
http://www.aimspress.com/journal/mbe

MBE, 20(8): 14502–14517.
DOI: 10.3934/mbe.2023649
Received: 31 March 2023
Revised: 25 May 2023
Accepted: 06 June 2023
Published: 04 July 2023

Research article

Optimal control analysis of malware propagation in cloud environments

Liang Tian1,2, Fengjun Shang1,2 and Chenquan Gan3,*

1 School of Computer Science and Technology, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

2 Key Lab of Computer Network and Communication Technology, Chongqing Education
Commission, Chongqing, China

3 School of Cyber Security and Information Law, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

* Correspondence: Email: gcq2010cqu@163.com.

Abstract: Cloud computing has become a widespread technology that delivers a broad range of
services across various industries globally. One of the crucial features of cloud infrastructure is virtual
machine (VM) migration, which plays a pivotal role in resource allocation flexibility and reducing
energy consumption, but it also provides convenience for the fast propagation of malware. To tackle
the challenge of curtailing the proliferation of malware in the cloud, this paper proposes an effective
strategy based on optimal dynamic immunization using a controlled dynamical model. The objective of
the research is to identify the most efficient way of dynamically immunizing the cloud to minimize the
spread of malware. To achieve this, we define the control strategy and loss and give the corresponding
optimal control problem. The optimal control analysis of the controlled dynamical model is examined
theoretically and experimentally. Finally, the theoretical and experimental results both demonstrate
that the optimal strategy can minimize the incidence of infections at a reasonable loss.
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1. Introduction

Cloud computing has revolutionized the IT industry, bringing benefits such as flexibility,
scalability and cost-effectiveness. Virtualization is a crucial technique in cloud computing, enabling
the transcendence of temporal and spatial boundaries. By dividing a physical computing resource into
multiple same-function virtual machines (VMs), this technique enables the on-demand deployment of
computing resources by VM migration [1]. Regrettably, virtualization has introduced new hidden
dangers that are increasingly targeted by malware attacks [2]. These vulnerabilities can lead to
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significant harm to individuals and organizations, in addition to financial losses, and even pose a
potential threat to human life [3]. Therefore, it is crucial to explore effective measures for
safeguarding virtual environments against malware attacks in the cloud.

With the rapid development of cloud computing, the problem of malware propagation in cloud
environments has become increasingly prominent [4]. Malware in cloud environments usually has the
characteristics of large scale, fast propagation speed and being difficult to trace and control. To this
end, researchers have proposed many related works for controlling the propagation of malware in cloud
environments. These works mainly include malware detection, malware propagation path analysis and
malware propagation control.

Malware detection is a crucial technology for controlling the spread of malware in cloud
environments. Currently, researchers used feature-based and machine learning-based methods to
detect malware [5]. By analyzing the code and behavior characteristics of malware, researchers can
effectively detect it [6]. Malware propagation path analysis is another important aspect for
understanding the propagation mechanism and rules of malware in cloud environments. Researchers
mainly used graph theory-based and data mining-based methods to analyze the propagation path and
rules by constructing a malware propagation graph [7–9]. Additionally, malware propagation control
is a key technology for controlling the spread of malware in cloud environments. Researchers mainly
used network security protocol-based methods for malware propagation control [10]. However, these
methods can only play their maximum role after the emergence of malware, with significant lag in
development and inability to predict malware propagation in cloud environments.

Noting the attractive analogies between malware and its biological counterparts, some epidemic
dynamics of malware, which are devoted to capturing the way that malware spreads over a network so
as to contain its diffusion, have been proposed, such as the SEIQR model [11], the SIR1R2

model [12], the SE1E2IQR model [13], the SIWQ model [14], the SIAR model [15, 16], the SID
model [17], the DDSEIR model [18], the SEIR model [19], the SEIRS-V model [20], the SEIRS-Q
model [21], the SEIS model [22], the VCQPS model [23], the game model [24–27] and the
multi-agent model [28]. However, these models are not specifically designed for cloud environments.
On this basis, Abazari et al. [29] explored the effect of anti-malware with infectious nodes in cloud
environments and proposed an SPI (susceptible-protected-infected) model, but they assumed that all
the machines entering the cloud are susceptible, which does not fit the practical situations. In order to
make up for the deficiency and based on the SPI model, a new dynamical model, the
susceptible-infected-protected-susceptible (SIPS) model was proposed in [30], but this model cannot
describe the cost and effectiveness of malware control.

In reality, it is necessary to consider the input cost and corresponding effects of malware control,
and it is impossible to install anti-virus-software-like protection measures for every machine, though
every machine must have the same level of protection. Therefore, in this paper, inspired by the above
work and discussions, we propose a controlled dynamical model to explore how to effectively contain
malware propagation in the cloud by means of optimal dynamic immunization. According to the
control strategy and loss definition, we give the optimal control problem of the controlled dynamical
model. The optimal analysis is examined theoretically and experimentally. Most importantly, the
obtained results indicate the comprehensive effect of the optimal control strategy is the best.

The remaining material of our work is organized as follows: The preliminary knowledge is given
in Section 2. Section 3 formulates the controlled dynamical model. The optimal control problem and
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theoretical analysis are presented in Section 4. Section 5 gives the experimental analysis. Section 6
summarizes this work.

2. Preliminary knowledge

This section introduces several important lemmas, which are important support for subsequent
research work.

Consider the following controlled differential dynamical system

dx
dt
= f(x, g), t ∈ [t0, t f ], x(t0) = x0, g ∈ G , (2.1)

where t0 is the initial time, t f is the terminal time, x is the system state vector, x0 is the state at the
initial time of the system, g is the control vector, and G is the admissible control set.

Given the objective functional J(g) =
∫ t f

t0
L(x, g)dt, the optimal control problem of the controlled

differential dynamical system (2.1) can be denoted as:

ming∈G J(g) =
∫ t f

t0
L(x, g)dt

s.t. dx
dt = f(x, g), t ∈ [t0, t f ], x0 ∈ Ψ, g ∈ G ,

(2.2)

where Ψ is a positive invariant for the system (2.1).
Now, let us introduce the following lemmas, which can be used to prove the solution existence and

the optimality system.

Lemma 1. [31] Consider the optimal control problem (2.2). Then it has optimal control when these
six conditions are met.

(i) There is g ∈ G such that system (2.1) is solvable,
(ii) G is convex,

(iii) G is closed,
(iv) f(x, g) is bounded by a linear function in x,
(v) L(x, g) is convex on G , and

(vi) L(x, g) ≥ c1∥g∥ρ2 + c2 for some ρ > 1, c1 > 0 and c2.

Lemma 2. [31] Suppose that g ∈ G is an optimal control of the optimal control problem (2.2), x is a
solution of the controlled differential dynamical system (2.1). Then there is Φ so that

dΦ
dt = − ▽x H(x, g,Φ),Φ(t f ) = 0,

g = arg minũ∈G H(x, ũ,Φ),
(2.3)

where H(x, g,Φ) = L(x, g) +ΦT f(x, g) is the Hamilton function of the optimal control problem (2.2).

The system composed of (2.1) and (2.3) is the “optimality system” of the optimal control
problem (2.2). According to this system, we can get some candidate solutions of (2.2). This can
narrow the search scope of the optimal solution, thereby accelerating the search effect.
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3. The controlled malware propagation model

This section mainly introduces the background and corresponding mathematical model of malware
propagation control in cloud environments.

3.1. Background

With the rapid growth of cloud computing in recent years, security concerns surrounding cloud
systems have become increasingly important. One of the most significant threats in cloud
environments is the propagation of malware, which can be transmitted from one device to another,
causing significant damage, data loss, and system downtime. To effectively mitigate the risk of
malware propagation in cloud environments, the most effective and direct method is to develop
corresponding antivirus software or patches to detect and kill malware. However, with the continuous
development of technology, malware has become increasingly high-end and covert, and antivirus
software or patches often lag behind the emergence of malware, making it difficult to predict the
long-term evolution trend of malware. Therefore, inspired by biological infectious disease models,
establishing a malware propagation model is a relatively effective attempt. However, currently
available malware propagation models are generally copied from biological infectious disease models
and do not take into account the unique conditions of the cloud environment, such as the cost and
benefit of actual resource consumption when detecting and killing malware. It is necessary to develop
optimized control strategies that can monitor and control the spread of malware [32]. Optimal control
is a mathematical optimization technique that seeks to identify the optimal control inputs that can be
applied to a system over time. By leveraging this mathematical technique, researchers can find
solutions to monitor and control malware in the cloud environment, improving the security and
reliability of cloud computing systems.
3.2. Model formulation

To solve the problem of malware propagation between virtual machines and study the key factors
affecting the network propagation of malware, a dynamical propagation model was proposed in [30],
whose mathematical expression is represented as:

dS (t)
dt
= η1 + δI(t) + α0P(t) − βγS (t)I(t) − αS (t) − µS (t),

dI(t)
dt
= η2 + βγS (t)I(t) − δI(t) − µI(t),

dP(t)
dt
= η3 + αS (t) − α0P(t) − µP(t),

(3.1)

where η1, η2, and η3 are the entering rate of infected, susceptible, and protected VMs, respectively;
µ and γ are the shutdown rate and the migration rate of each VM, respectively; α and α0 are the
installing rate and the expired rate of antivirus software, respectively; β and δ are the infected rate
and the reinstalling system rate, respectively; At time t, S (t), I(t), and P(t) are the proportions of
susceptible, infected, and protected VMs, respectively.

Obviously, this dynamical propagation model of malware does not consider dynamic control factors
such as immunity. In the real world, immunizations (including treatment and vaccination) are dynamic,
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and several security controls can be implemented to protect computer systems from malware infections.
These include antivirus software, firewalls, intrusion detection systems (IDS), security updates and
patches, and user awareness training. To increase the reality of the developed model, let us take an
example of the WannaCry ransomware attack that affected thousands of computers worldwide. This
attack exploited a vulnerability in Microsoft Windows operating systems that had been previously
patched. Organizations that had not applied the security update were vulnerable to this attack. To
prevent such attacks, organizations should ensure that they regularly update their systems with the latest
security patches. They should also implement a layered approach to security that includes antivirus
software, firewalls, and IDS systems to provide comprehensive protection against malware infections.
The scale of malware spread through the network can be controlled by changing the control strategy.
To this end, we define two functions (vaccination function and treatment function) with respect to
time t, α(t) and δ(t), to replace the constants α and δ in the model (3.1), respectively. Based on the
model (3.1), we can obtain the mathematical representation of the corresponding controlled malware
propagation model as follows.

dS (t)
dt
= η1 + δ(t)I(t) + α0P(t) − βγS (t)I(t) − α(t)S (t) − µS (t),

dI(t)
dt
= η2 + βγS (t)I(t) − δ(t)I(t) − µI(t),

dP(t)
dt
= η3 + α(t)S (t) − α0P(t) − µP(t),

(3.2)

with the initial condition (S (0), I(0), P(0))T
∈ Ψ, where

Ψ = {(S , I, P) ∈ R3
+ : S + I + P = 1} (3.3)

is a positive invariant for the system (3.2). S , I, P are the abbreviations of S (t), I(t), P(t), respectively,
and the latter are the same if not specifically declared.

4. Optimal control analysis of the model

In this section, we will perform an optimal control analysis of the controlled malware propagation
model to determine the optimal control strategy. Firstly, the control strategy and loss definition will be
presented. Next, we will formulate the optimal control problem. Finally, we will analyze the solution
existence and optimality system.

4.1. Control strategy and loss definition

From the perspective of controlling the spread of malware, we hope to achieve the best control effect
at the minimum control loss by the control strategy such as installing anti-malware software or patch.

Let g and L denote the control strategy and loss, respectively. From system (3.2), we can adjust
vaccination function α(t) and treatment function δ(t) to implement control of malware propagation.
The control loss is related to the control strategy. Specifically, the control loss mainly includes the
cost of vaccination and treatment, as well as the losses caused by node infection. Then, the control
strategy, at time t, can be described as g(t) = (α(t), δ(t))T , and the control loss can be represented as
L(S (t), I(t), P(t), g(t)).
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Let α, α and δ, δ denote the infimum and supremum of α(t) and δ(t), respectively. Furthermore, α,
α, δ, δ are positive constants, and 0 < α < α < 1, 0 < δ < δ < 1. Let G represent the feasible control
set of g, and then for t ∈ [0,T ],

G =
{
g(t) ∈

(
L2 [0,T ]

)2 ∣∣∣ α ≤ α(t) ≤ α, δ ≤ δ(t) ≤ δ
}
, (4.1)

where L2 [0,T ] represents the Lebesgue square integrable function set.

4.2. Optimal control problem formulation

Let x(t) = (S (t), I(t), P(t))T . Then, L(S (t), I(t), P(t), g(t))= L(x(t), g(t)), and system (3.2) can be
represented by a matrix as follows.

dx(t)
dt
= f(x(t), g(t)), t ∈ [0,T ], (4.2)

where x(0) ∈ Ψ, g ∈ G .
During the time period [0,T ], the goal is to find the control strategy g(·) that minimizes both the

scale of malware spread and the total cost for treatment and vaccination. To achieve this goal, we need
to solve the optimal control problem as follows.

ming∈G J(g) =
∫ T

0
L(x(t),u(t))dt (4.3)

subject to system (3.2) or (4.2), where

L(x(t), g(t)) = I +
1
r

pα(t)r +
1
r

qδ(t)r, 1 < r ≤ 2, (4.4)

is the Lagrangian, and p, q > 0 are tradeoff factors regarding the control goal of the treatment and
vaccination.

Remark 1. Since the control loss mainly includes the cost of vaccination and treatment, as well as
the losses caused by node infection, for convenience, we adopt α(t), δ(t) and I to represent the
corresponding costs. In Eq (4.4), the control loss L(x(t), g(t)) is not limited to quadratic
functions [33–35], and the power r (1 < r ≤ 2) of L(x(t), g(t)) may be more suitable for the actual
situation. Therefore, we take Eq (4.4) for the control loss in this paper.

4.3. Solution existence of optimal control problem

From the preliminary knowledge and Lemma 1, we just need to prove that each condition in
Lemma 1 is satisfied. Hence, we can derive the following results.

Lemma 3. There exists g ∈ G such that the system (3.2) or (4.2) is solvable.

Proof. By putting g ≡ ḡ :=
(
α, δ

)T
into the system (4.2), the following uncontrolled system can be

obtained:
dx(t)

dt
= f(x(t), ḡ) (4.5)

with the initial condition x(0) ∈ Ψ. Since f(x(t), ḡ) is continuously differentiable, and Ψ is a positive
invariant, it is possible to derive the claim from the continuation theorem [36]. □
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Lemma 4. The feasible control set G is convex.

Proof. Define
g1 = (α1, δ1)T

∈ G , g2 = (α2, δ2)T
∈ G , 0 < ξ < 1. (4.6)

Since
(
L2[0,T ]

)2
is a real vector space,

(1 − ξ)g1 + ξg2 ∈
(
L2[0,T ]

)2
. (4.7)

Furthermore,
α ≤ (1 − ξ)α1 + ξα2 ≤ α, δ ≤ (1 − ξ)δ1 + ξδ2 ≤ δ. (4.8)

Therefore, the proof is complete. □

Lemma 5. The feasible control set G is closed.

Proof. Let g = (α, δ)T be the limit of G , and gn = (αn, δn)T , n = 1, 2, · · · , which is a sequence of G .
Then,

∥gn − g∥2 :=
[∫ T

0
|gn(t) − g(t)|2 dt

]1/2

<
1
n
. (4.9)

Based on the completeness of
(
L2[0,T ]

)2
, we can get

lim
n→∞

gn = g ∈
(
L2[0,T ]

)2
. (4.10)

Note that
α ≤ α = lim

n→∞
αn ≤ α, δ ≤ δ = lim

n→∞
δn ≤ δ. (4.11)

Hence, the closeness of G can be followed from the above observations, and the proof is complete. □

Lemma 6. f(x, g) is bounded by a linear function in x.

Proof. Since

η1 − (α + µ)S − βγ/4 ≤ η1 + δI + α0P − βγS I − αS − µS ≤ η1 + δI + α0P, (4.12)

η2 − (δ + µ)I ≤ η2 + βγS I − δI − µI ≤ η2 + βγ/4, (4.13)

η3 − (α0 + µ)P ≤ η3 + αS − α0P − µP ≤ η3 + αS . (4.14)

Thus, from the above observations, the proof is complete. □

Lemma 7. L(x, g) is convex on G .

Proof. For g ∈ G , we can get the Hessian matrix of L(x, g) as follows.

Hg(L) =
(

p(r − 1)αr−2 0
0 q(r − 1)δr−2

)
. (4.15)

For any t ∈ [0,T ], we can obtain that Hg(L) is a real symmetric matrix with all positive eigenvalues.
This implies that Hg(L) is a positive definite matrix. Therefore, from [37], the claimed result follows.

□
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Lemma 8. L(x, g) ≥ c1∥g∥ρ2 + c2 for some ρ > 1, c1 > 0 and c2.

Proof. Note that

L (x, g) = I +
1
r

pαr +
1
r

qδr

≥
1
r

min{p, q} (αr + δr)

≥
1
r

min{p, q}
(
α2 + δ2

)
=

min{p, q}
r

∥g∥22.

(4.16)

Thus, the claimed result follows. □

According to Lemmas 3–8, we can derive the following important result.

Theorem 1. There exists an optimal control for the optimal control problem (4.2)+(4.3).

Proof. Based on Lemmas 3–8, it can be concluded that all six conditions in Lemma 1 are proven.
Therefore, the claimed result can be derived from Lemma 1. □

Remark 2. Theorem 1 indicates there exists an optimal control strategy, which has important
theoretical support and practical guidance for the actual control of malware propagation.

4.4. Optimality system of optimal control problem

Although we prove the existence of an optimal control strategy through Theorem 1, it is difficult to
give an expression of the optimal strategy, which is not conducive to practical applications. Therefore,
we are prepared to find an optimal system that meets the optimal solution, in order to narrow down
the scope of searching for the optimal strategy, thereby achieving accelerated and practical results.
Therefore, we can get the following theorem, which provides a way to find the optimal control of
(4.2)+(4.3).

Theorem 2. Suppose that g∗(t) is an optimal control of the optimal control problem (4.2)+(4.3), and
(S ∗(t), I∗(t), P∗(t))T is a solution to the system (4.2). For t ∈ [0,T ] and g(t) = g∗(t), then

dθ∗1(t)
dt
= θ∗1(t) (µ + α∗(t) + βγI∗(t)) − βγI∗(t)θ∗2(t) − α∗(t)θ∗3(t),

dθ∗2(t)
dt
= −1 − θ∗1(t) (δ∗(t) − βγS ∗(t)) + θ∗2(t) (µ + δ∗(t) − βγS ∗(t)) ,

dθ∗3(t)
dt
= −α0θ

∗
1(t) + (α0 + µ)θ∗3(t),

(4.17)

where
θ∗1(T ) = θ∗2(T ) = θ∗3(T ) = 0. (4.18)

In addition, we can get

α∗(t) = max

min


[
S ∗(t)

p
(
θ∗1(t) − θ∗3(t)

)] 1
r−1

, α

 , α
 , 0 ≤ t ≤ T, (4.19)
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δ∗(t) = max

min


[
I∗(t)

q
(
θ∗2(t) − θ∗1(t)

)] 1
r−1

, δ

 , δ
 , 0 ≤ t ≤ T. (4.20)

Proof. According to the known conditions in the theorem, we can obtain the corresponding
Hamiltonian as follows.

H (S , I, P, θ, g) = I +
p
r
αr +

q
r
δr + θ1

dS
dt
+ θ2

dI
dt
+ θ3

dP
dt
, (4.21)

where θ1, θ2 and θ3 are undetermined, θ = (θ1, θ2, θ3)T .
From the Pontryagin Minimum Principle [38] and the Lemma 2, one can get that there exist θ∗1(t),

θ∗2(t) and θ∗3(t), such that for t ∈ [0,T ],



dθ∗1(t)
dt
= −
∂H (S ∗(t), I∗(t), P∗(t), θ∗(t), g∗(t))

∂S
,

dθ∗2(t)
dt
= −
∂H (S ∗(t), I∗(t), P∗(t), θ∗(t), g∗(t))

∂I
,

dθ∗3(t)
dt
= −
∂H (S ∗(t), I∗(t), P∗(t), θ∗(t), g∗(t))

∂P
.

(4.22)

Therefore, by direct calculations, we can obtain the system (4.17).
The transversality conditions hold because the end cost is not specified, and the end state is free.

Thus, noting that

H (S ∗, I∗, P∗, θ∗, g∗) = min
g∈G

H (S ∗, I∗, P∗, θ∗, g) , (4.23)

one can obtain, (i)

∂H (S ∗(t), I∗(t), P∗(t), θ∗(t), g∗(t))
∂α

= p [α∗(t)]r−1
− θ∗1(t)S ∗(t) + θ∗3(t)S ∗(t) = 0, (4.24)

or α∗(t) = α or α∗(t) = α, and (ii)

∂H (S ∗(t), I∗(t), P∗(t), θ∗(t), g∗(t))
∂δ

= q [δ∗(t)]r−1
+ θ∗1(t)I∗(t) − θ∗2(t)I∗(t) = 0, (4.25)

or δ∗(t) = δ or δ∗(t) = δ. Hence, the claimed result follows. □

From the preliminary knowledge and the above discussions, the following theorem about the
optimality system of (4.2)+(4.3) can be derived.
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Theorem 3. There exists an optimality system of the optimal control problem (4.2)+(4.3).

dS (t)
dt
= η1 + δ(t)I(t) + α0P(t) − βγS (t)I(t) − α(t)S (t) − µS (t),

dI(t)
dt
= η2 + βγS (t)I(t) − δ(t)I(t) − µI(t),

dP(t)
dt
= η3 + α(t)S (t) − α0P(t) − µP(t),

dθ1(t)
dt
= θ1(t) (µ + α(t) + βγI(t)) − βγI(t)θ2(t) − α(t)θ3(t),

dθ2(t)
dt
= −1 − θ1(t) (δ(t) − βγS (t)) + θ2(t) (µ + δ(t) − βγS (t)) ,

dθ3(t)
dt
= −α0θ1(t) + (α0 + µ)θ3(t),

α(t) = max

min


[
S (t)

p
(θ1(t) − θ3(t))

] 1
r−1

, α

 , α
 ,

δ(t) = max

min


[
I(t)
q

(θ2(t) − θ1(t))
] 1

r−1

, δ

 , δ
 ,

(4.26)

where t ∈ [0,T ] and θ1(T ) = θ2(T ) = θ3(T ) = 0.

Remark 3. Theorems 2 and 3 show there exists an optimality system for (4.2)+(4.3), this is also a
way to find the optimal control strategy. Through the optimality system, it is possible to accelerate the
search for the optimal control strategy.

5. Experiments

Theoretical analysis and results have been posed in the previous section. In this section, we mainly
demonstrate the effectiveness of the optimal control strategy through some numerical simulations. It
should be noted that all parameter values presented in the analysis are hypothetical, as real-world data
is unavailable.

Firstly, let us introduce the system parameter settings as follows.

Example 1. Suppose that η1 = 0.05, η2 = 0.04, η3 = 0.01, µ = η1 + η2 + η3, α0 = 0.02, β = 0.15,
γ = 0.5, α = 0.05, α = 0.8, δ = 0.05, δ = 0.9, p = 0.0013, q = 0.071, r = 1.95, and T = 80. The
system of optimality equations (4.26) is numerically solved by calling the backward-forward Runge-
Kutta fourth-order scheme, with the initial condition (S (0), I(0), P(0)) = (0.5, 0.3, 0.2).

All subsequent experiments are conducted in Example 1, and the results are shown in Figures 1–4
and Table 1. Next, we will describe the experimental results in detail.

Figure 1(a) illustrates the changes in the proportion of infected VMs under different control
strategies, showing the evolution of the system over time. As I with α = 0, δ = 0.9, I with
α = 0.8, δ = 0.9, and I with optimal control cannot be distinguished, they are shown separately in
Figure 1(b), which depicts the curves that are very close in Figure 1(a). From Figure 1(a),(b), one can
see that there are apparent differences between different control strategies on the eventual scale of
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Figure 1. Evolution of proportion of protected VMs with different control strategies given in
Example 1.

malware infection, which also shows the importance of studying control strategies. Specifically, I
with α = 0, δ = 0 indicates that no control strategy is adopted, so the scale of malware infection is the
largest. On the contrary, the optimal control strategy achieves much better results.
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Figure 2. Evolution of proportion of protected VMs with different control strategies given in
Example 1.

Figure 2 displays the changes in the proportion of protected VMs under different control strategies,
showing the evolution of the system over time. Various control strategies also differ greatly in the final
protected VMs scale. P with α = 0, δ = 0 represents that no control strategy is adopted, so the scale
of protected VMs is the lowest. On the contrary, the optimal control strategy achieves the best results.
This shows the importance of finding the optimal control strategy and also illustrates the significance
of the existence of Theorems 2 and 3 from a lateral perspective.
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Remark 4. From Figures 1 and 2, it can be seen that control functions α and δ impose main effects on
proportions of protected, and infected VMs, which coincide with the meanings of α and δ, vaccination
and treatment, respectively. In addition, it is evident that g∗ is highly effective in curbing the spread
of malware. In the experiments, different values of α and δ correspond to different models, but these
models are not optimization models, and their effectiveness is significantly inferior to our optimization
model.

Figure 3. Optimal control function α with varied r for system (4.26) given in Example 1.

Figure 4. Optimal control function δ with varied r for system (4.26) given in Example 1.

Figures 3 and 4 demonstrate the corresponding optimal control functions α and δ with varied r,
respectively. It can be concluded that α and δ are both affected by r, and they increase as r increases.
Although the trends of change are similar, δ increased faster, indicating that δ received a greater impact.

Table 1 summarizes the results of different control strategies in terms of the final proportion of
infected VMs and their corresponding objective function J values. The table clearly indicates that
the optimal control strategy g∗ is the most effective approach in minimizing the objective function J
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Table 1. The proportion of infected VMs and their respective objective function J.

g = g∗ g = (0, 0) g = (0, 0.9) g = (0.8, 0) g = (0.4, 0.45) g = (0.8, 0.9)

I(g) 0.0476 0.5510 0.0428 0.4204 0.0747 0.0403
J(g) 4.9341 40.2648 7.1754 31.1899 8.7248 7.2328

and reducing the prevalence of infected VMs to a significant extent. In addition, Table 1 also further
demonstrates the results of the previous figures. It is not only necessary to look at the final control scale
but also necessary to consider both the control scale and the control loss. Therefore, our study offers a
fresh perspective on tackling the problem of malware diffusion in cloud computing environments.

6. Summary

This paper has presented a novel controlled dynamical model for studying the propagation of
malware in cloud computing environments, which integrates dynamic immunization strategies such as
treatment and vaccination. The proposed model aims to provide a better understanding of the
mechanisms underlying malware diffusion in the cloud. First, we introduce the control strategy and
loss definition. Second, we define the optimal control problem. Next, we analyze the solution
existence and optimality system of the optimal control problem. Finally, we provide numerical
simulations to demonstrate how to determine an optimal immunization strategy. Notably, our results
show that the proposed optimal immunization approach can effectively reduce the prevalence of
infections at a low loss.
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