312% 1760.988 12.22 6.835 × 10−2 14.350% 

100 

1 2465.197 11 1.166 × 10−2 3097.789 10.95 6.296 × 10−4 20.421% 3021.683 22.14 3.222 × 10−1 18.416% 

2 2479.745 11.12 1.195 × 10−2 3156.978 11.1 6.696 × 10−4 21.452% 3054.719 22.04 3.132 × 10−1 18.822% 

3 2465.101 10.99 1.151 × 10−2 3082.964 10.97 6.296 × 10−4 20.041% 3035.305 22.39 3.079 × 10−1 18.786% 

As can be seen from Table 3, under different problem scales, the average distance solved by ISCW 
is smaller than that of both the scan algorithm and the C-W algorithm for the same set of samples. 
When the number of nodes is 10, 20, 50 and 100, the average distance calculated by ISCW is reduced 
by 2.804 and 0.823%, 6.407 and 9.478%, 14.903 and 14.384%, 20.638 and 18.675%, respectively, on 
average compared with scan algorithm and C-W algorithm. The reduction degree of the average 
distance solved by the ISCW increases greatly with the increase of problem scale, which is attributed 
to the improvement of the scan algorithm. In the scan algorithm, a disaster-affected point is randomly 
selected, and other disaster-affected points are scanned in a certain direction according to the angle 
between the lines joining the disaster-affected points and the distribution center. By default, the loop 
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formed between the disaster-affected points in similar directions is short; however, the influence of the 
size of the angle between the lines connecting the disaster-affected points and the distribution center 
is ignored. In the ISCW, one of the two disaster points with the largest included angle is selected as 
the starting point to scan, which can avoid dividing the two nodes with the largest included angle in 
the same vehicle and reduce the distance of the solution to a certain extent. 

In addition, Table 3 also shows that the average number of vehicles calculated by the ISCW is 
roughly the same as that of the scan algorithm for the same set of samples, but less than that of the C-
W algorithm. This is because in the C-W algorithm, when the two disaster-affected points to be selected 
are not related to the disaster-affected points in the current planning set, a vehicle will be reassigned 
to access, which may cause unnecessary use of the vehicle or waste of used vehicle capacity. However, 
in the ISCW, since each group of disaster-affected points is obtained according to the improved scan 
algorithm, the total demand of the disaster-affected points must be less than or equal to the maximum 
load of the vehicle. Therefore, if the C-W algorithm is used to optimize the path for each group of 
disaster-affected points, the remaining disaster-affected points can be directly added to the planned 
disaster-affected points set when there are new vehicles to be added, which can avoid the waste of 
vehicle capacity. Additionally, in terms of solution time, the calculation time of ISCW is between that 
of scan algorithm and C-W algorithm. The ISCW takes more time to calculate than that of the scan 
algorithm. This is because the ISCW also uses the improved C-W algorithm to optimize the path of 
the disaster-affected point except for the scan algorithm, so it takes more time than just using the scan 
algorithm. Compared with the C-W algorithm, the ISCW takes less time because the C-W algorithm 
needs to select the appropriate nodes from all the disaster-affected points; in turn, according to the 
saving value, the set of disaster-affected points is relatively large. The ISCW firstly uses the scanning 
algorithm to group the disaster-affected points, which reduces the set of disaster-affected points 
compared with directly using C-W algorithm, and can shorten the time spent in selecting nodes to a certain 
extent. Therefore, compared with using the C-W algorithm, the solution time of the ISCW is shorter. 

5.3. Comparative analysis of algorithms 

To verify the performance of the IWSA in solving the MEDDRC problem, the IWSA, the ACS [50] 
and the adaptive chaos genetic algorithm (ACGA) [51] are used to solve the problem in this paper 
respectively, and the calculation results are shown in Table 4 and Figures 6 and 7. 

It can be seen from Table 4 that when the three algorithms are used to solve the five groups of 
sample data under different node numbers, the IWSA has better solution performance than the ACS 
and the ACGA with the increase of number of nodes. Among the five groups of samples, when the 
number of nodes is 10, the best solutions of groups 1, 2, 3 and 5 samples solved by the IWSA are better 
than that of the ACS, and the best solutions of groups 1, 3, 4 and 5 samples solved by the IWSA are better 
than that of the ACGA. When the number of nodes is 20, the best solutions of groups 1, 2, 3 and 4 samples 
solved by the IWSA are better than that of the ACS, and the best solutions of groups 1, 3, 4 and 5 
samples solved by the IWSA are better than that of the ACGA. This is because, ideally, the search area 
of individuals in the population is positively correlated with the size of the problem solution space. 
When the number of nodes is small, the solution space of the problem is relatively small, and the area 
that the individuals in the population can explore also becomes smaller when solving the problem. 
With the iterative update of the population, the probability of individuals in the population exploring 
the best solution with different algorithm rules is higher, so there will be cases in some sample results 
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where the best solutions obtained by both the ACS and the ACGA are better than that of the IWSA. 
When the number of nodes is 50 and 100, the best solutions for the five groups of samples obtained 
by the IWSA are better than that of the ACS, and as the number of nodes increases the deviation of the 
best solutions between the IWSA and the ACS gradually increases, with the average deviation of 47.63 
and 61.25%, respectively. Similarly, for the ACGA, with the increasing number of nodes, the deviation 
of the best solutions between the IWSA and the ACGA also increases gradually, and the average 
deviation reaches 47.36 and 59.56%, respectively. 

Table 4. Calculation results of three algorithms on five groups of data with different 
numbers of nodes. 

Number of nodes Dataset 
Best solution (km) Deviation 
IWSA ACS ACGA IWSA/ACS IWSA/ACGA 

10 

1 1425 1682 1537 15.28% 7.29% 
2 1974 2020 1706 2.27% −15.70% 
3 1613 1791 1684 9.97% 4.26% 
4 1690 1404 1755 −20.35% 3.71% 
5 1311 1724 2140 23.96% 38.72% 

20 

1 2828 3222 3515 12.22% 19.54% 
2 2439 2816 2127 13.39% −14.67% 
3 1991 2978 3132 33.13% 36.41% 
4 1862 2305 2820 19.19% 33.96% 
5 2793 2751 3239 −1.53% 13.77% 

50 

1 4171 7457 8764 44.07% 52.41% 
2 3982 8799 7861 54.74% 49.34% 
3 3540 7145 6663 50.46% 46.88% 
4 4079 8299 7623 50.85% 46.49% 
5 4178 6743 7165 38.04% 41.69% 

100 

1 6279 17650 15137 64.42% 58.52% 
2 6880 15287 15973 55.00% 56.93% 
3 6505 17772 15919 63.40% 59.13% 
4 6606 16373 15208 59.65% 56.56% 
5 5587 15432 16756 63.80% 66.66% 

Figure 6 shows that the best solutions obtained by the IWSA and the ACS have different degrees 
of superiority and inferiority under different number of nodes. Among them, when the number of nodes 
is 10, there are 71 groups of results calculated by the IWSA better than that of the ACS, that is, relative 
to ACS, the solving rate of the best solution of the IWSA (refers to the percentage of sample groups of 
one algorithm better than other algorithm in the experimental results) is 71%. When the number of 
nodes is 20, the solving rate of the IWSA is 98%. When the number of nodes is 50 and 100, the results 
solved by the IWSA are better than that of the ACS in 100 groups of samples, respectively, that is, 
the solving rate of the best solution of the IWSA is 100%. In addition, Figure 7 shows that when 
the number of nodes is 10, 87% of the best solution obtained by the IWSA is better than that of the 
ACGA in 100 groups of samples. When the number of nodes is 20, the best solution obtained by the IWSA 
is better than that of the ACGA in 93% of samples. When the number of nodes is 50 and 100, the best 
solution curves calculated by the IWSA are all below the average curve, while the best solution curves 
obtained by the ACGA are all above the average curve, which indicates that the best solutions obtained 
by the IWSA are better than that of the ACGA. 
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(a) When the number of nodes is 10 (b) When the number of nodes is 20 

  

(c) When the number of nodes is 50 (d) When the number of nodes is 100 

Figure 6. Calculation results of IWSA and ACS with different number of nodes. Note：
mean represents the mean of the results for the same set of sample data. 

  
(a) When the number of nodes is 10 (b) When the number of nodes is 20 

  

(c) When the number of nodes is 50 (d) When the number of nodes is 100 

Figure 7. Calculation results of IWSA and ACGA with different number of nodes. 
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Combining Table 4 and Figures 6 and 7, the IWSA, the ACS and the ACGA have different 
performance in solving the same problem, which is related to the scale of the problem. With the 
increase of the number of nodes, the solving rate of the IWSA gradually increases, and it is better than 
that of the ACS and the ACGA. As we know, the optimization algorithm is prone to fall into the local 
extreme value prematurely, which makes individuals quickly cluster in a small area during the search 
process. Moreover, we also found that the population diversity indeed decreased rapidly through the 
calculation of Eq (10) during the experiments. Therefore, by abandoning some individuals in our 
improvement, the reduction speed of population diversity is effectively delayed, which allows the 
algorithm has enough time to find the global optimal solution in the search space. In addition, due to 
the irregular distribution of initial positions of individuals in the solution space caused by the 
randomness of the heuristic algorithm itself, the moving positions of individuals are also unstable in 
the process of iterative updating. Therefore, the individual can only move in the direction that may be 
better under the corresponding rules, and its final position is also related to the specific movement 
rules and parameters of the algorithm. For small-scale problems, the solution space is relatively small, 
and the area that the algorithm needs to explore in the optimization process is also smaller. At this time, 
when three algorithms are used to solve the problem, the best solutions obtained by the ACS and the 
ACGA are better than that of the IWSA. However, due to the advantages of individual movement rules 
designed in the IWSA, individuals can search more carefully in the solution space, so that the solving 
rate of the best solution of the IWSA is still higher than that of the ACS and the ACGA. The 
performance of the IWSA is much better than that of the ACS and the ACGA in solving large-scale 
problems. This may be because the grouping mechanism of IWSA allows individuals to conduct more 
detailed searches within the smaller area of the solution space. Moreover, when the individual search 
space is extended based on different weights, it can search for optimization multiple times in a larger 
search area based on the better individual. When the diversity of the population is below a certain 
threshold, the expansion of the search space can not only prevent individuals from congregating in a 
small area to avoid the algorithm falling into the local optimum prematurely, but also improve the 
probability of individuals exploring the best solution to a certain extent. 

5.4. Time complexity analysis of IWSA 

Although the advanced individual optimization method enables the IWSA to obtain the best 
solution with higher quality in solving, its grouping mechanism and the detailed exploration of 
individuals in the population among the solution space make its time cost higher than that of the ACS 
and the ACGA. In order to better analyze the time cost of the IWSA, 100 groups of data under different 
node numbers are divided into 10 groups, and the IWSA, the ACS and the ACGA are used to calculate. 
The average time cost of each group of samples is shown in Table 5. 

Table 5 shows that the solution time cost of the three algorithms increases as the number of nodes 
increases, and the time cost required by the IWSA to solve the problem is the highest. The average 
time cost required by both the IWSA and the ACGA increases with the number of nodes. The 
relationship between them increases by multiple, reaching 195 times when the number of nodes is 100. 
On the contrary, the relationship between the average time cost required by both the IWSA and the 
ACS decreases by multiple. When the number of nodes is 10, 20, 50 and 100, the relationship between 
them is roughly a multiple of 10, 7, 3 and 2. 
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Table 5. Calculation time of the three algorithms. 

Groups 
Calculation time of IWSA (s) Calculation time of ACS (s) Calculation time of ACGA (s) 

10 20 50 100 10 20 50 100 10 20 50 100 

1 2.788 7.824 33.550 115.154 0.240 0.968 10.456 56.289 0.081 0.114 0.252 0.599 

2 2.613 7.365 31.796 123.056 0.243 1.286 9.755 59.531 0.085 0.119 0.278 0.555 

3 2.472 8.083 32.471 117.133 0.214 0.997 10.300 58.496 0.085 0.128 0.269 0.624 

4 1.973 8.137 31.961 114.464 0.242 0.977 10.636 55.421 0.082 0.115 0.269 0.624 

5 2.581 7.061 34.702 113.447 0.214 0.962 10.539 56.041 0.107 0.123 0.271 0.609 

6 2.862 7.213 32.138 114.730 0.247 0.995 9.707 55.431 0.080 0.127 0.283 0.553 

7 2.102 8.021 32.105 114.785 0.230 0.936 9.811 56.834 0.089 0.119 0.249 0.607 

8 2.121 7.749 32.648 114.843 0.238 1.027 9.566 61.343 0.090 0.116 0.267 0.610 

9 2.201 7.377 31.975 118.408 0.220 0.954 8.880 60.475 0.081 0.122 0.273 0.589 

10 1.974 7.760 31.797 114.001 0.257 0.974 9.464 53.117 0.087 0.117 0.261 0.576 

Average calculation time (s)2.369 7.659 32.514 116.002 0.234 1.008 9.911 57.298 0.087 0.120 0.267 0.595 

The multiplicative relationships between the time cost consumed by different algorithms show 
different trends with the change of the number of nodes. This is because the specific solution rules 
designed by different algorithms are different during the solution process, such as population 
initialization method, individual update operations and so on. As a result, the solution times required 
by the three algorithms are quite different for the same number of iterations and population size, that 
is, different algorithms have different time complexity due to different specific solution rules. 
Compared with the ACS and the ACGA, the update operation of population individuals in the IWSA 
is more complicated. After the hierarchical clustering algorithm is used to group individuals in the 
population, the individuals move to their guide individuals according to the movement rules of the 
group. When the population diversity is lower than the threshold, the search area needs to be expanded 
based on the current individuals, which makes everyone carry out a more detailed search in its 
neighboring area. Although it improves the probability of individuals searching for the best solution, 
it also increases the time cost. 

Moreover, in the IWSA, the number of execution steps of the individual update operation is 
determined by the dimension of the individual (the number of nodes that are not currently accessed). 
Therefore, in the best case, the maximum number of execution steps of its update operation is 

_number COUNT MAXInter pop num n      ( COUNT   and MAXInter   are the maximum 

number of iterations, n   is the number of nodes (problem size)), and the best time complexity is 
Ο( )n  . In the worst case, the maximum number of execution steps of its update operation is 

_ _number COUNT MAXInter pop num n pop num n       , and the worst time complexity is 
2Ο( )n . However, due to the different movement rules when updating population individuals, the time 

complexities of ACS and ACGA are Ο( )n   and Ο(1)  , respectively. The time costs of the three 

algorithms are different in solving problem of the same size due to the difference in the time complexity 
caused by the different solution rules within the algorithms, which makes the time difference more 
apparent in numerical terms with the increase of the problem size. 

6. Conclusions 

Based on the dynamic change characteristics of road conditions in disaster areas, this paper 
proposes an IWSA for updating the material scheduling scheme to solve the shortcomings of the 
current MEDDRC problem such as the poor timeliness of updating the scheduling scheme and the 
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existing algorithms easy to fall into the local extreme value prematurely in solving. The ISCW is 
constructed to formulate the initial vehicle routing, and the group movement strategy and different 
weights strategy are proposed to optimize the WSA from two aspects of individual movement mode 
and expanding the search space of individuals in the population respectively. The IWSA realizes the 
purpose of updating the vehicle scheduling scheme in real-time under the change of road conditions, 
which can provide support for decision-makers to formulate effective material emergency scheduling 
strategies in major natural disaster events. 

At the same time, when the number of nodes is 10, 20, 50 and 100, the simulation calculation is 
carried out on four randomly generated data sets containing 100 groups of samples. Through the 
analysis of the experimental data, the following conclusions are obtained: 

1) When generating the initial driving path of the vehicle, the best solution obtained by the ISCW 
is better than that of both the scan algorithm and the C-W algorithm. Moreover, with the increase of 
the problem scale, the reduction degree of the average distance solved by the ISCW increases greatly. 

2) In the case of road conditions changing, the IWSA is used to plan the vehicle scheduling 
scheme. When the number of nodes is 10 and 20, the proportion of the best solution obtained by the 
IWSA is better than that of both the ACS and the ACGA is 71, 87% and 98, 93%, respectively. When 
the number of nodes is 50 and 100, the best solutions obtained by IWSA are better than that of both 
the ACS and the ACGA. And with the increase of the number of nodes, the average distance of the 
best solution obtained by the IWSA is much better than that of both the ACS and the ACGA. 

3) In terms of algorithm complexity, as the individuals in the IWSA move within the solution 
space, everyone performs detailed searches in their neighboring area, so a large amount of time is spent 
on searching for the optimal solution. Therefore, compared with the ACS and the ACGA, the IWSA 
spends a higher time cost. 

4) Although the proposed algorithm can solve the MEDDRC problem and has good results, it still 
has the disadvantage of high time complexity, which is related to its special solution rules. Besides, 
the values of the parameters can also have a large impact on the performance of the algorithm. 
Therefore, a suitable set of parameters is also particularly important for optimization algorithms. It is 
our next priority that how to find an optimal set of algorithm parameters to improve the model solving 
performance while reducing the computation time. 
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Supplementary 

The abbreviations used in this article and their full names. 

Abbreviations Full Name 

MED Material Emergency Dispatching 
DRP Dynamic Routing Problem 
SRP Static Routing Problem 
VRP Vehicle Routing Problem 
MEDDRC Material Emergency Dispatching with Dynamic Road Conditions 
WSA Whale Swarm Algorithm 
IWSA Improved Whale Swarm Algorithm 
C-W Clarke-Wright 
ISCW Improved Scan Clarke-Wright 
BCP Branch Cut and Price 
GA Genetic Algorithm  
PSO Particle Swarm Optimization 
LTMU Long Term Memory Unit 
ACS Ant Colony System 
ACGA Adaptive Chaos Genetic Algorithm 
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