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Abstract: Vaccination programs are crucial for reducing the prevalence of infectious diseases and
ultimately eradicating them. A new age-structured SEIRV (S-Susceptible, E-Exposed, I-Infected, R-
Recovered, V-Vaccinated) model with imperfect vaccination is proposed. After formulating our model,
we show the existence and uniqueness of the solution using semigroup of operators. For stability
analysis, we obtain a threshold parameter R0. Through rigorous analysis, we show that if R0 < 1,
then the disease-free equilibrium point is stable. The optimal control strategy is also discussed, with
the vaccination rate as the control variable. We derive the optimality conditions, and the form of
the optimal control is obtained using the adjoint system and sensitivity equations. We also prove the
uniqueness of the optimal controller. To visually illustrate our theoretical results, we also solve the
model numerically.
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1. Introduction

Imperfect or leaky vaccines are those that do not provide complete immunity to the disease in their
hosts and are incapable of preventing transmission to others. It is known that leaky vaccines can
reduce the symptoms of the disease but do not offer full protection against infection or the spread of
the pathogen. Therefore, studying the impact of imperfect vaccines on the human population becomes
crucial. Additionally, for certain infectious diseases, it has been observed that the effectiveness of
the vaccine may diminish over time. In the recent COVID-19 pandemic, it has been noted that most
vaccines remain effective for a specific duration before individuals become susceptible to the virus
once again.

During the course of the follow-up period of six months, Stephen et al. [1] studied the vaccine
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Figure 1. Age-dependent vaccine efficacy of different vaccines [1, 4].

efficacy of different vaccines (shown in Figure 1). Menni et al. [2] showed that in the case of COVID-
19, the vaccine’s efficacy remained high after five months among those under the age of 55. They
also showed that the booster dose can restore the effectiveness of the vaccine. Jake et al. [3] also
studied the vaccine efficacy and demonstrated that the evidence of waning immunity is overstated.
They demonstrated that antibody levels can be boosted in the general population and robust clinical
data are required to assess the need for additional doses. This naturally motivates us to consider a
compartmental model for infectious diseases with a vaccine-waning rate.

Kermack and Mckendrick [5–7] developed ordinary differential equations (ODEs) based models to
study the transmission of infectious diseases. These models are formulated based on the assumption
that all individuals have identical vital rates regardless of age or size. Enough literature is available on
ODE-based infectious disease models; more details can be found in [8–12]. In epidemic models, the
“disease clock” is important for studying the long-term dynamics of an infectious disease. Moreover,
in transmitting infectious diseases, the age of infection or the time since infection starts plays a vital
role. Age-structured population models characterize individuals based on their age, which can be class-
age or demographic age. Class age means the time since infection, and demographic age means the
chronological age of individuals.

Iannelli [13] discussed age-structured population models and their role in describing the growth
and interaction of populations. Thieme and Castilo [14] examined the role of infection age in the HIV
viral dynamics. More details about age and size-structured population models and their applications in
biology and epidemiology are given in [16]. For the first time, Arino et al. [17] discussed the role of
leaky vaccines with a general waning function. They consider three classes S, I, and V (without age
structure), corresponding to susceptible, infected, and vaccinated individuals. They showed that sub-
threshold equilibria are possible, which may play an important role while designing vaccine strategies.
Optimal control strategies for age-structured compartmental models are discussed by [18, 19]. Semi-
random epidemic network models can also describe the dynamics of many infectious diseases [20].
Awel et al. [19] incorporated imperfect vaccination in their model for Malaria disease, and Wei et
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al. [21] studied imperfect vaccination on scale-free networks. Many authors have also considered de-
lay terms in fractional-order population models with or without structure variables. For more details,
we refer to [22–25]. There are many interesting works on age and size-structured models for infectious
diseases ( see, for example, [26–32]).

We propose an age-structured SEIRV model with imperfect vaccination and vaccine-waning rates.
After formulation of our model, we show the existence and uniqueness of the solution. We use semi-
group of operators to show the existence and uniqueness of the solution. We find steady-state solutions
to our model and check the stability of the disease-free steady state. We also study the optimal control
problem with vaccination rate as a control variable. Our objective is to minimize the cost of vaccina-
tion and to reduce the number of infected individuals. Using adjoint equations, we derive the form of
the optimal control variable. We show that the optimal control variable depends on the vaccine waning
rate, infection rate, and the cost of vaccination. We also solve our model numerically to validate our
theoretical findings. Our study is mathematical, and we study the qualitative properties of the solution.
We obtain an explicit form for the optimal control variable, which involves important parameters of the
proposed model. Due to the complex partial differential equations-based model, it is difficult to get the
data, so we do not validate our model with real data. But the model results are interesting and involve
realistic assumptions.

Our work is divided in the following manner. In Section 2, we formulated our model, and using
semigroup of operators, we show the existence and uniqueness of the solution. Section 3 is devoted
to the stability analysis of disease-free equilibrium points. In Section 4, we study the optimal control
problem. In Section 5, we solve our model numerically, and the last section is devoted to the concluding
remarks.

2. Model formulation

In this section, we formulate our model. We also show the existence and uniqueness of the solution
to the model under consideration. We convert our problem into the abstract Cauchy problem to show
the existence of the solution.

Let S (a, t), E(a, t), I(a, t) and R(a, t) denote the age and time-dependent population densities of in-
dividuals in the susceptible, exposed, infected, and recovered class. Whenever there is no confusion
in the notation, we use the notation S , E, I and R for S (a, t), E(a, t), I(a, t) and R(a, t) respectively. We
denote the age-dependent transmission coefficient by c(a, b), which describes the interaction between
susceptible and infected class, that is, c(a1, a2)S (a1, t)I(a2, t)da1da2 is the number of susceptible indi-
viduals aged in (a1, a1 + da1) that contract the disease after interacting with infected individuals aged
in (a2, a2 + da2). We assume that the functional form of the force of infection is given by

φ(a, t) =
∫ am

0
c(a, σ)I(σ, t)dσ,

where am is the maximum age which an individual can attain. Then the following system of partial
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differential equations (PDEs) describes the spread of disease

∂S
∂t
+
∂S
∂a
= Λ − φ(a, t)S − m(a)S − v(a)S + w0(a)V

∂E
∂t
+
∂E
∂a
= φ(a, t)S − m1E − m(a)E

∂I
∂t
+
∂I
∂a
= m1E − γI − m(a)I + βσ(a)IV

∂R
∂t
+
∂R
∂a
= γI − m(a)R

∂V
∂t
+
∂V
∂a
= −(m(a) + w0(a) + βσ(a)I)V

S (0, t)= S 1, E(0, t) = I(0, t) = R(0, t) = 0,V(0, t) =
∫ am

0
v(a)S (a, t)da

S (a, 0)= S 0(a), E(a, 0) = E0(a), I(a, 0) = I0(a),
R(a, 0)= R0(a) and V(a, 0) = V0(a),

(2.1)

where φ(a, t) =
∫ am

0
c(a, σ)I(σ, t)dσ.

m(a) Mortality rate of age a individuals
m1 Rate at which individuals move from exposure to onset of symptoms
v(a) Age-dependent Vaccination policy
w0(a) Vaccine wanes rate
γ Recovery rate of infected population
σ(a) Infection ratio of vaccinated individuals
βσ(a) Rate at which vaccinated individuals can be infected

Let X = R4 × L1((0, am),R) × L1((0, am),R) × L1((0, am),R) × L1((0, am),R) and let us define the
linear operator

A



0
0
0
0
x
y
z
w


=



x(0)
y(0)
z(0)
w(0)

−x′ − (m(a) + v(a))x
−y′ − (m1 + m(a))y
−z′ − (γ + m(a))z

−w′ − (m(a) + w0(a))w


with

D(A) = {0} × {0} × {0} × {0} ×W1,1((0, am),R) ×W1,1((0, am),R) ×W1,1((0, am),R) ×W1,1((0, am),R).

Here it is clear that D(A) is not dense in X. Let us also define the nonlinear operator in the following
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manner

F



0
0
0
0
x
y
z
w


=



S 1

0
0∫ am

0
v(a)x(a)da

Λ − x(a)
∫ am

0
c(a)z(a)da + w0(a)w

x(a)
∫ am

0
c(a)z(a)da

m1y + βσ(a)z(a)w(a)
−βσ(a)z(a)w(a)


.

Our model in abstract form can be written as d
dt v(t) = Av(t) + F(v(t)), t ≥ 0
v(0) = v0,

(2.2)

where v(t) = (0, 0, 0, 0, S (·, t), E(·, t), I(·, t),V(·, t)) and v0 = (0, 0, 0, 0, S 0, E0, I0,V0). Instead of solving
(2.2), we consider the following integral equation

v(t) = v0 + A
∫ t

0
v(s)ds +

∫ t

0
F(v(s))ds. (2.3)

We have the following assumptions:

(i) m,w0, v, σ are positive functions and lies in L∞+ ((0, am),R).
(ii) For 0 ≤ a ≤ am, we assume that 0 < σ(a) < 1.

Now, our task is to prove that A is a Hille-Yosida operator and therefore it generates a C0 semigroup
on the closure of D(A). Linearized system of (2.2) can be written as d

dt v(t) = Av(t) + DF(v∗)v(t), t ≥ 0
v(0) = v0 − v∗,

(2.4)

where v∗ is steady state solution of (2.2) and

DF(v∗)



0
0
0
0
x
y
z
w


=



S 1

0
0∫ am

0
v(a)x(a)da

−x∗(a)
∫ am

0
c(a)z(a, t)da − x(a, t)

∫ am

0
c(a)z∗(a)da + w0(a)w(a, t)

x∗(a)
∫ am

0
c(a)z(a, t)da + x(a, t)

∫ am

0
c(a)z∗(a)da

m1y + βσ(a)z∗(a)w(a, t) + βσ(a)z(a, t)w∗(a)
−βσ(a)z∗(a)w(a, t) − βσ(a)z(a, t)w∗(a)


.

Here, DF(v∗) is a compact bounded linear operator on X. Let

Ω = {λ ∈ C : Reλ > −w0},
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where
w0 = min{inf

a
(m(a) + v(a)), inf

a
(m1 + m(a)), inf

a
(γ + m(a)), inf

a
(m(a) + w0(a))}.

Now, our task is to prove that (A,D(A)) is a Hille-Yosida operator. For

(ϕ1(·), ϕ2(·), ϕ3(·), ϕ4(·), ϕ5(·), ϕ6(·), ϕ7(·), ϕ8(·)) ∈ X and (0, 0, 0, 0, ξ1(·), ξ2(·), ξ3(·), ξ4(·))

we have

(λI − A)−1



ϕ1(·)
ϕ2(·)
ϕ3(·)
ϕ4(·)
ϕ5(·)
ϕ6(·)
ϕ7(·)
ϕ8(·)


=



0
0
0
0
ξ1(·)
ξ2(·)
ξ3(·)
ξ4(·)


.

This implies

ξ′1 + (λ + m(a) + v(a))ξ1(a) = ϕ5(a)
ξ′2 + (λ + m1 + m(a))ξ2(a) = ϕ6(a)
ξ′3 + (λ + γ + m(a))ξ3(a) = ϕ7(a)

ξ′4 + (λ + m(a) + w0(a))ξ4(a) = ϕ8(a)
ξ1(0) = ϕ1

ξ2(0) = ϕ2

ξ3(0) = ϕ3

ξ4(0) = ϕ4.

Solving we get,

ξ1(a) = ϕ1e−
∫ a

0 (λ+m(s)+v(s))ds +

∫ a

0
ϕ5(s)e−

∫ a
s (λ+m(τ)+v(τ))dτds

ξ2(a) = ϕ2e−
∫ a

0 (λ+m1+m(s))ds +

∫ a

0
ϕ6(s)e−

∫ a
s (λ+m1+m(τ))dτds

ξ3(a) = ϕ3e−
∫ a

0 (λ+γ+m(s))ds +

∫ a

0
ϕ7(s)e−

∫ a
s (λ+γ+m(τ))dτds

ξ4(a) = ϕ4e−
∫ a

0 (λ+m(s)+w0(s))ds +

∫ a

0
ϕ8(s)e−

∫ a
s (λ+m(τ)+w0(τ))dτds.

Now, taking L1 norm we get

∥ξ1∥L1+∥ξ2∥L1+∥ξ3∥L1+∥ξ4∥L1≤
1

λ + w0
(∥ξ1∥L1+∥ξ2∥L1+∥ξ3∥L1+∥ξ4∥L1).

Therefore, we have

∥(λI − A)−1∥≤
1

λ + w0
for all λ ∈ Ω.
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So, we conclude that (A,D(A)) is a Hille-Yosida operator.
Now, let us recall the following results.

Lemma 2.1. [Pazy [33], 1983] Let X be a Banach space. Let operator A with domain D(A) be a Hille-
Yosida operator on X and B be a bounded linear operator on X. Then A + B is also a Hille-Yosida
operator.

Lemma 2.2. [Pazy [33], 1983] Let (A,D(A)) be a Hille-Yosida operator, then its part (A0,D(A0))
generates a C0 semigroup {T0(t) | t ≥ 0} on X0, where X0 = (D(A), ∥·∥).

Using Lemmas 2.1 and 2.2, and proof given above, we conclude that the operator A + DF(v∗) is a
Hille-Yosida operator and the part of (A,D(A) and the part of (A+DF(u∗)) generate C0 semigroups on
X0. So, the proof given above and Lemma 2.1, Lemma 2.2 prove the existence and uniqueness of mild
solution to our model (for more details we refer to Pazy [33]). So, we have the following theorem:

Theorem 2.3. For any v0 ∈ D+ = {0} × {0} × {0} × {0} × W1,1((0, am),R+) × W1,1((0, am),R+) ×
W1,1((0, am),R+) × W1,1((0, am),R+) system 2.4 has a unique continuous solution with initial data in
D+. Moreover, the function defined by Ψ(t, v0) = v(t, v0) is strongly continuous semigroup.

Remark 2.4. Since Ψ(t, v0) is strongly continuous semigroup, there exists M ≥ 1, ω ≥ 0 such that
∥Ψ(t)∥≤ Meωt. So, if we assume t ∈ [0,T ] for some finite T > 0, then we have the boundedness of
solution to the abstract Cauchy problem 2.2.

3. Stability analysis

In this section, we discuss the stability analysis of disease-free steady state. Steady-state solutions
play an important role to study the qualitative properties of the solution when the explicit form of the
solution is not known. Steady-state equations for our model are given by

dS
da
= Λ − φ(a)IS − m(a)S − v(a)S + w0(a)V

dE
da
= φ(a)IS − m1E − m(a)E

dI
da
= m1E − γI − m(a)I + βσ(a)IV

dR
da
= γI − m(a)R

dV
da
= −(m(a) + w0(a) + βσ(a)I)V

S (0) = S 1, E(0) = I(0) = R(0) = 0

V(0) =
∫ am

0
v(a)S (a)da.

(3.1)

Disease free steady state (S 0(a), 0, 0, 0,V0(a)) is given by

S 0(a) = S 1e−
∫ a

0 (m(τ)+v(τ))dτ +

∫ a

0
(Λ − w0(s)V0(s))e−

∫ s
a (m(τ)+v(τ))dτds (3.2)

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14438–14463.



14445

V0(a) =
(∫ am

0
v(τ)S 0(τ)dτ

)
e−

∫ a
0 (m(s)+w0(s))ds. (3.3)

Now, our task is to derive expressions for S 0 which is independent of V0 and similarly for V0. Let

Θ =

∫ am

0
v(τ)S 0(τ)dτ. (3.4)

Now, Eqs (3.2) and (3.3) can be written as

S 0(a) = S 1e−
∫ a

0 (m(τ)+v(τ))dτ +

∫ a

0

(
Λ − w0(s)Θe−

∫ s
0 (m(τ)+w0(τ))dτ

)
e−

∫ s
a (m(τ)+v(τ))dτds (3.5)

V0(a) = Θe−
∫ a

0 (m(s)+w0(s))ds. (3.6)

Now, substituting value of S 0 from (3.5) into (3.4), we get

Θ =

∫ a

0
S 1v(a)e−

∫ a
0 (m(τ)+v(τ))dτda +

∫ a

0
Λe−

∫ s
a (m(τ)+v(τ))dτda

1 +
∫ am

0
v(a)

(∫ a

0
w0(s)e−

∫ s
0 (m(τ)+w0(τ))dτe−

∫ s
a (m(τ)+v(τ))dτds

)
da

(3.7)

So, we have steady-state solutions in explicit form. From these solutions, it is clear that both S 0 and
V0 are non-negative. Let us define the threshold number in the following manner (for more details we
refer to [27]):

R0 = m1

∫ am

0
S 0(z)φ(z)e−

∫ a
z (m1+m(τ))dτ

(∫ z

0
e−

∫ z
s (γ+m(τ)−βσ(τ)V0(τ))dτds

)
dz. (3.8)

The above defined threshold parameter may not be biologically relevant but plays an important role
to study the stability of disease-free steady state. We can state the following result which relates the
stability of disease-free steady state with the threshold parameter R0.

Theorem 3.1. The disease free steady state is stable if R0 < 1 and unstable if R0 > 1.

Proof. For the local stability of the disease-free equilibrium point, firstly we will linearize our system
around the disease-free steady state. Linearizing system (2.1) around the disease-free equilibrium, we
get
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∂S
∂t
+
∂S
∂a
= −φ(a)S 0(a)I − m(a)S − v(a)S + w0(a)V

∂E
∂t
+
∂E
∂a
= φ(a)S 0(a)I − m1E − m(a)E

∂I
∂t
+
∂I
∂a
= m1E − γI − m(a)I + βσ(a)V0(a)I

∂R
∂t
+
∂R
∂a
= γI − m(a)R

∂V
∂t
+
∂V
∂a
= −(m(a) + w0(a))V − βσ(a)V0(a)I

S (0, t)= S 1, E(0, t) = I(0, t) = R(0, t) = 0

V(0, t)=
∫ am

0
v(a)S (a, t)da

S (a, 0)= S 0(a), E(a, 0) = E0(a), I(a, 0) = I0(a)
R(a, 0)= R0(a) and V(a, 0) = V0(a).

(3.9)

We are looking for solutions of the form

S (a, t) = S̄ (a)eλt, E(a, t) = Ē(a)eλt, I(a, t) = Ī(a)eλt,R(a, t) = R̄(a)eλt,V(a, t) = V̄(a)eλt.

Therefore, system (3.9) becomes

dS̄
da
+ λS̄ = −φ(a)S 0(a)Ī − m(a)S̄ − v(a)S̄ + w0(a)V̄

dĒ
da
+ λĒ = φ(a)S 0(a)Ī − m1Ē − m(a)Ē

dĪ
da
+ λĪ = m1Ē − γĪ − m(a)Ī + βσ(a)V0(a)Ī

dR̄
da
+ λR̄ = γĪ − m(a)R̄

dV̄
da
+ λV̄ = −(m(a) + w0(a))V̄ − βσ(a)V0(a)Ī

(3.10)

Solving these equations, we get

S̄ (a) = S 1e−
∫ a

0 (λ+m(τ)+v(τ))dτ +

∫ a

0

(
w0(z)V̄(z) − S 0(z)φ(z)Ī(z)

)
e−

∫ a
z (λ+m(τ)+v(τ))dτdz

Ē(a) =
∫ a

0
S 0(z)φ(z)Ī(z)e−

∫ a
z (λ+m1+m(τ))dτdz

Ī(a) =
∫ a

0
m1Ē(z)e−

∫ a
z (λ+γ+m(τ)−βσ(τ)V0(τ))dτdz

R̄(a) =
∫ a

0
γĪ(z)e−

∫ a
z (λ+m(τ))dτdz
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V̄(a) = e−
∫ a

0 (λ+m(τ)+w0(τ))dτ
∫ am

0
v(a)S̄ (a)da −

∫ a

0
βσ(z)V0(z)Ī(z)e−

∫ a
z (λ+m(τ)+w0(τ))dτdz.

Substituting value of Ē(a) in Ī(a), we get

Ī(a) =
∫ a

0
m1

(∫ z

0

(
S 0(η)φ(η)Ī(η)

)
e−

∫ z
η

(λ+m1+m(τ))dτdη
)

e−
∫ a

z (λ+γ+m(τ)−βσ(τ)V0(τ))dτdz

Observe that

dĪ
da
+ λĪ(a) = m1

(∫ a

0
S 0(η)φ(η)Ī(η)e−

∫ a
η

(λ+m1+m(τ))dτdη
)
− γĪ(a) − m(a)Ī(a) + βσ(a)V0(a)Ī(a).

In simplified form, it can be written as

dĪ
da
+ (λ + γ + m(a) − βσ(a)V0(a))Ī(a) = m1

(∫ a

0
S 0(z)φ(z)Ī(z)e−

∫ a
z (λ+m1+m(τ))dτdz

)
. (3.11)

Using (3.11), the characteristic equation can be written as

G(λ) = 1,

where

G(λ) = m1

∫ a

0
S 0(z)φ(z)e−

∫ a
z (λ+m1+m(τ))dτ

(∫ z

0
e−

∫ z
s (λ+γ+m(τ)−βσ(τ)V0(τ))dτds

)
dz (3.12)

It is easy to see that G(0) = R0. G can also be written as

G(λ) = m1

∫ a

0
e−λ(a−z)S 0(z)φ(z)e−

∫ a
z (m1+m(τ))dτ

(∫ z

0
e−λ(z−s)e−

∫ z
s (γ+m(τ)−βσ(τ)V0(τ))dτds

)
dz (3.13)

Taking derivative of G with respect to λ, we get

G′(λ) = −m1

∫ a

0
(a − z)e−λ(a−z)S 0(z)φ(z)e−

∫ a
z (m1+m(τ))dτ

(∫ z

0
e−λ(z−s)e−

∫ z
s (γ+m(τ)−βσ(τ)V0(τ))dτds

)
dz

−m1

∫ a

0
e−λ(a−z)S 0(z)φ(z)e−

∫ a
z (m1+m(τ))dτ

(∫ z

0
(z − s)e−λ(z−s)e−

∫ z
s (γ+m(τ)−βσ(τ)V0(τ))dτds

)
dz.

Observe that G is a decreasing function of λ as G′(λ) < 0 and limλ→∞G(λ) = 0. Let us assume that
λ = x1 + ix2 is a root of equation G(λ) = 1. Then for x1 ≥ 0, we have

1 = |G(λ)|≤ |G(0)|≤ R0.

Thus the real part of eigenvalue λ is negative if threshold parameter R0 < 1. Therefore, the disease free
equilibrium point is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. □
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4. Optimal control problem

In this section, we discuss the optimal control strategy for our problem. Optimal control theory
plays an important role in epidemiological models because it is very important to control the spread of
disease in an optimal manner. Here, our control variable is vaccination effort and we want to minimize
the cost of vaccination and also our aim is to reduce the number of infected individuals. We assume
that φ(a, t) = ψ(a, t)I(a, t). For this form of φ(a, t), it is easy to construct operators A and F to show the
existence and uniqueness of the solution. Also, we assume that v depends on both age variable a and
time t. We consider the following optimal control problem:

∂S
∂t
+
∂S
∂a
= Λ − ψ(a, t)IS − m(a)S − v(a, t)S + w0(a)V

∂E
∂t
+
∂E
∂a
= ψ(a, t)IS − m1E − m(a)E

∂I
∂t
+
∂I
∂a
= m1E − γI − m(a)I + βσ(a)IV

∂R
∂t
+
∂R
∂a
= γI − m(a)R

∂V
∂t
+
∂V
∂a
= −(m(a) + w0(a) + βσ(a)I)V

S (0, t) = S 1, E(0, t) = I(0, t) = R(0, t) = 0

V(0, t) =
∫ am

0
v(a, t)S (a, t)da

S (a, 0) = S 0(a), E(a, 0) = E0(a), I(a, 0) = I0(a)
R(a, 0) = R0(a) and V(a, 0) = V0(a).

(4.1)

v(a, t) is the control variable and our aim is to minimize the number of infected individuals and the cost
of implementing control.

Theorem 4.1. Let (S v1 , Ev1 , Iv1 ,Rv1 ,Vv1), (S v2 , Ev2 , Iv2 ,Rv2 ,Vv2) be solutions of system 4.1 correspond-
ing to the control variables v1 and v2, respectively. Then for sufficiently small T > 0, the following
estimates hold∫

Q

(|S v1 − S v2 |+|Ev1 − Ev2 |+|Iv1 − Iv2 |+|Rv1 − Rv2 |+|Vv1 − Vv2 |)dadt ≤ C01

∫
Q

(|v1 − v2|)dadt,

where C01 is a positive constant which depends on the bound of m,m1, γ, β, σ, ψ, ω0, and initial data.
Moreover,

∥S v1 − S v2∥L∞(Q)+∥Ev1 − Ev2∥L∞(Q)+∥Iv1 − Iv2∥L∞(Q)+∥Rv1 − Rv2∥L∞(Q) + ∥Vv1 − Vv2∥L∞(Q)

≤ C02∥v1 − v2∥L∞(Q),

where C02 is a positive contant.
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Proof. Using the method of characteristics, the system 4.1 can be solved as:

S (a, t) =



−
∫ t

0
[m(τ + a − t) + v(τ + a − t)] S (τ + a − t, τ)dτ

−
∫ t

0
ψ(τ + a − t)I(τ + a − t, τ)S (τ + a − t, τ)dτ

+
∫ t

0
(Λ + ω0(τ + a − t)V(τ + a − t, τ)dτ + S 0(a − t)

if a > t,

−
∫ t

t−a
[m(τ + a − t) + v(τ + a − t)] S (τ + a − t, τ)dτ

−
∫ t

0
ψ(τ + a − t)I(τ + a − t, τ)S (τ + a − t, τ)dτ

+
∫ t

t−a
(Λ + ω0(τ + a − t)V(τ + a − t, τ)dτ + S 1

if a < t

(4.2)

E(a, t) =



−
∫ t

0
[m1 + m(τ + a − t)] E(τ + a − t, τ)dτ

−
∫ t

0
ψ(τ + a − t)I(τ + a − t, τ)S (τ + a − t, τ)dτ + E0(a − t)

if a > t,

−
∫ t

t−a
[m1 + m(τ + a − t)] E(τ + a − t, τ)dτ

−
∫ t

t−a
ψ(τ + a − t)I(τ + a − t, τ)S (τ + a − t, τ)dτ

if a < t

(4.3)

I(a, t) =



−
∫ t

0

[
γ + m(τ + a − t)

]
I(τ + a − t, τ)dτ

+
∫ t

0
βσ(τ + a − t)I(τ + a − t, τ)V(τ + a − t, τ)dτ

+
∫ t

0
m1E(τ + a − t, τ)dτ + I0(a − t)

if a > t,

−
∫ t

t−a

[
γ + m(τ + a − t)

]
I(τ + a − t, τ)dτ

+
∫ t

t−a
βσ(τ + a − t)I(τ + a − t, τ)V(τ + a − t, τ)dτ

+
∫ t

t−a
m1E(τ + a − t, τ)dτ

if a < t

(4.4)

R(a, t) =



−
∫ t

0
m(τ + a − t)R(τ + a − t, τ)dτ +

∫ t

0
γI(τ + a − t, τ)dτ + R0(a − t)

if a > t,

−
∫ t

t−a
m(τ + a − t)R(τ + a − t, τ)dτ

+
∫ t

t−a
γI(τ + a − t, τ)dτ

if a < t

(4.5)
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V(a, t) =



−
∫ t

0

[
m(τ + a − t) + ω0(τ + a − t) + βσ(τ + a − t)I(τ + a − t, τ)

]
V(τ + a − t, τ)dτ

+V0(a − t)
if a > t,

−
∫ t

t−a

[
m(τ + a − t) + ω0(τ + a − t) + βσ(τ + a − t)I(τ + a − t, τ)

]
V(τ + a − t, τ)dτ

+
∫ am

0
v(a)S (a, t − a)da

if a < t.
(4.6)

Let Q = (0,T ) × (0, am), and assume that (S v1 , Ev1 , Iv1 ,Rv1 ,Vv1), (S v2 , Ev2 , Iv2 ,Rv2 ,Vv2) be solution
of system (4.1) corresponding to the control variables v1 and v2 respectively. Then using the solution
given by (4.2), we get∫

Q∩{a<t}
|S v1 − S v2 |dadt ≤ C11

∫
Q

(|v1 − v2|+|S v1 − S v2 |)dadt

+C22

∫
Q

(|S v1 − S v2 |+|Iv1 − Iv2 |)dadt +C33

∫
Q

|Vv1 − Vv2 |dadt,

where C11,C22,C33 are constants which depends on the bound of m, ψ, and ω0. Similarly, we can
consider the case when a > t, and we will obtain similar types of estimates. So, we can write

∫
Q

|S v1 − S v2 |dadt ≤ C11

∫
Q

(|v1 − v2|+|S v1 − S v2 |)dadt

+C22

∫
Q

(|S v1 − S v2 |+|Iv1 − Iv2 |)dadt +C33

∫
Q

|Vv1 − Vv2 |dadt,

Using the same procedure for other state variables, we get

∫
Q

(|S v1 − S v2 |+|Ev1 − Ev2 |+|Iv1 − Iv2 |+|Rv1 − Rv2 |+|Vv1 − Vv2 |)dadt ≤ C01

∫
Q

(|v1 − v2|)dadt,

where C01 is a positive constant. Now, estimating the integral in the age variable only, we will get

∥S v1 − S v2∥L∞(Q)+∥Ev1 − Ev2∥L∞(Q)+∥Iv1 − Iv2∥L∞(Q)+∥Rv1 − Rv2∥L∞(Q) + ∥Vv1 − Vv2∥L∞(Q)

≤ C02∥v1 − v2∥L∞(Q),

where C02 is a positive constant that depends on model parameters and initial population distributions.
More details about these types of estimates can be found in [31, 32]. □

Let us define the following objective functional:

J(v) =
∫ T

0

∫ am

0

(
C1I(a, t) −C2S (a, t) +C3v(a, t)2

)
dadt. (4.7)
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Here, C1,C2 and C3 are weight factors and our aim is to minimize J(v). We assume that the admissible
control variable lies in the setV defined by

V = {u : [0, am] × [0,T ] 7→ [0, vm]}, (4.8)

where we assume that v ∈ L∞((0, am) × (0,T )) and 0 ≤ v ≤ vm. Now, our next result establish the
existence of optimal control.

Theorem 4.2. Let J : L1(0,T )→ (−∞,∞] be defined by

J(v) =


∫ T

0

∫ am

0

(
C1I(a, t) −C2S (a, t) +C3v(a, t)2

)
dadt if v ∈ V

∞ otherwise.
(4.9)

Then to the control problem (4.1), there exists an optimal control u∗ such that

min
v∈V

J(v) = J(v∗).

Proof. We have already shown the existence of unique solution to the system (4.1) which is uniformly
bounded. Also control variable v is uniformly bounded in (0, am). Therefore, there exist a sequence
vn ∈ V such that

lim
n→∞

J(un) = lim inf
v∈V

J(v).

Because the function C3v2 is a lower semi-continuous function which is also convex, we have∫ am

0
C3(v∗)2da ≤ lim inf

n→∞

∫ am

0
C3(vn)2da. (4.10)

Also, using the fact that the bound of S , E, I,R and V depends on the control variable v, we have
S n = S (vn), En = E(vn), In = I(vn),Rn = R(vn),Vn = V(vn). Because S n, En, In,Rn and Vn are uniformly
bounded for each n. We have S ∗ = S (v∗), E∗ = E(v∗), I∗ = I(v∗),R∗ = R(v∗) and V∗ = V(v∗). Now,

J(v∗) =
∫ T

0

∫ am

0
[C1I∗ −C2S ∗ +C3(v∗)2]dadt

≤ lim inf
n→∞

∫ T

0

∫ am

0
[C1In −C2S n +C3(vn)2]dadt

= lim
n→∞

∫ T

0

∫ am

0
[C1In −C2S n +C3(vn)2]dadt

= inf
v∈V

J(v).

From the relation J(v∗) ≤ infv∈V J(v), we conclude that v∗ is optimal control which minimizes the
objective functional. □

Now, our next task is to obtain the necessary conditions for our optimal control problem. Let us
define vϵ(a, t) = v(a, t) + ϵg(a), where 0 < ϵ < 1, g ∈ L∞(0, am) and also called the variation function.
Let us denote S ϵ = S (vϵ), Eϵ = E(vϵ), Iϵ = I(vϵ),Rϵ = R(vϵ) and Vϵ = V(vϵ). Then we have the
following system
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∂S ϵ

∂t
+
∂S ϵ

∂a
= Λ − ψ(a, t)S ϵ Iϵ − m(a)S ϵ − (v(a, t) + ϵg(a))S ϵ + w0(a)Vϵ

∂Eϵ

∂t
+
∂Eϵ

∂a
= ψ(a, t)S ϵ Iϵ − m1Eϵ − m(a)Eϵ

∂Iϵ

∂t
+
∂Iϵ

∂a
= m1Eϵ − γIϵ − m(a)Iϵ + βσ(a)IϵVϵ

∂Rϵ

∂t
+
∂Rϵ

∂a
= γIϵ − m(a)Rϵ

∂Vϵ

∂t
+
∂Vϵ

∂a
= −(m(a) + w0(a) + βσ(a)Iϵ)Vϵ

S ϵ(0, t)= S 1, Eϵ(0, t) = Iϵ(0, t) = Rϵ(0, t) = 0

Vϵ(0, t)=
∫ am

0
(v(a, t) + ϵg(a))S (a, t)da

S ϵ(a, 0)= S 0(a), Eϵ(a, 0) = E0(a), Iϵ(a, 0) = I0(a)
Rϵ(a, 0)= R0(a) and Vϵ(a, 0) = V0(a).

(4.11)

Let us set the following notations for weak derivatives of S , E, I,R and V:

S̄ (a, t) = limϵ→0
S (v+ϵg)−S (v)

ϵ
, Ē(a, t) = limϵ→0

E(v+ϵg)−E(v)
ϵ

, Ī(a, t) = limϵ→0
I(v+ϵg)−I(v)

ϵ
,

R̄(a, t) = limϵ→0
R(v+ϵg)−R(v)

ϵ
, V̄(a, t) = limϵ→0

V(v+ϵg)−V(v)
ϵ

. Then we have the following system of differ-
ential equations

∂S̄
∂t
+
∂S̄
∂a
= −ψ(a, t)

(
S̄ I + ĪS

)
− m(a)S̄ − v(a, t)S̄ + w0(a)V̄ − g(a)S

∂Ē
∂t
+
∂Ē
∂a
= ψ(a, t)

(
S̄ I + ĪS

)
− m1Ē − m(a)Ē

∂Ī
∂t
+
∂Ī
∂a
= m1Ē − γĪ − m(a)Ī + βσ(a)(ĪV + IV̄)

∂R̄
∂t
+
∂R̄
∂a
= γĪ − m(a)R̄

∂V̄
∂t
+
∂V̄
∂a
= −(m(a) + w0(a))V̄ − βσ(a)(ĪV + I(a, t)V̄)

S̄ (0, t)= 0, Ē(0, t) = Ī(0, t) = R̄(0, t) = 0

V̄(0, t)=
∫ am

0

(
v(a, t)S̄ (a, t) + g(a)S (a, t)

)
da

S̄ (a, 0)= Ē(a, 0) = Ī(a, 0) = R̄(a, 0) = 0 and V̄(a, 0) = 0.

(4.12)

The directional derivative of J with respect to v in the direction of g is given by

J′(v) =
J(vϵ) − J(v)

ϵ
=

∫ T

0

∫ am

0

[
C1 Ī(a, t) −C2S̄ (a, t) + 2C3v(a, t)g(a)

]
dadt. (4.13)
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Now, our next task is to find the adjoint system. Let us define

⟨ f , g⟩ =
∫ T

0

∫ ∞

0
f (a, t)g(a, t)dadt.

Observe that

0 =

〈
∂S̄
∂t
+
∂S̄
∂a
+ ψ(a, t)

(
S̄ I + ĪS

)
+ m(a)S̄ + v(a, t)S̄ − w0(a)V̄ + g(a)S , λ1(a, t)

〉
0 =

〈
S̄ (a, t),−

∂

∂t
λ1 −

∂

∂a
λ1 + (m(a) + v(a, t))λ1 + ψ(a, t)λ1I

〉
(4.14)

+

∫ T

0

∫ am

0

(
ψ(a, t)Ī(a, t) + g(a)

)
S (a, t)λ1(a, t)dadt −

∫ T

0

∫ am

0
w0(a)V̄(a, t)λ1(a, t)dadt

with the following conditions
λ1(t, am) = λ1(T, a) = 0.

Similarly we have

0 =

〈
∂Ē
∂t
+
∂Ē
∂a
− ψ(a, t)

(
S̄ I − ĪS

)
+ m1Ē + m(a)Ē, λ2(a, t)

〉
0 =

〈
Ē(a, t),−

∂

∂t
λ2 −

∂

∂a
λ2 + (m1 + m(a))λ2

〉
(4.15)

−

∫ T

0

∫ am

0
ψ(a, t)λ2(a, t)

(
S (a, t)Ī(a, t) + I(a, t)S̄ (a, t)

)
dadt

0 =

〈
∂Ī
∂t
+
∂Ī
∂a
− m1Ē + γĪ + m(a)Ī − βσ(a)(ĪV − IV̄), λ3(a, t)

〉
0 =

〈
Ī(a, t),−

∂

∂t
λ3 −

∂

∂a
λ3 − m1λ3

〉
(4.16)

−

∫ T

0

∫ am

0
(γ + m(a) − βσ(a)V(a, t))Ī(a, t)λ3(a, t)dadt −

∫ T

0

∫ am

0
λ3(a, t)I(a, t)Ī(a, t)dadt

0 =

〈
∂R̄
∂t
+
∂R̄
∂a
− γĪ + m(a)R̄, λ4(a, t)

〉
0 =

〈
R̄(a, t),−

∂

∂t
λ4 −

∂

∂a
λ4 − m(a)λ4

〉
(4.17)

−

∫ T

0

∫ am

0
γλ4(a, t)Ī(a, t)dadt

0 =

〈
∂V̄
∂t
+
∂V̄
∂a
+ (m(a) + w0(a))V̄ + βσ(a)(ĪV + IV̄), λ5(a, t)

〉
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0 =

〈
V̄(a, t),−

∂

∂t
λ5 −

∂

∂a
λ5 + (m(a) + w0(a))λ5 + βσ(a)Iλ5

〉
(4.18)

+

∫ T

0

∫ am

0
βσ(a)Ī(a, t)λ5(a, t)dadt −

∫ T

0

∫ am

0
(v(a, t)S̄ (a, t) + g(a)S (a, t))λ5(0, t)dadt

Now, we get the following adjoint system

∂λ1

∂t
+
∂λ1

∂a
= (m(a) + v(a, t))λ1 + ψ(a, t)λ1I − ψ(a, t)λ2I − v(a, t)λ5(0, t) −C2

∂λ2

∂t
+
∂λ2

∂a
= (m1 + m(a))λ2

∂λ3

∂t
+
∂λ3

∂a
= −m1λ3 − (γ + m(a) − βσ(a)V − I)λ3 − γλ4

+ βσ(a)λ5 − ψ(a, t)λ2(a, t)S +C1 (4.19)
∂λ4

∂t
+
∂λ4

∂a
= −m(a)λ4

∂λ5

∂t
+
∂λ5

∂a
= (m(a) + w0(a) + βσ(a)I)λ5.

Also, we have the following conditions

λ1(a,T ) = λ2(a,T ) = λ3(a,T ) = λ4(a,T ) = λ5(a,T ) = 0.

λ1(am, t) = λ2(am, t) = λ3(am, t) = λ4(am, t) = λ5(am, t) = 0.

Using the same steps as we followed in 4.1, we can state the following theorem

Theorem 4.3. Let (λ11, λ21, λ31, λ41, λ51) and (λ12, λ22, λ32, λ42, λ52) be solution of adjoint system (4.19)
with control variable v1 and v2 respectivey. Then

∥λ11 − λ12∥L∞(Q)+∥λ21 − λ22∥L∞(Q)+∥λ31 − λ32∥L∞(Q)+∥λ41 − λ42∥L∞(Q) + ∥λ51 − λ52∥L∞(Q)

≤ C11∥v1 − v2∥L∞(Q),

where C11 is a positive constant.

Now, we state and prove the following result, which gives the explicit form of optimal control.

Theorem 4.4. Let (S ∗, E∗, I∗,R∗,V∗) and (λ1, λ2, λ3, λ4, λ5) be state solutions and solutions to corre-
sponding adjoint system respectively. Also, let v∗ ∈ V be optimal control which minimizes (4.7). Then
optimal control will be of the form

v∗ = max
{

0,min
{

vm,
λ1(a, t)(w0(a)V∗(a, t) − ψ(a, t)I∗(a, t))

2C3g(a))
−

(λ1(a, t) − λ5(0, t))S ∗(a, t)
2C3

}}
.

Proof. We know that

J′(v) =
∫ T

0

∫ am

0

[
C1 Ī(a, t) −C2S̄ (a, t) + 2C3v(a, t)g(a)

]
dadt. (4.20)
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Now using the adjoint system, we have

J′(v) =
∫ T

0

∫ am

0
Ī(a, t)

[
∂λ3

∂t
+
∂λ3

∂a
+ m1λ3(a, t) + (γ + m(a) − βσ(a)V(a, t) − I(a, t))λ3(a, t)

]
datdt

+

∫ T

0

∫ am

0
Ī(a, t)

[
γλ4(a, t) − βσ(a)λ5(a, t) + ψ(a, t)λ2(a, t)S (a, t)

]
dadt

−

∫ T

0

∫ am

0
S̄ (a, t)

[
−
∂λ1

∂t
−
∂λ1

∂a

]
dadt +

∫ T

0

∫ am

0
S̄ (a, t) [(m(a) + v(a, t))λ1(a, t)] dadt

+

∫ T

0

∫ am

0
S̄ (a, t)

[
ψ(a, t)λ1(a, t)I(a, t) − ψ(a, t)λ2(a, t)I(a, t) − v(a, t)λ5(0, t)

]
dadt

−

∫ T

0

∫ am

0
Ē(a, t)

[
∂λ2

∂t
+
∂λ2

∂a
− (m1 + m(a))λ2(a, t)

]
dadt

−

∫ T

0

∫ am

0
R̄(a, t)

[
∂λ4

∂t
+
∂λ4

∂a
+ m(a)λ4(a, t)

]
dadt

−

∫ T

0

∫ am

0
V̄(a, t)

[
−
∂λ5

∂t
−
∂λ5

∂a
+ (m(a) + w0(a) + βσ(a)I(a, t))λ5(a, t)

]
dadt

Using (4.14, 4.15, 4.16, 4.17) and (4.18), we have

J′(v) =
∫ T

0

∫ am

0
2C3v(a, t)g(a)dadt (4.21)

+

∫ T

0

∫ am

0
(λ1(a, t) − λ5(0, t))S ∗(a, t)dadt −

∫ T

0

∫ am

0
λ1(a, t)(w0(a)V∗(a, t) − ψ(a, t)I∗(a, t))dadt.

Because J′(v) ≥ 0, so this implies in this case

v(a, t) =
λ1(a, t)(w0(a)V∗(a, t) − ψ(a, t)I∗(a, t))

2C3g(a))
−

(λ1(a, t) − λ5(0, t))S ∗(a, t)
2C3

By using the upper and lower bounds of control variable, we have

v∗ = max
{

0,min
{

vm,
λ1(a, t)(w0(a)V∗(a, t) − ψ(a, t)I∗(a, t))

2C3g(a))
−

(λ1(a, t) − λ5(0, t))S ∗(a, t)
2C3

}}
.

□

Remark 4.5. It is clear from the characterization of optimal control that it depends on the susceptible,
infected, and vaccinated class. Although it depends on function g, we can always fix a particular
choice of g.

Theorem 4.6. Let M be a generic positive constant that depends on C02,C11 and the bound of vaccine
vaning rate ω0, and transmission coefficient ψ. Then for sufficiently small M

2C3
, there exists a unique

optimal controller v∗.

Proof. Let (S v1 , Ev1 , Iv1 ,Rv1 ,Vv1), (S v2 , Ev2 , Iv2 ,Rv2 ,Vv2) be solution of system (4.1) corresponding to
the control variables v1 and v2 respectively, and (λ11, λ21, λ31, λ41, λ51), (λ12, λ22, λ32, λ42, λ52) be solution
of adjoint system 4.19 with control variable v1 and v2 respectivey. Define the map L : U → U by

L(v) = max
{

0,min
{

vm,
λ1(a, t)(w0(a)V(a, t) − ψ(a, t)I(a, t))

2C3g(a))
−

(λ1(a, t) − λ5(0, t))S (a, t)
2C3

}}
.
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Then

∥L(v1) − L(v2)∥ ≤
∥∥∥∥∥λ11(a, t)(w0(a)Vv1(a, t) − ψ(a, t)Iv1(a, t))

2C3g(a))
−

(λ11(a, t) − λ51(0, t))S v1(a, t)
2C3

−
λ12(a, t)(w0(a)Vv2(a, t) − ψ(a, t)Iv2(a, t))

2C3g(a))
+

(λ12(a, t) − λ52(0, t))S v2(a, t)
2C3

∥∥∥∥∥
L∞(Q)

≤
1

2C3

[
ω0(a)
g(a)

∥λ11Vv1 − λ12Vv2∥L∞(Q)+
ψ(a, t)
g(a)

∥λ11Iv1 − λ12Iv2∥L∞(Q)

+ ∥λ11S v1 − λ12S v2∥L∞(Q)+∥λ51(0, t)S v1 − λ52(0, t)S v2∥L∞(Q)
]

≤
M

2C3

[
∥λ11Vv1 − λ12Vv2∥L∞(Q)+∥λ11Iv1 − λ12Iv2∥L∞(Q)

+ ∥λ11S v1 − λ12S v2∥L∞(Q)+∥λ51(0, t)S v1 − λ52(0, t)S v2∥L∞(Q) ] ,

where M is a positive generic constant which depends on the bound of ω0, g and ψ. Therefore, we have

∥L(v1) − L(v2)∥ ≤
M

2C3
∥v1 − v2∥L∞(Q),

where M is a positive generic constant which also depends on C01,C02 and T . So, if M
2C3

< 1, then we
have the existence of unique fixed point v∗. □

5. Numerical simulation

In this section, we discuss numerical simulation results. We applied an explicit finite difference
scheme to solve our model numerically. Since the explicit finite difference scheme is highly sensitive
to the discretization size of independent variables, the discretization size is chosen in such a way that
the scheme is convergent. A finite difference scheme is applied to solve the system of differential
equations and for the adjoint system, we applied a backward finite difference scheme. For the optimal
control problem, we applied the forward-backward sweep method. The forward-backward sweep
method for optimal control problems in PDEs combines the forward integration of the state equations
with the backward integration of the adjoint equations. By iteratively adjusting the control variables
based on the computed gradient, the method aims to find the optimal control that minimizes the cost
functional while satisfying the given system of PDEs with initial and boundary data. We use the
following initial age distribution in our model:

S 0(a) = exp(−0.09a) + 0.7 sin(0.05a2)
E0(a) = 0.0001 exp(−a2) + 0.05 sin(0.05a2)
I0(a) = 0.0001 exp(−a2) + 0.02 sin(0.05a2)

R0(a) = 0.0001 exp(−0.5a) + 0.01 sin(0.05a2)
V0(a) = 0.0001 exp(−0.5a) + 0.001 sin(0.05a2).

Mortality rate is taken µ(a) = 0.01
a+0.0001 , ψ(a, t) = 0.02e−a. Other parameters taken are m1 = 0.2, q1 =

0.4, γ1 = 0.4, γ2 = 0.6, γ = 0.02, β = 1,Λ = 0.9 and g = 1.
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For the first two plots Figures 2(a),(b), we assume that a fixed proportion of individuals are vacci-
nated and observe the dynamics of infected individuals. So, for these figures we do not use the optimal
vaccination strategy.

(a) (b)

Figure 2. Figure shows the dynamics of infected individuals for different vaccination rates.
The vaccination rate is taken 0.108 in Figure 2(a) and 0.2 in Figure 2(b).

(a) (b)

Figure 3. Figure shows the dynamics of susceptible individuals for different vaccine waning
rate.

From Figure 2(a),(b), it is clear that increasing the vaccination rate will reduce the proportion of
infected individuals. It is clear that increasing the vaccination waning rate will increase the population
density of individuals who again become susceptible to disease. In Figure 3(a),(b), we have taken
vaccine waning rates as 0 and 0.3 respectively. So, even if we are vaccinating a population, still there
will be an increase in the population density of susceptible individuals due to imperfect vaccines.
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(a) (b)

Figure 4. Figure shows the dynamics of control variable. Vaccine waning rate is taken 0.1
in Figure 4(a) and 0.01 in Figure 4(b).

Figure 5. The dynamics of optimal control function with vaccine waning rate 0.1. The figure
shows that with the passage of time, the controller acquires stable behavior.

Figure 4(a),(b) and Figure 5 show the dynamics of control variable for vaccine waning rate 0.1 and
0.01. As time progresses, the profile of the control variable attains a stable behavior. Initially, the
control will be high and as time progresses, the control will take its minimum value.
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Figure 6. For R0 < 1, figure shows the stability of disease free equilibrium point. Also w0(a)
is taken 0.3 in Figure 6(a) and 0.1 in Figure 6(b).
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Figure 7. Stability of disease free equilibrium point is shown for w0(a) = 0.3 and w0(a) = 0.1
respectively.

In Section 3, we already prove that if threshold parameter R0 is less than 1, then the steady state
in which there are no individuals in the exposed or infected class is stable. In Figures 6 and 7, we
have taken age between 10 and 50 and studied the stability of disease-free equilibrium point. We
have chosen the parameters in such a way that the threshold number R0 < 1. These figures show that if
threshold parameter R0 < 1, then the disease-free equilibrium point is stable. So, numerical simulations
validate our theoretical results.
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6. Conclusions

Age-structured modeling is important when studying imperfect vaccination because it allows a more
realistic representation of how infectious diseases spread in a population. Imperfect vaccination refers
to situations where not everyone in a population is fully protected by a vaccine due to vaccine effec-
tiveness or a decline in immunity over time.

In this work, we proposed a new age-structured SEIRV model, where we incorporate vaccine wan-
ing rate and imperfect vaccination in our model. The aim was to study the effect of leaky vaccines and
to investigate the optimal approach to contain the disease spread. The Well-posedness of the proposed
model is shown using the semigroup of operators. We convert our model into an abstract Cauchy prob-
lem and then show that the operator in a homogeneous problem is the Hille-Yosida operator. Finally,
the basic reproduction number is defined as a threshold parameter to study the stability analysis of the
disease-free equilibrium point.

Vaccination strategy and optimal control problems with vaccination effort as a control variable are
also discussed. The optimality conditions are derived for the optimal control problem. With the help of
the adjoint system, optimal control is characterized. Numerical simulations are also added to establish
theoretical results. An explicit finite difference scheme is used to solve the model numerically. The
discretization size is chosen so that the scheme is convergent. The stability of disease-free steady state
is shown using numerical simulation. Using the forward-backward sweep method, we plot the optimal
control variable with respect to age and time variables.

Age-structured compartmental models are a valuable tool for understanding and analyzing the ef-
fects of imperfect vaccination. Although getting real data for verification is difficult, the model as-
sumptions and outcomes are quite realistic. This study can help the public health policymakers op-
timally vaccinate a population and reduce the impact of the disease with a low cost of vaccination.
The threshold number R0 involves some parameters, and by increasing or decreasing these parameters,
accordingly, we can eradicate the infectious disease. By choosing different vaccine waning rates, the
dynamics of individuals in different compartments can be studied using the numerical simulation re-
sults. We also encourage other researchers to explore this area. Moreover, the age-structured SEIR
model with stochastic perturbation can be investigated. More general size-structured variables can
also be considered for epidemiological models. Finally, It is also natural to consider the delay in age
and size-structured population models as it represents the maturation period. Therefore, age-structured
compartmental models with delay can also be explored.
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