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Abstract: This paper examines the distributed filtering and fixed-point smoothing problems for net-
worked systems, considering random parameter matrices, time-correlated additive noises and random
deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage
creates intermediate estimators based on local and adjacent node measurements, while the second stage
combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted
linear combinations. The major contributions and challenges lie in simultaneously considering various
network-induced phenomena and providing a unified framework for systems with incomplete informa-
tion. The algorithms are designed without specific structure assumptions and use a covariance-based
estimation technique, which does not require knowledge of the evolution model of the signal being
estimated. A numerical experiment demonstrates the applicability and effectiveness of the proposed
algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation
accuracy.
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1. Introduction

Sensor networks have generated considerable research interest due to their wide range of practical
applications and the rapid development of communication and information technologies (see, e.g., [1]
and [2]). A widely-explored research topic in this domain is the distributed estimation problem, which
arises in situations where the sensor nodes are spatially distributed according to a predetermined net-
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work topology and each sensor node can use data information from itself and its neighboring nodes
to estimate the signal of interest. Each sensor node then acts as a local fusion centre, combining
its own information with that obtained from adjacent nodes to improve the performance of the local
estimators, based solely on its own measurement information. This collaborative signal estimation
strategy offers many advantages, including ease of implementation, robustness, scalability and high
reliability. In [3], the distributed estimation problem is addressed in the presence of random packet
dropouts during data transmission. A distributed event-based filtering structure is proposed in [4] for
a class of sensor networks with sensor saturations and cyber-attacks. Nonlinear systems over sensor
networks, whose topologies are changeable subject to Round-Robin protocol in the finite horizon case,
are considered in [5]. A recursive distributed filtering algorithm for networked systems with random
parameter matrices and correlated noises is designed in [6]. In recent years, a large variety of dis-
tributed estimation algorithms have been designed for sensor networks exposed to various challenges
and vulnerabilities, under a range of filter schemes. For example, a new distributed filtering strategy
has been presented in [7] by fully taking both the prediction estimations and its own measurement
innovation into consideration. In [8], a novel distributed filtering compensation algorithm is presented
in terms of the available transmitted data. A new design of an innovation-based stealthy attack strategy
against distributed state estimation over a sensor network is proposed in [9], while the state estimation
problem in linear time-invariant systems by using a network of distributed observers with switching
communication topology is studied in [10]. Some significant achievements in the field of distributed
estimation for stochastic systems over sensor networks are reviewed in [11] and [12].

In the fields of physics, electronics and engineering, many applications can involve infinite-step
colored measurement noises, particularly when the sampling frequency is high enough to make the
noises significantly correlated over two or more consecutive sampling periods. In recent years, re-
searchers have addressed the estimation problem under the assumption that the measurements are af-
fected by infinite-step time-correlated channel noise, modeled as the output of a linear system driven
by white noise. Two popular methods for dealing with this type of noise correlation are state aug-
mentation, which is simple and direct but computationally expensive, and measurement differencing,
which avoids the problem of increasing dimensions but requires two consecutive measurements to
compute the difference. By referencing to the measurement differencing method, in [13] the time-
correlation of the measurement noises is transformed into the cross-correlation between the equivalent
measurement noise and the process noise. Convergence conditions of the optimal linear estimator are
obtained in [14], by using a new measurement obtained from measurement differencing. In [15], by
using the time-differencing approach, the available measurements are transformed into an equivalent
set of observations that do not depend on the time-correlated noise. Alternative non-augmentation and
non-differencing methods to address the state estimation problem, based on the direct estimation of the
time-correlated additive noise, are described in [16] and [17].

Communication networks are typically subject to resource limitations, which can provoke network-
related issues during signal measurement or transmission [18]. Some such issues, such as the presence
of multiplicative noise, missing observations or fading measurements, can be described by introducing
stochastic parameter matrices into the measurement equations. In recent years, considerable research
has been conducted into estimation problems arising in systems with random parameter matrices. For
example, in [19] the Tobit Kalman filtering problem is studied for a class of linear discrete-time system
with random parameters, where the elements of both the system matrix and the measurement matrix
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are allowed to be random variables in order to reflect the reality. The distributed fusion estimation
problem for networked systems whose multisensor measured outputs involve uncertainties modeled
by random parameter matrices is investigated in [20]. In [21], the optimal linear filtering problem
for linear discrete-time stochastic systems with random matrices in both the state and measurement
equations is addressed. A Kalman-like recursive distributed optimal linear fusion predictor without
feedback, for discrete-time linear stochastic systems with correlated random parameter matrices, is
presented in [22]. In [23], the distributed fusion estimation problem is discussed in the presence of
coupled noises, random delays and packet dropouts, for a class of uncertain systems, where the uncer-
tainty in the measurement model is described by random parameter matrices.

In addition to the problem of random uncertainties in measurements and transmissions, a critical
issue that cannot be ignored in any study of the estimation problem in networked systems is the pos-
sibility of suffering cyber-attacks. Security vulnerability is a common weakness that has been widely
discussed in the literature; a bibliographical review of recent advances and challenges in this regard
can be found in [24]. In particular, deception attacks have attracted significant research attention. This
form of attack seeks to compromise data integrity by maliciously and randomly falsifying informa-
tion. In this respect, [25] examined the centralized security-guaranteed filtering problem for linear
time-invariant stochastic systems with multirate-sensor fusion subjected to deception attacks. In other
approaches, the H∞-consensus filtering problem for discrete-time systems with multiplicative noises
and deception attacks has been investigated by [26], and the distributed estimation problem in sensor
networks with a specific topology structure under deception attacks has been addressed by [27,28,30].
More specifically, the distributed filtering problem in networked systems with fading measurements
and multiplicative noises in both the signal and measurement equations is discussed in [27]. In [28],
a positive system over a sensor network with simultaneous deception attacks and various network-
induced constraints on sensor measurements is considered. The distributed secure state estimation
problem is addressed in [29] for a class of general nonlinear systems over sensor networks under un-
known deception attacks on innovations, while networked uncertain systems, containing uncertainties
due to multiplicative and additive noises in the state and measurement equations, are considered in [30].

In view of the above considerations, the present study focuses on a class of networked systems,
whose sensor nodes are distributed in space according to a fixed network topology. The main study
goal is to address the least-squares linear distributed estimation problem from measurements affected
by random parameter matrices and time-correlated additive noises, and simultaneously exposed to
random deception attacks. For this purpose, a recursive algorithm for the distributed estimators is
generated in two stages. First, each sensor node collects measurements from its neighbors to create
intermediate least-squares linear estimators by an innovation approach. In the second stage, the in-
termediate estimators from neighboring sensors are combined to form distributed estimators through
least-squares matrix-weighted linear combinations. A greater volume of information from different
sensors is used in the second stage than in the first. This enhances the intermediate estimation perfor-
mance and reduces disagreements among intermediate estimators from different sensors, by steering
each distributed estimator closer to the global optimal linear estimator (hypothetically based on mea-
surements from all network sensors).

This study makes the following main contributions. First, the consideration of random parameter
matrices in the measurement equations provides a unified framework for handling common network-
induced phenomena, such as multiplicative noise, missing observations and missing or fading mea-
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surements; thus, the proposed algorithm can be applied to a wide range of network systems with
incomplete information. The model also integrates stochastic deception attacks, to which many net-
worked systems are vulnerable. Second, both the random parameter matrices and the random variables
modeling the deception attacks are time-varying, making it possible to consider general situations
involving time-dependent network-induced phenomena and different random phenomena at different
sensor nodes. Third, the study considers the infinite-step time correlation of the measurement noises
and facilitates the direct estimation of time-correlated additive noise, without relying on the differenc-
ing method. Fourth, the covariance-based estimation technique employed does not require knowledge
of the evolution model for the signal being estimated. Furthermore, and unlike most previous studies
of distributed estimation, which usually obtain optimal linear estimators based on a given structure, we
present optimal linear-distributed estimation algorithms under the mean squared error criterion, with-
out requiring a particular structure for the estimators. Another advantage of the proposed distributed
estimation scheme is that, while most other approaches incorporate an upper bound for the estimation
error covariance, this paper derives an exact expression for the error covariance, which can be calcu-
lated offline, regardless of the specific measurement set to be processed. Finally, in comparison with
the most closely related authors’ previous studies on distributed estimation, the current system model,
in contrast to the one in [6], incorporates deception attacks and infinite-step time-correlated noise. The
system model in [27], as the system considered in this work, includes stochastic deception attacks, but,
in contrast to the present study, white additive noises are considered. Furthermore, it is worth noting
that the derivation of the distributed filtering algorithm in both [6] and [27] relies on the state-space
model equations, whereas the algorithms proposed in this paper do not require explicit information
about the state transition equation. Instead, they rely solely on the factorization of the state covariance
matrix in a separable form. The superiority of the proposed distributed filter over the one in [27] in the
presence of infinite-step time-correlated additive noises will be experimentally tested in a numerical
simulation example.

The rest of this paper is structured as follows. The networked system model with random parameter
matrices, time-correlated noises and deception attacks is presented in Section 2, together with the
assumptions required of the stochastic processes involved. The distributed estimation problem is then
formulated in Section 3. After this, the distributed estimators are derived in two steps, described in
Section 4 and Section 5, respectively. Finally, Section 6 provides an illustrative example highlighting
the effectiveness of the proposed distributed estimation algorithms and the main conclusions drawn are
summarized in Section 7.

Notation and abbreviations

The mathematical notation and abbreviations used in this paper are detailed in the following table.
If not explicitly stated, all vector and matrix dimensions are assumed to be compatible with algebraic
operations.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14550–14577.



14554

Rn Set of n-dimensional real vectors
0 Zero scalar or matrix of compatible dimension
1n×n n × n all-ones matrix
In n × n identity matrix
MT , M−1 and M−T Transpose, inverse and transpose of the inverse of matrix M
Diag(d1, . . . , dm) Diagonal matrix with entries d1, . . . , dm

(M1 | · · · | Mk) Partitioned matrix whose blocks are the submatrices M1, . . . ,Mk

Gk = Gk,k Function Gk,h, depending on time instants k and h, when h = k
M(i) = M(ii) Function M(i j), depending on sensors i and j, when j = i
⊗ Kronecker product of matrices
◦ Hadamard product of matrices
δk,h Kronecker delta function
LS Least-squares
OPL Orthogonal projection lemma

2. Model description and assumptions

Consider a second-order nx-dimensional discrete-time signal process {xk}k≥1, measured by different
sensors which are spatially distributed according to a fixed network topology. Specifically, the sensor
network is represented by a digraph G = (N ,E,D) of order m, where N = {1, . . . ,m} denotes the set
of sensor nodes, E ⊆ N ×N is the set of edges connecting different nodes and ( j, i) ∈ E means that the
sensor node i receives the information from node j. These link relations among sensors are specified by
the adjacency matrix, D =

(
di j

)
m×m, with di j = 1 for (i, j) ∈ E and di j = 0 otherwise; since any sensor

receives its own information, it is clear that dii = 1. For each node i ∈ N , the set of adjacent nodes plus
the node itself is denoted by Ni =

{
j ∈ N : d ji = 1

}
; therefore Ni, which we term the neighborhood of

node i, is the set of sensor nodes that transmit their information to node i.
The network sensors provide noisy measurements of the signal with multiplicative perturbations

described by random parameter matrices, and the measurement noises in each sensor are assumed
to be sequentially correlated. In our study context, deception attacks may be launched by potential
adversaries to replace these measurements by deception noises before they are processed.

We now address the distributed filtering and smoothing problems at each node i ∈ N , based on the
available signal information in that node, i.e. the measurements derived from all its neighbor nodes
j ∈ Ni. The estimation is addressed under the LS approach, using only covariance information on the
processes involved in the model. Therefore, assumptions (A1)–(A6), listed below, are set to guarantee
the existence and knowledge of the first and second-order moments of the signal to be estimated and
those of the observations on which the estimation is based. Regarding the signal process, the following
assumption –which is key to the recursivity of the estimation algorithms– is required.

(A1) (On the signal). The signal process {xk}k≥1 is a zero mean second-order process whose covariance
function is expressed in a separable form as follows:

E
[
xkxT

l

]
= AkB

T
l , 1 ≤ l ≤ k,

where the factorsAk,Bk are nx × N-dimensional known matrices.
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In the following, we describe the measurement model and specify the assumptions made for the
random measurement matrices and additive noises.

2.1. Noisy measurements with random parameter matrices

As previously indicated, at any time k ≥ 1, the signal xk is measured by all the network sensors,
which provide local outputs perturbed by random parameter matrices and time-correlated additive
measurement noises. To describe this situation, consider the following measurement model:

y̆(i)
k = C(i)

k xk + v(i)
k , k ≥ 1; i ∈ N , (2.1)

where y̆(i)
k ∈ R

ny is the measurement of the signal provided by the i-th sensor at time k, C(i)
k is a random

parameter matrix and v(i)
k is the time-correlated measurement noise, which is assumed to be generated

by a white process,
{
ξ(i)

k

}
k≥0

, from an initial noise v(i)
0 :

v(i)
k = H(i)

k−1v(i)
k−1 + ξ(i)

k−1, k ≥ 1; i ∈ N , (2.2)

where H(i)
k are non-singular known deterministic matrices.

To address the estimation problem using covariance information, the following assumptions about
the first and second-order moments of the random parameter matrices and the measurement noises are
required.

(A2) (On the random parameter matrices).
{
C(i)

k

}
k≥1

, i ∈ N , with C(i)
k =

(
c(i)

pq
(k)

)
ny×nx

, are independent

sequences of independent random parameter matrices whose entries have known first and second-
order moments. The mean matrices are denoted by C

(i)
k = E

[
C(i)

k

]
, and their (p, q)-entries are given by

E
[
c(i)

pq
(k)

]
.

Remark 1. The existence of second-order moments guarantees that of E
[
C(i)

k GC( j)T
k

]
, for any random

matrix G with mean G. Moreover, if G is independent of the matrices C(i)
k and C(i)

k , the (p, q)-entry of

this expectation is given by
nx∑

a=1

nx∑
b=1

E
[
c(i)

pa
(k)c( j)

qb
(k)

]
Gab.

(A3) (On the measurement noises). The measurement noises
{
v(i)

k

}
k≥1

, i ∈ N , are time-correlated
sequences as described in (2.2), where:

• The initial vectors v(i)
0 , i ∈ N , have zero-mean and known cross-covariance matrices, Σv(i j)

0 =

E
[
v(i)

0 v( j)T
0

]
, i, j ∈ N .

• The white processes
{
ξ(i)

k

}
k≥0

, i ∈ N , are assumed to be independent of each other at different

times (consequently, E
[
ξ(i)

k ξ
( j)T
l

]
= 0, l , k; i, j ∈ N). Their covariance and cross-covariance

functions are denoted by Σ
ξ(i j)

k = E
[
ξ(i)

k ξ
( j)T
k

]
, k ≥ 0; i, j ∈ N .

•
{
ξ(i)

k

}
k≥0

, i ∈ N , are independent of the initial vectors v(i)
0 , i ∈ N , and, consequently, E

[
v(i)

0 ξ
( j)T
k

]
=

0, k ≥ 0; i, j ∈ N .
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Remark 2. As a consequence of (A3), the measurement noises,
{
v(i)

k

}
k≥1

, i ∈ N , are zero-mean second-

order processes with cross-covariance matrices Σv(i j)

k,l = E
[
v(i)

k v( j)T
l

]
= H(i)

k−1 · · ·H
(i)
l Σv(i j)

l , 1 ≤ l < k, and

Σv(i j)

k is recursively obtained from the relation Σv(i j)

k = H(i)
k−1Σ

v(i j)

k−1H( j)T
k−1 +Σ

ξ(i j)

k−1, k ≥ 1, with initial condition
Σv(i j)

0 .

2.2. Random deception attack model

In practice, sensor networks are often exposed to attacks from potential adversaries, seeking to
modify or deteriorate the real measurements. In this situation, the observations to be processed for es-
timation may differ from the actual measurements, and so the mathematical model for the measurement
outputs after the attacks must be specified.

In this paper, we assume that the measurements are subject to deception attacks that, if successful,
will neutralize them and insert deceptive information. Such attacks may or may not be successful,
and this uncertainty is incorporated into the model via Bernoulli random variables. Therefore, the
mathematical model that describes the potentially attacked measurements to be processed in the signal
estimation, which will be denoted by y(i)

k , is formulated as:

y(i)
k = y̆(i)

k + λ(i)
k ẏ(i)

k , k ≥ 1; i ∈ N , (2.3)

where λ(i)
k are Bernoulli random variables modeling the randomness on the success (λ(i)

k = 1) or failure
(λ(i)

k = 0) of the attacks, and ẏ(i)
k = −y̆(i)

k + w(i)
k is the signal inserted by the attacker, neutralizing the

actual measurement, y̆(i)
k , and replacing it with a deceptive noise represented by w(i)

k .
Therefore, λ(i)

k = 0 means that the attack against the i-th sensor at time k has failed and the measure-
ment to be processed is the actual one (y(i)

k = y̆(i)
k ), while λ(i)

k = 1 means that the attack was successful
and the processed measurement is the deceptive one (y(i)

k = w(i)
k ). An equivalent expression for the

attacked measurement outputs (2.3) is given by:

y(i)
k = (1 − λ(i)

k )y̆(i)
k + λ(i)

k w(i)
k , k ≥ 1; i ∈ N . (2.4)

The following assumptions are made regarding the processes involved in these observation equa-
tions.

(A4) (On the success of attacks). The processes
{
λ(i)

k

}
k≥1

, i ∈ N , are independent sequences of in-

dependent Bernoulli random variables with known success probabilities, P(λ(i)
k = 1) = λ

(i)
k . As a

consequence, the first and second-order moments of these variables are:

E
[
λ(i)

k

]
= E

[
(λ(i)

k )2
]

= λ
(i)
k , k ≥ 1; E

[
λ(i)

k λ
( j)
l

]
= λ

(i)
k λ

( j)
l , l , k or j , i; l, k ≥ 1; i, j ∈ N .

(A5) (On the deception noises). The noises inserted by successful attacks,
{
w(i)

k

}
k≥1

, i ∈ N , con-

sist of independent white processes with known covariance and cross-covariance matrices, Σw(i j)

k =

E
[
w(i)

k w( j)T
k

]
, k ≥ 1; i, j ∈ N .

Remark 3. In this paper, the attack probabilities of success and the covariances and cross-
covariances of the noises of the attacks are assumed to be known. If they were unknown, they should
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be identified before applying the proposed algorithms. To deal with this issue, a distributed self-tuning
filtering algorithm is proposed in [30], based on the identification of unknown characteristics through
the sample zero-order and first-order correlation functions of the observations.

Finally, the following assumption on the processes involved in the described model is required to
address the estimation problem.

(A6) (Mutual independence). For each i ∈ N , the signal process, {xk}k≥1, the random parameter ma-
trices,

{
C(i)

k

}
k≥1

, the measurement noise,
{
v(i)

k

}
k≥1

, and the processes involved in the attacks,
{
λ(i)

k

}
k≥1

and{
w(i)

k

}
k≥1

, are mutually independent.

3. Estimation problem formulation

In formulating the estimation problem, our aim is to use the distributed fusion method to obtain
estimators of the signal at each sensor node, i ∈ N , based on the information available at that node.
In accordance with the network topology described in Section 2, this information comes not only from
the sensor itself but also from all the neighboring ones that transmit their information to it. Therefore,
in the i-th sensor, the distributed fusion estimator of the signal xk based on the information up to time
h, denoted by x̂D(i)

k/h , is obtained by using the local information from the sensor together with that from
the nodes in its neighborhood, Ni =

{
j ∈ N : d ji = 1

}
.

The proposed distributed estimators are derived in two steps for each i ∈ N : a) derive the interme-
diate LS linear estimators; b) fuse the neighboring intermediate estimators. In the first step, the LS
linear estimator, x̂(i)

k/h, is obtained from the potentially attacked observations (2.4) coming from all the
sensor nodes j ∈ Ni. Then, in the second step, the distributed estimator x̂D(i)

k/h is determined as the LS
matrix-weighted linear combination of the neighboring intermediate estimators, x̂( j)

k/h, j ∈ Ni.

In order to unify the derivation of the intermediate estimators in all sensors, we jointly consider
all the network output information at each sampling time k ≥ 1, which is described by the gathered
vector yk =

(
y(1)T

k , . . . , y(m)T
k

)T
; the outputs corresponding to the sensors in Ni are then extracted from

this vector to be processed in each sensor i ∈ N . Therefore, the intermediate estimator x̂(i)
k/h, for each

i ∈ N , is based on the measurements described by Y (i)
l = D(i)

y yl, l = 1, . . . , h, where D(i)
y is the matrix

obtained by removing the all-zero rows of Diag(d1i, . . . , dmi) ⊗ Iny .

Next, we specify the gathered measurement model and the statistical properties of the processes
involved –derived from our prior assumptions about the local measurements–.

3.1. Gathered measurement model and properties

To describe the gathered observations to be processed in the estimation, the components of the local
observation models in Section 2 are stacked as follows:

yk =


y(1)

k
...

y(m)
k

 , y̆k=


y̆(1)

k
...

y̆(m)
k

 , vk =


v(1)

k
...

v(m)
k

 , wk =


w(1)

k
...

w(m)
k

 ,
Mathematical Biosciences and Engineering Volume 20, Issue 8, 14550–14577.
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Ck =


C(1)

k
...

C(m)
k

 , Λk =


λ(1)

k · · · 0
...

. . .
...

0 · · · λ(m)
k

 ⊗ Iny , Hk=


H(1)

k · · · 0
...

. . .
...

0 · · · H(m)
k

 .
From this, the mny-dimensional observation vector yk, which gathers all the sensor measurements

at time k, is expressed by:
yk =

(
Imny − Λk

)
y̆k + Λkwk, k ≥ 1, (3.1)

where y̆k is the actual measurement vector gathered before the attacks, given by:

y̆k = Ckxk + vk, k ≥ 1. (3.2)

The following properties of the processes involved in (3.1)-(3.2) are directly obtained from the
corresponding assumptions stated in Section 2.

• {Ck}k≥1 is a sequence of independent second-order random parameter matrices with means

Ck =

(
C

(1)T
k

∣∣∣ · · · ∣∣∣ C
(m)T
k

)T
. Moreover, for any first-order random matrix, G, ∃ E

[
CkGCT

k

]
=(

E
[
C(i)

k GC( j)T
k

])
i, j∈N

, with (i, j)-components as defined in Remark 1.

• The measurement noise, {vk}k≥1, is a zero-mean second-order time-correlated sequence. From
Remark 2, the corresponding covariance matrices, Σv

k,l = E
[
vkvT

l

]
, are given by Σv

k,l =

Hk−1 · · ·HlΣ
v
l , 1 ≤ l < k, and Σv

k is recursively obtained from the relation Σv
k = Hk−1Σ

v
k−1HT

k−1 +

Σ
ξ
k−1, k ≥ 1, with initial condition Σv

0 =
(
Σv(i j)

0

)
i, j∈N

and Σ
ξ
k =

(
Σ
ξ(i j)

k

)
i, j∈N

.

Remark 4. The non-singularity of the matrices Hk allows us to factorize the noise covariance
matrices in a similar way to those of the signal in (A1); namely:

Σv
k,l = HkF

T
l , 1 ≤ l ≤ k, (3.3)

whereHk = Hk−1 · · ·H0 and Fk = Σv
kH

−T
k , k ≥ 1.

• {Λk}k≥1 are diagonal independent matrices with means Λk = Diag
(
λ

(1)
k , . . . , λ

(m)
k

)
⊗ Iny , k ≥ 1.

For the purpose of further developments, if G is a random matrix independent of {Λk}k≥1, these
matrices operate as follows:

E [ΛkGΛk] = Kλ
k ◦ E[G], E

[(
Imny − Λk

)
G

(
Imny − Λk

)]
= K1−λ

k ◦ E[G], k ≥ 1,

where Kλ
k =

(
E

[
λ(i)

k λ
( j)
k

])
i, j∈N
⊗1ny×ny , K1−λ

k =
(
E

[(
1 − λ(i)

k

) (
1 − λ( j)

k

)])
i, j∈N
⊗1ny×ny , and the entries

E
[
λ(i)

k λ
( j)
k

]
are given in (A4).

• The deception noise, {wk}k≥1 , is a white process whose covariance matrices, Σw
k = E

[
wkwT

k

]
, are

obtained from (A5), Σw
k =

(
Σw(i j)

k

)
i, j∈N

, k ≥ 1.
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Finally, assumption (A6) implies the independence of the processes involved in the gathered model
(3.1)-(3.2):

• The signal process {xk}k≥1, the random parameter matrices, {Ck}k≥1, the measurement noise,
{vk}k≥1, and the processes {Λk}k≥1 and {wk}k≥1, are all mutually independent.

The above properties guarantee that the observations {yk}k≥1 constitute a zero-mean second-order
process, whose covariance matrices, Σ

y
k = E

[
ykyT

k

]
, are given by:

Σ
y
k = K1−λ

k ◦
(
E

[
CkAkB

T
k CT

k

]
+HkF

T
k

)
+ Kλ

k ◦ Σw
k , k ≥ 1. (3.4)

3.2. Innovation approach to the LS estimation

In this paper, the intermediate LS linear estimation problem is addressed by an innovation approach,
according to which the observation process at the i-th sensor,

{
Y (i)

k

}
k≥1

, with Y (i)
k = D(i)

y yk, is replaced by

a white process
{
η(i)

k

}
k≥1

–innovation process–, such that the LS linear estimator of an arbitrary zero-

mean second-order vector ak based on the observations
{
Y (i)

1 , . . . ,Y
(i)
h

}
can be obtained by the following

linear combination of the corresponding innovations,
{
η(i)

1 , . . . , η
(i)
h

}
:

â(i)
k/h =

h∑
l=1

E
[
akη

(i)T
l

] (
Σ
η(i)

l

)−1
η(i)

l , h ≥ 1; â(i)
k/0 = 0, (3.5)

where Σ
η(i)

k = E
[
η(i)

k η
(i)T
k

]
denotes the innovation covariance.

The innovation at time k is defined as η(i)
k = Y (i)

k − Ŷ (i)
k/k−1, where Ŷ (i)

k/k−1 is the LS linear one-stage
predictor of the observation Y (i)

k = D(i)
y yk, which is clearly given by Ŷ (i)

k/k−1 = D(i)
y ŷ(i)

k/k−1. Hence, the
innovations are written as:

η(i)
k = D(i)

y

(
yk − ŷ(i)

k/k−1

)
, k ≥ 1, (3.6)

where, according to (3.5), expressions (3.1)-(3.2) and the independence properties on the model, the
predictor of yk is expressed in terms of those for the signal and noise as follows:

ŷ(i)
k/k−1 =

(
Imny − Λk

) (
Ck x̂(i)

k/k−1 + v̂(i)
k/k−1

)
, k ≥ 1. (3.7)

Expressions (3.6) and (3.7) provide the basis for obtaining the intermediate estimation algorithms
presented in the following section.

4. Intermediate LS linear estimation

In this section, the LS linear filtering and fixed-point smoothing estimators of the signal xk are
obtained in each sensor according to the observations available at that sensor. More precisely, for each
i ∈ N , we first derive a recursive algorithm for the intermediate LS linear filter, x̂(i)

k/k, based on the
observations Y (i)

l = D(i)
y yl, l = 1, . . . , k. The filtering estimator of xk is then recursively updated with

successive observations, Y (i)
l = D(i)

y yl, l = k + 1, . . . , h, in order to obtain the intermediate LS linear
smoothing estimators, x̂(i)

k/h, h > k.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14550–14577.
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The intermediate filtering and fixed-point smoothing algorithms are presented in Theorems 1 and
2, respectively. Both theorems also include recursive formulas for the error covariance matrices Σx̃(i)

k/h =

E
[
x̃(i)

k/h x̃(i)T
k/h

]
, with x̃(i)

k/h = xk − x̂(i)
k/h , thus providing the natural measure of the estimation accuracy under

the LS criterion.

Theorem 1. For any i ∈ N , the intermediate LS linear filtering estimators, x̂(i)
k/k, and the error covari-

ance matrices, Σx̃(i)

k/k, are calculated as:

x̂(i)
k/k = (Ak | 0)z(i)

k , k ≥ 1, (4.1)

Σx̃(i)

k/k = AkB
T
k − (Ak | 0)Σz(i)

k (Ak | 0)T , k ≥ 1. (4.2)

The vectors z(i)
k and their covariance matrices, Σz(i)

k , satisfy the following recursive formulas:

z(i)
k = z(i)

k−1 +Z
(i)
k

(
Σ
η(i)

k

)−1
η(i)

k , k ≥ 1; z(i)
0 = 0, (4.3)

Σz(i)

k = Σz(i)

k−1 +Z
(i)
k

(
Σ
η(i)

k

)−1
Z

(i)T
k , k ≥ 1; Σz(i)

0 = 0, (4.4)

where the gain coefficients,Z(i)
k , are:

Z
(i)
k =

( (
CkBk | Fk

)
−

(
CkAk | Hk

)
Σz(i)

k−1

)T (
Imny − Λk

)
D(i)T

y , k ≥ 1, (4.5)

and the innovations, η(i)
k , and their covariance matrices, Σ

η(i)

k , are given by:

η(i)
k = D(i)

y

(
yk −

(
Imny − Λk

) (
CkAk | Hk

)
z(i)

k−1

)
, k ≥ 1, (4.6)

Σ
η(i)

k = D(i)
y

(
Σ

y
k −

(
Imny − Λk

) (
CkAk | Hk

)
Σz(i)

k−1

(
CkAk | Hk

)T (
Imny − Λk

))
D(i)T

y , k ≥ 1. (4.7)

The matrices Hk and Fk are the noise covariance factors defined in (3.3) and the observation
covariance, Σ

y
k, is given in (3.4).

Proof. See Appendix A.

The key of the recursive algorithm in Theorem 1 is the intermediate filter factorization (4.1), in
which the vectors z(i)

k can be recursively obtained as indicated in (4.3). Equation (4.2) provides the
filtering error covariance matrices, which are needed to evaluate the performance of the filters; since
these covariances do not depend of the observations, the filter performance can be measured before the
observation set is available. In view of (4.1) and (4.2), the problem is focused on obtaining the vectors
z(i)

k and their covariances, Σz(i)

k , which are derived from the innovations and their covariance matrices
by the recursive equations (4.3) and (4.4), respectively. Specifically, by starting from z(i)

k−1, Σz(i)

k−1 and the
new observation y(i)

k , the gain, innovation and innovation covariance are calculated by equations (4.5),
(4.6) and (4.7), respectively; then, equations (4.3) and (4.4) are used for obtaining z(i)

k and Σz(i)

k .

Theorem 2. For any i ∈ N , the intermediate LS linear smoothing estimators, x̂(i)
k/h, h > k, and the error

covariance matrices, Σx̃(i)

k/h, are recursively calculated from the filter, x̂(i)
k/k, and the error covariance Σx̃(i)

k/k,
respectively, given in Theorem 1:

x̂(i)
k/h = x̂(i)

k/h−1 + X
(i)
k,h

(
Σ
η(i)

h

)−1
η(i)

h , h > k ≥ 1, (4.8)
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Σx̃(i)

k/h = Σx̃(i)

k/h−1 − X
(i)
k,h

(
Σ
η(i)

h

)−1
X

(i)T
k,h , h > k ≥ 1, (4.9)

where:

X
(i)
k,h =

((
Bk | 0

)
− Σxz(i)

k,h−1

) (
ChAh | Hh

)T (
Imny − Λh

)
D(i)T

y , h > k ≥ 1, (4.10)

and
Σxz(i)

k,h = Σxz(i)

k,h−1 + X
(i)
k,h

(
Σ
η(i)

h

)−1
Z

(i)T
h , h > k ≥ 1; Σxz(i)

k = (Ak | 0)Σz(i)

k , k ≥ 1. (4.11)

Proof. See Appendix B.

By starting from the filter, equation (4.8) explains how the estimators of xk are updated when suc-
cessive observations are available. Besides the innovations –which are given in Theorem 1–, for the
update it is necessary to know the gain coefficients X(i)

k,h, which are obtained from equation (4.10) and
require, in turn, the cross-covariance matrices Σxz(i)

k,h , that are given by equation (4.11) . Finally, equation
(4.9) provides the smoothing error covariances in a recursive way.

Remark 5. By replacing D(i)
y by the matrix obtained taking d ji = 0, j , i, the LS local linear filter and

smoothers, based only on the measurements from the i-th sensor, can be obtained from the formulas in
Theorems 1 and 2, respectively. Furthermore, the hypothetical global optimal linear estimators –based
on measurements from all sensors– can be calculated by replacing D(i)

y by the identity matrix.

5. Distributed fusion estimation

The second step of the distributed fusion method is performed in order to derive the distributed
filter and fixed-point smoother of the signal, xk. As indicated above, for each i ∈ N , the distributed
estimators, x̂D(i)

k/h , h ≥ k, are derived as the matrix-weighted linear combination of the neighboring
intermediate estimators, x̂( j)

k/h, j ∈ Ni, using the mean squared error as an optimality criterion.

Specifically, the distributed estimators are expressed as x̂D(i)
k/h = F(i)

k/hX̂(i)
k/h, h ≥ k, for each i ∈ N ,

where X̂(i)
k/h is the vector obtained by assembling all the intermediate estimators of the sensors connected

to the i-th one, and where F(i)
k/h is a matrix to be determined in order to minimize the mean squared error,

E
[(

xk − F(i)
k/hX̂(i)

k/h

)T (
xk − F(i)

k/hX̂(i)
k/h

)]
.

As it is known, the solution to this problem is given by:

F(i)opt
k/h = E

[
xkX̂(i)T

k/h

] (
E

[
X̂(i)

k/hX̂(i)T
k/h

])−1

and, consequently, both matrices, E
[
xkX̂(i)T

k/h

]
and E

[
X̂(i)

k/hX̂(i)T
k/h

]
, must be determined for each i ∈ N .

The entries of the above matrices are extracted from E
[
xkX̂T

k/h

]
and E

[
X̂k/hX̂T

k/h

]
, respectively, where

X̂k/h =
(
x̂(1)T

k/h , . . . , x̂
(m)T
k/h

)T
denotes the vector stacking all the intermediate estimators in the network. For

this purpose, we write X̂(i)
k/h = D(i)

x X̂k/h, where D(i)
x is the matrix obtained by removing the all-zero rows
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of Diag(d1i, . . . , dmi) ⊗ Inx . The optimal distributed filter and the smoothers of the signal xk are then
given by:

x̂D(i)
k/h = E

[
xkX̂T

k/h

]
D(i)T

x

(
D(i)

x E
[
X̂k/hX̂T

k/h

]
D(i)T

x

)−1
D(i)

x X̂k/h, h ≥ k ≥ 1. (5.1)

Hence, both matrices, E
[
xkX̂T

k/h

]
and E

[
X̂k/hX̂T

k/h

]
must be determined. Taking into account the

OPL, each intermediate estimator x̂(r)
k/h is uncorrelated with the estimation error; therefore, the entries

of E
[
xkX̂T

k/h

]
can be rewritten as E

[
xk x̂(r)T

k/h

]
= E

[
x̂(r)T

k/h x̂(r)T
k/h

]
, r ∈ N and then, denoting the cross-

covariance between intermediate estimators as Σx̂(rs)

k/h = E
[
x̂(r)

k/h x̂(s)T
k/h

]
, r, s ∈ N , the matrices involved in

(5.1) are given by E
[
X̂k/hX̂T

k/h

]
=

(
Σx̂(rs)

k/h

)
r,s∈N

and E
[
xkX̂T

k/h

]
=

(
Σx̂(1)

k/h

∣∣∣ · · · ∣∣∣ Σx̂(m)

k/h

)
.

The algorithms needed to obtain the cross-covariances between the intermediate filters and
smoothers, Σx̂(rs)

k/h , h ≥ k, r, s ∈ N , are stated in the following lemmas.

Lemma 1 presents the expression of the cross-covariances between the filters, Σx̂(rs)

k/k , r, s ∈ N ,
which is directly obtained from (4.1). Thus, it depends on the cross-covariances Σz(rs)

k = E
[
z(r)

k z(s)T
k

]
; a

recursive algorithm is then stated for Σz(rs)

k , which in turn depends on the innovation cross-covariance
matrices, Σ

η(rs)

k = E
[
η(r)

k η
(s)T
k

]
.

Lemma 1. For r, s ∈ N , the cross-covariance matrices between the intermediate filters, Σx̂(rs)

k/k =

E
[
x̂(r)

k/k x̂(s)T
k/k

]
, are computed by:

Σx̂(rs)

k/k = (Ak | 0)Σz(rs)

k (Ak | 0)T , k ≥ 1, (5.2)

where Σz(rs)

k satisfies the following recursive relation:

Σz(rs)

k = Σz(rs)

k−1 +Z
(rs)
k−1,k

(
Σ
η(s)

k

)−1
Z

(s)T
k +Z

(r)
k

(
Σ
η(r)

k

)−1
(
Z

(sr)T
k−1,k + Σ

η(rs)

k

(
Σ
η(s)

k

)−1
Z

(s)T
k

)
, k ≥ 1; Σz(rs)

0 = 0. (5.3)

The matricesZ(rs)
k−1,k = E

[
z(r)

k−1η
(s)T
k

]
are given by:

Z
(rs)
k−1,k =

(
Σz(r)

k−1 − Σz(rs)

k−1

) (
CkAk | Hk

)T (
Imny − Λk

)
D(s)T

y , k ≥ 1, (5.4)

and the innovation cross-covariance matrices, Σ
η(rs)

k , satisfy:

Σ
η(rs)

k = D(r)
y

(
Σ

y
k −

(
Imny − Λk

) (
CkAk | Hk

) (
Σz(r)

k−1 + Σz(s)

k−1 − Σz(rs)

k−1

) (
CkAk | Hk

) (
Imny − Λk

))
D(s)T

y , k ≥ 1.
(5.5)

Proof. See Appendix C.

In the second lemma, for any r, s ∈ N , the cross-covariances between the intermediate smoothers,
Σx̂(rs)

k/h , h > k, are obtained from that of the filter, Σx̂(rs)

k/k , by a recursive algorithm.

Lemma 2. For r, s ∈ N , the cross-covariance matrices between the intermediate fixed-point smoothers,
Σx̂(rs)

k/h = E
[
x̂(r)

k/h x̂(s)T
k/h

]
, h > k, are recursively obtained from:

Σx̂(rs)

k/h = Σx̂(rs)

k/h−1 + X̂
(rs)
k,h

(
Σ
η(s)

h

)−1
X

(s)T
k,h + X

(r)
k,h

(
Σ
η(r)

h

)−1
(
X̂

(sr)T
k,h + Σ

η(rs)

h

(
Σ
η(s)

h

)−1
X

(s)T
k,h

)
, h > k ≥ 1, (5.6)
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with initial condition Σx̂(rs)

k/k , given in Lemma 1.

The matrices X̂(rs)
k,h = E

[
x̂(r)

k/h−1η
(s)T
h

]
are derived as:

X̂
(rs)
k,h =

(
Σxz(r)

k,h−1 − Σx̂z(rs)

k,h−1

) (
ChAh | Hh

)T (
Imny − Λh

)
D(s)T

y , h > k ≥ 1, (5.7)

where Σxz(r)

k,h is given in Theorem 2 and Σx̂z(rs)

k,h is recursively computed by:

Σx̂z(rs)

k,h = Σx̂z(rs)

k,h−1 + X̂
(rs)
k,h

(
Σ
η(s)

h

)−1
Z

(s)T
h + X

(r)
k,h

(
Σ
η(r)

h

)−1
(
Z

(sr)T
h−1,h + Σ

η(rs)

h

(
Σ
η(s)

h

)−1
Z

(s)T
h

)
, h > k ≥ 1, (5.8)

with initial condition Σx̂z(rs)

k = (Ak | 0)Σz(rs)

k , k ≥ 1.

Proof. See Appendix D.

The above results for the distributed filters and fixed-point smoothers are presented in the following
theorem, which also includes the formula to calculate their estimation error covariance matrices, Σ

D(i)
k/h =

E
[(

xk − x̂D(i)
k/h

) (
xk − x̂D(i)

k/h

)T
]
.

Theorem 3. For each i ∈ N , the distributed filter and fixed-point smoothers, x̂D(i)
k/h , h ≥ k, are given by:

x̂D(i)
k/h =

(
Σx̂(1)

k/h

∣∣∣ · · · ∣∣∣ Σx̂(m)

k/h

)
D(i)T

x

(
D(i)

x

(
Σx̂(rs)

k/h

)
r,s∈N

D(i)T
x

)−1
D(i)

x X̂k/h, h ≥ k ≥ 1, (5.9)

where X̂k/h is the stacked vector of intermediate estimators and Σx̂(rs)

k/h are the cross-covariances between
them, given in Lemma 1 and Lemma 2 for the filter and smoothers, respectively.

The estimation error covariance matrices, Σ
D(i)
k/h , are given by:

Σ
D(i)
k/h = AkB

T
k −

(
Σx̂(1)

k/h

∣∣∣ · · · ∣∣∣ Σx̂(m)

k/h

)
D(i)T

x

(
D(i)

x

(
Σx̂(rs)

k/h

)
r,s∈N

D(i)T
x

)−1
D(i)

x

(
Σx̂(1)

k/h

∣∣∣ · · · ∣∣∣ Σx̂(m)

k/h

)T
, h ≥ k ≥ 1.

(5.10)

Proof. Expression (5.9) is merely a rewrite of (5.1). To derive (5.10), the OPL must be used to express
Σ

D(i)
k/h = E

[
xkxT

k

]
− E

[
x̂D(i)

k/h x̂D(i)T
k/h

]
, and the formula is straightforwardly achieved by using the signal

covariance factorization, (A1), together with (5.9). �

6. Numerical simulation example

The applicability and effectiveness of the proposed distributed estimators are illustrated by the sen-
sor network shown in Figure 1, where the topology is represented by a digraph G = (N ,E,D), with
the set of nodes N = {1, 2, 3, 4, 5}. The elements in the adjacency matrix,D, are d ji = 1 when sensor i
can obtain information from sensor j; otherwise, d ji = 0:

D =


1 0 1 0 1
1 1 0 1 0
1 1 1 0 0
0 1 1 1 1
0 0 0 1 1


.
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Node 1

Node 4Node 3

Node 2

Node 5

Figure 1. Topological structure of the sensor network with five nodes.

6.1. Signal process and measurement model

6.1.1. Signal process

Consider a two-dimensional stochastic signal, xk =

(
x1k

x2k

)
, whose first and second component, x1k

and x2k, denote the position and velocity of a target, respectively. Moreover, assume that the signal
evolution is the same as in [30]; namely:

xk+1 =
(
A +

2∑
n=1

αn
kAn

)
xk +

(
B +

2∑
n=1

βn
k Bn

)
µk, k ≥ 0,

where

A =

(
0.95 0.01

0 0.95

)
, A1 =

(
0.1 0
0 0.01

)
, A2 =

(
0.2 0
0 0.02

)
; B =

(
0.8
0.6

)
, B1 =

(
1
0

)
, B2 =

(
0
1

)
.

The initial signal, x0, is a two-dimensional standard Gaussian vector. The multiplicative noises{
αn

k

}
k≥0,

{
βn

k

}
k≥0, n = 1, 2, are white Gaussian scalar processes, with variances Var

(
αn

k

)
= 0.16,

Var
(
βn

k

)
= 0.11, n = 1, 2. The additive noise

{
µk

}
k≥0 is a zero-mean Gaussian scalar process with

variance 0.5. All of these noise sequences and the initial signal are assumed to be mutually indepen-
dent. The signal covariance function can then be expressed in a separable form as E

[
xkxT

l

]
= AkB

T
l ,

l ≤ k, withAk = Ak and BT
l = A−lΣx

l , where Σx
l = E

[
xlxT

l

]
is recursively obtained by:

Σx
l = AΣx

l−1AT + 0.16
2∑

n=1

AnΣ
x
l−1AT

n + 0.5
(
BBT + 0.11

2∑
n=1

BnBT
n

)
, l ≥ 1; Σx

0 = I2.

6.1.2. Sensor measurements with multiplicative perturbations and time-correlated noises

Scalar measurements of the signal, simultaneously disturbed by fading effects and both additive
and multiplicative noises, are provided by the five sensor nodes, according to model (2.1), where the
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processes involved have the following characteristics:

• The multiplicative perturbations are described by C(i)
k = θ(i)

k

(
Ċ(i) + ρ(i)

k C̈(i)
)
, i ∈ N , where:

– Ċ(1) = (0.8, 0.9), Ċ(2) = (0.9, 0.7), Ċ(3) = (0.6, 0.7), Ċ(4) = (0.7, 0.8), Ċ(5) = (0.9, 0.5),
C̈(i) = (1, 0), i = 1, 2, and C̈(i) = (0, 1), i = 3, 4, 5.

–
{
θ(i)

k

}
k≥1 and

{
ρ(i)

k

}
k≥1, i ∈ N , are independent sequences of independent and identically dis-

tributed random variables; namely:
∗ θ(1)

k and θ(2)
k are random variables uniformly distributed over [0.3, 0.7] and [0.2, 0.8], re-

spectively, representing a continuous random fading effect on the measurements from
sensors 1 and 2.

∗ θ(3)
k and θ(4)

k are discrete random variables, representing a discrete random fading effect
on the measurements from sensors 3 and 4, according to the following probability mass
functions:

P
(
θ(3)

k = 0
)

= 0.1, P
(
θ(3)

k = 0.5
)

= 0.5, P
(
θ(3)

k = 1
)

= 0.4.
P
(
θ(4)

k = 0.2
)

= 0.2, P
(
θ(4)

k = 0.5
)

= 0.5, P
(
θ(4)

k = 0.8
)

= 0.3.

∗ θ(5)
k are Bernoulli random variables, where P

(
θ(5)

k = 1
)

= θ, represents the randomly
missing measurement phenomenon in sensor 5.
∗ The multiplicative components ρ(i)

k , i ∈ N , are standard Gaussian variables.

• The time-correlated noises
{
v(i)

k

}
k≥1, i ∈ N , are defined by (2.2), with H(1) = H(3) = H(5) = 0.8 and

H(2) = H(4) = 0.7. These noises are generated by the processes
{
ξ(i)

k

}
k≥0, defined by ξ(i)

k = a(i)ξk, i ∈
N , where

{
ξk

}
k≥0 is a standard Gaussian white process, a(1) = a(3) = a(5) = 0.5, a(2) = a(4) = 0.25,

and the initial conditions are v(i)
0 = v0, for i ∈ N , and where v0 is a standard Gaussian variable.

Under these assumptions, the covariance matrices of the stacked noise vk =
(
v(1)

k , . . . , v(5)
k

)T
can

always be factorized as Σv
k,l = HkF

T
l , l ≤ k, where Hk = Hk and F T

l = H−lΣv
l , being H =

Diag(0.8, 0.7, 0.8, 0.7, 0.8) and where Σv
l is recursively obtained by Σv

l = HΣv
l−1HT + Σ

ξ
l−1, l ≥ 1,

with Σ
ξ
l =

(
a(i)a( j)

)
i, j∈N

and initial condition Σv
0 = 15×5.

6.1.3. Sensor measurements subject to deception attacks

In accordance with the theoretical model, let us suppose that the measurements at each sensor are
subject to deception attacks and that the attacked measurement outputs are given by (2.4), where:

• The noises of the false data injection attacks are defined as w(i)
k = b(i)wk, for i ∈ N , where

b(1) = b(2) = b(5) = 0.5, b(3) = b(4) = 0.75, and
{
wk

}
k≥1 is a standard Gaussian white process.

Clearly, these attack noises are correlated and Σw(i j)

k = b(i)b( j), i, j ∈ N .
• The status of the attacks is described by mutually independent sequences of independent and

identically distributed Bernoulli random variables,
{
λ(i)

k

}
k≥1, i ∈ N , with known probabilities

P
(
λ(i)

k = 1
)

= λ.

6.2. Applicability of the proposed distributed algorithms

To illustrate the effectiveness of the proposed distributed filtering and fixed-point smoothing algo-
rithms and to quantify the estimation accuracy obtained, the estimation error variances of the first and
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second signal components (position and velocity) were calculated at every sensor node i ∈ N . First,
the local, intermediate, distributed and global estimators were compared, for fixed values of the prob-
abilities θ (probability that the signal is present in the measured outputs of sensor 5) and λ (probability
of a successful attack). Different values of the probabilities θ and λ were then considered to highlight
the effects of the missing measurement and attack phenomena, respectively, on the performance of
the proposed distributed estimators, analyzing how these probabilities influence the estimation error
variances for both signal components.

6.2.1. Comparison of local, intermediate and distributed estimators

Considering the same value of 0.5 for the probabilities θ and λ , Figure 2 depicts –for the first
signal component– the error variances of the local filters (obtained using only the measurements from
the sensor itself) and those of the proposed intermediate filters, x̂(i)

k/k, and distributed filters, x̂D(i)
k/k , and

smoothers, x̂D(i)
k/k+L (with lag L = 1, 2, 3, 4, 5), at every sensor node i ∈ N . On the one hand, this figure

shows that the error variances corresponding to the intermediate filters are significantly less than those
of the local filters and that the distributed filters outperform the intermediate ones. In addition, it is
apparent that the distributed smoothing error variances are less than the filtering ones and, also, that
at each fixed-point k, the fixed-point smoothers become more accurate as the number of available
observations, k + L, increases. As expected, the improvement is smaller as L increases; indeed, in this
example, the improvement is practically imperceptible for L ≥ 5. Similar results are obtained for the
second signal component.

6.2.2. Comparison of intermediate, distributed and global optimal linear estimators

Close inspection of Figure 2 reveals little difference in the values of the distributed estimation error
variances over the five nodes. For a better evaluation of these differences, Figure 3 shows, for the first
and second signal components, the error variances of the intermediate filters together with those of the
distributed filters and smoothers (for L = 1, 2) at the different nodes, as well as those of the global
optimal linear filtering and smoothing estimators, based on the set of measurements obtained from the
five nodes of the network. A desirable property for distributed estimators over sensor networks is that
the discrepancies between different nodes should be as small as possible; indeed, as we can see in Fig-
ure 3, the proposed distributed estimators considerably reduce the disagreements among intermediate
estimators from different sensors. Thus, the distance between the error variances of the distributed
estimators at the different nodes is fairly small and close to the global optimal error variances. In
consequence, not only do the proposed distributed estimators present only slight discrepancies among
the sensors, but they also provide a very similar level of performance to that of the global optimal
estimators. Moreover, the proximity between the error variances of the global optimal filtering and
smoothing estimators and those of the corresponding proposed distributed estimators shows that the
latter estimators perform well.

6.2.3. Effect of the probability of missing measurements on estimation accuracy

Assuming, as above, that the attack probability is λ = 0.5, we now evaluate the performance of
the proposed distributed estimators with respect to the missing measurements phenomenon in sensor
node 5. To do so, the distributed filtering and smoothing (L = 2) error variances for the first signal
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Figure 2. Error variance comparison of the local and intermediate filters, distributed filters
and smoothers, for the first component of the signal vector.

component are plotted in Figure 4 for different values of the probability θ (namely, θ = 0.3, 0.5, 0.7 and
0.9). For these values, the distributed estimation error variances at sensor node 5 are plotted in the left-
side panel of Figure 4. This figure shows that the performance of the distributed estimators is indeed
influenced by these probabilities and, as expected, that the distributed estimation error variances de-
crease as the probability θ increases. Hence, both the filtering and the smoothing distributed estimators
achieve better estimation accuracy when 1 − θ, the probability of missing measurements, decreases,
as this means that further information about the signal is available. Analogous results were obtained
for sensor nodes 2, 3 and 4, since these nodes all utilize information from node 5; in fact, node 4 uses
the measurements from node 5 to obtain its intermediate estimators, which are subsequently sent to
nodes 2 and 3 to construct the distributed estimators at these nodes. In node 1, however, the distributed
error variances do not change since the estimators in this node do not use the measurements from node
5. Since the behavior of the distributed error variances is analogous in all the iterations, for a better
visualization of the decreasing trend of the error variances as the probability θ increases at all sensor
nodes –except sensor 1, in which it remains constant–, the right-side panel of Figure 4 displays the
distributed error variance at the iteration k = 100. As in the previous figures, Figure 4 also shows that
the error variances corresponding to the smoothers are less than those of the filters. Similar results are
obtained for the second signal component and therefore the same conclusions are drawn.
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Figure 3. Error variance comparison of intermediate, distributed and global estimators for
the first and second signal components.

6.2.4. Effect of the probability of a successful attack on estimation accuracy

Next, our aim is to examine the association between the probability of a successful attack and the
performance of the estimators. For this purpose, we compare the distributed filtering error variances
for different values of this probability (namely, λ = 0.1 to 0.9). The distributed filtering error variances
at sensor node 1, corresponding to the second signal component, are plotted in the left-side panel of
Figure 5. Here, as expected, these error variances rise in line with λ. Furthermore, this increase is more
pronounced for higher values of λ. Similar results are obtained in all nodes, as shown in the right-side
panel of Figure 5, which displays the distributed filtering and smoothing error variances at k = 100
versus λ in the five sensor nodes. The discrepancies between the different nodes are negligible and, as
shown in all the other figures, the smoother with lag L = 2 outperforms the one with L = 1 which, in
turn, outperforms the filter. Similar results are inferred for the first signal component, and therefore the
same conclusions are drawn.
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Figure 4. The left-side (resp. right-side) panel depicts the distributed estimation error vari-
ances for θ = 0.3, 0.5, 0.7, 0.9 in node 5 (resp. in all nodes at k = 100).

6.2.5. Comparative analysis with the distributed filter [27]

Our final aim in this section is to show the superior performance of the proposed distributed filter
in the presence of infinite-step time-correlated additive noises. For this purpose, we conduct a com-
parative analysis between the distributed filter proposed in this paper and the one proposed in [27]
for networked systems with fading measurements, multiplicative noises in both the signal and mea-
surements equations and stochastic deception attacks, but without infinite-step time correlation of the
measurement noises.

At every sensor node and for each of the two components of the distributed filtering estimates, the
comparison is made on the basis of the empirical values of the mean-squared error at each time instant,
which are calculated from two thousand independent simulations by

MSE(i)
a,k =

1
2000

2000∑
s=1

(
x(s)

a,k − x̂D(i,s)
a,k/k

)2
, 1 ≤ k ≤ 100, i ∈ N , a = 1, 2,

where, for each sampling time k and for the s-th simulation run, x(s)
a,k denotes the a-th component of the

simulated signal, and x̂D(i,s)
a,k/k is the a-th component of the distributed filter calculated in the i-th sensor

node.
Assuming again the same fixed value 0.5 for the probabilities θ and λ, the results are displayed
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Figure 5. The left-side (resp. right-side) panel depicts the distributed filtering (resp. filtering
and smoothing) error variances for λ = 0.1 to 0.9 in node 1 (resp. in all nodes at k = 100).

in Figure 6, which shows that for all the sensor nodes and for both the first and second components,
the empirical mean-squared error values of the proposed distributed filtering estimates are lower than
those of the distributed filtering estimates in [27]. Note that the proposed filter was indeed expected to
outperform the filter in [27], since the latter does not take into account the infinite-step time correlation
of the sensor measurement noises.

7. Conclusions

In this paper, we investigate the distributed estimation problem –including filtering and fixed-point
smoothing– in networked systems whose sensor nodes are spatially distributed according to a predeter-
mined network topology, represented by a directed graph. Random parameter matrices and stochastic
deception attacks are incorporated into the measurement model. Thus, a broad theoretical framework is
provided with which to address general stochastic multi-sensor systems with different network-induced
uncertainties. The presence of time-correlated additive noise in the observation model is handled by
a non-augmentation method, based on the direct estimation of the noise. For every sensor node, the
proposed distributed estimation algorithm runs in two phases. The first yields an intermediate least-
squares linear estimator using its own local measurements and those received from its neighboring
nodes. In the second phase, the own-sensor intermediate estimator is combined with those calculated

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14550–14577.



14571

20 40 60 80 100
0

1

2

3

4

5

6

E
m

p
ir
ic

a
l 
M

S
E

 v
a

lu
e

s

 (
fi
rs

t 
c
o

m
p

o
n

e
n

t)

Proposed distributed filter (Node 1)

Proposed distributed filter (Node 2)

Proposed distributed filter (Node 3)

Proposed distributed filter (Node 4)

Proposed distributed filter (Node 5)

Distributed filter [27] (Node 1)

Distributed filter [27] (Node 2)

Distributed filter [27] (Node 3)

Distributed filter [27] (Node 4)

Distributed filter [27] (Node 5)

20 40 60 80 100

1

2

3

E
m

p
ir
ic

a
l 
M

S
E

 v
a

lu
e

s

 (
s
e

c
o

n
d

 c
o

m
p

o
n

e
n

t)

Figure 6. Empirical mean-squared error comparison of the proposed distributed filter and
the distributed filter in [27].

by its neighboring nodes to obtain the desired distributed estimator as the minimum mean squared error
matrix-weighted linear combination of the intermediate estimators. The proposed estimation strategy
does not rely on explicit information provided by the signal evolution equation, but rather on the fac-
torization of the signal and time-correlated noise covariance matrices in a separable form. As a result,
whether or not the signal evolution model is completely known, the proposed distributed estimation
technique can be used to estimate a wide class of stochastic signals, including those whose evolution is
affected by multiplicative noises. The simulation experiment performed shows that the theoretical sys-
tem model we present covers common random imperfections, such as the presence of multiplicative
noise, missing observations and fading effects. The numerical results obtained were used to exam-
ine the influence of two degrading effects on estimation performance: a) the probability of missing
measurements; b) the probability of successful attacks. Comparative analysis of the estimation error
variances shows that the proposed distributed estimators outperform the intermediate ones and reduce
the disagreements between different sensors by bringing each distributed estimator closer to the global
optimal linear estimator, based on the full set of measurements of the entire network. Finally, in the
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presence of infinite-step colored measurement noises, the proposed estimators are shown to outperform
the distributed estimators in the authors’ previous work [27].

A challenging topic for future studies is the derivation of self-tuning estimation algorithms for the
case when the attack probabilities and/or the covariances and cross-covariances of the attack noises are
unknown. It would also be interesting to consider the possibility that attack noise is not stochastic but
a constant or time-varying deterministic sequence, as well as the scenario of random packet dropouts
in the transmissions among sensor nodes.
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Appendix A. Proof of Theorem 1

According to expression (3.5) for the LS linear estimators, the coefficients X(i)
k,l = E

[
xkη

(i)T
l

]
, 1 ≤

l ≤ k, with η(i)
l given from (3.6) and (3.7), must be calculated for the signal filter x̂(i)

k/k. For this purpose,
we use expressions (3.1) and (3.2) for yl which, together with (A1) on the signal covariance and the
independence properties, easily lead to:
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X
(i)
k,l =

(
AkB

T
l C

T
l − E

[
xk x̂(i)T

l/l−1

]
C

T
l − E

[
xk̂v

(i)T
l/l−1

]) (
Imny − Λl

)
D(i)T

y , 1 ≤ l ≤ k.

Now, by denoting V(i)
k,l = E

[
vkη

(i)T
l

]
and using (3.5) for the one-stage predictors x̂(i)T

l/l−1 and v̂(i)T
l/l−1, we

obtain:

E
[
xk x̂(i)T

l/l−1

]
= (1 − δl,1)

l−1∑
l′=1

X
(i)
k,l′

(
Σ
η(i)

l′

)−1
X

(i)T
l,l′ ; E

[
xk̂v

(i)T
l/l−1

]
= (1 − δl,1)

l−1∑
l′=1

X
(i)
k,l′

(
Σ
η(i)

l′

)−1
V

(i)T
l,l′ , l ≥ 1,

and X(i)
k,l is then written as:

X
(i)
k,l =

AkB
T
l C

T
l − (1 − δl,1)

l−1∑
l′=1

X
(i)
k,l′

(
Σ
η(i)

l′

)−1 (
ClX

(i)
l,l′ +V

(i)
l,l′

)T
 (Imny − Λl

)
D(i)T

y , 1 ≤ l ≤ k.

In a similar way, using now the factorization (3.3) for the noise covariance, the coefficients V(i)
k,l are

also written as:

V
(i)
k,l =

HkF
T

l − (1 − δl,1)
l−1∑
l′=1

V
(i)
k,l′

(
Σ
η(i)

l′

)−1 (
ClX

(i)
l,l′ +V

(i)
l,l′

)T
 (Imny − Λl

)
D(i)T

y , 1 ≤ l ≤ k.

These expressions guarantee the following factorizations:

X
(i)
k,l = AkZ

x(i)
l ; V(i)

k,l = HkZ
v(i)
l , 1 ≤ l ≤ k, (7.1)

where

Z
x(i)
l =

BT
l C

T
l − (1 − δl,1)

l−1∑
l′=1

Z
x(i)
l′

(
Σ
η(i)

l′

)−1 (
ClAlZ

x(i)
l′ +HlZ

v(i)
l′

)T
 (Imny − Λl

)
D(i)T

y , l ≥ 1,

Z
v(i)
l =

F T
l − (1 − δl,1)

l−1∑
l′=1

Z
v(i)
l′

(
Σ
η(i)

l′

)−1 (
ClAlZ

x(i)
l′ +HlZ

v(i)
l′

)T
 (Imny − Λl

)
D(i)T

y , l ≥ 1,

and, hence, the augmented matricesZ(i)
k =

(
Z

x(i)T
k

∣∣∣Zv(i)T
k

)T satisfy:

Z
(i)
k =

(CkBk | Fk

)T
− (1 − δk,1)

k−1∑
l=1

Z
(i)
l

(
Σ
η(i)

l

)−1
Z

(i)T
l

(
CkAk | Hk

)T
 (Imny − Λk

)
D(i)T

y , k ≥ 1. (7.2)

From these preliminaries, we can now derive the expressions of the theorem at hand. Expression
(4.1) for the signal filter comes directly from (3.5) using the factorization (7.1) for X(i)

k,l, and defining

z(i)
k ≡

k∑
l=1

Z
(i)
l

(
Σ
η(i)

l

)−1
η(i)

l which clearly satisfies (4.3). Now, using the OPL –which guarantees the uncor-

relation between the estimation error and the observations–, we express Σx̃(i)

k/k = E
[
xkxT

k

]
− E

[
x̂(i)

k/k x̂(i)T
k/k

]
,

and (4.2) is easily obtained from (4.1), by denoting Σz(i)

k = E
[
z(i)

k z(i)T
k

]
. Recursive formula (4.4)
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for these matrices is derived by from the fact that the innovation process is white, which leads to

Σz(i)

k =

k∑
l=1

Z
(i)
l

(
Σ
η(i)

l

)−1
Z

(i)T
l ; now, (4.5) is merely expression (7.2) forZ(i)

k rewritten in terms of Σz(i)

k−1.

Again, taking again into account the factorizations (7.1), the one-stage predictors of the signal and
noise are given by x̂(i)

k/k−1 = (Ak | 0)z(i)
k−1 and v̂(i)

k/k−1 = (0 | Hk)z(i)
k−1, respectively, and so (3.7) can be

rewritten as:
ŷ(i)

k/k−1 =
(
Imny − Λk

) (
CkAk | Hk

)
z(i)

k−1. (7.3)

Expression (4.6) for the innovation is obtained immediately from (3.6), and (4.7) is deduced by again
using the OPL to express the innovation covariance matrix as Σ

η(i)

k = D(i)
y

(
Σ

y
k − E

[̂
y(i)

k/k−1̂y(i)T
k/k−1

])
D(i)T

y . �

Appendix B. Proof of Theorem 2

Recursive formula (4.8) is an immediate consequence of the general expression (3.5). From this,

the estimation error is expressed as x̃(i)
k/h = x̃(i)

k/h−1−X
(i)
k,h

(
Σ
η(i)

h

)−1
η(i)

h , and (4.9) is derived straightforwardly

taking into account that, from the OPL, E
[
x̃(i)

k/h−1η
(i)T
h

]
= E

[
xkη

(i)T
h

]
= X

(i)
k,h.

Since, for h > k, E
[
xkyT

h

]
= BkA

T
h C

T
h

(
Imny − Λh

)
, expression (4.10) for the gain coefficients, X(i)

k,h =

E
[
xkη

(i)T
h

]
, is obtained using (4.6) for η(i)

h and denoting Σxz(i)

k,h = E
[
xkz(i)T

h

]
, h ≥ k.

Finally, recursive formula (4.11) is deduced from (4.3) for z(i)
h ; its initial condition is another conse-

quence of the OPL, from which E
[
xkz(i)T

k

]
= E

[
x̂(i)

k/kz
(i)T
k

]
, and it is obtained simply by using (4.1) for

x̂(i)
k/k.

�

Appendix C. Proof of Lemma 1

Clearly, expression (5.2) for the cross-covariance matrices is obtained from (4.1) for x̂(r)
k/k and x̂(s)

k/k,
being Σz(rs)

k = E
[
z(r)

k z(s)T
k

]
. Expression (5.3) for Σz(rs)

k is derived by using (4.3) for z(r)
k and z(s)

k , and

denotingZ(rs)
k−1,k = E

[
z(r)

k−1η
(s)T
k

]
.

From (4.6) for η(s)
k , we haveZ(rs)

k−1,k =

(
E[z(r)

k−1yT
k ] − Σz(rs)

k−1

(
CkAk | Hk

)T (
Imny − Λk

))
D(s)T

y . Now, using

the OPL, we express E
[
z(r)

k−1yT
k

]
= E

[
z(r)

k−1̂y(r)T
k/k−1

]
, and from (7.3) for ŷ(r)

k/k−1, the following identity holds:

E
[
z(r)

k−1yT
k

]
= Σz(r)

k−1

(
CkAk | Hk

)T (
Imny − Λk

)
, k ≥ 1, (7.4)

and (5.4) is obtained.
To end the proof, we again use (4.6) for η(r)

k together with the definition Z(rs)
k−1,k = E

[
z(r)

k−1η
(s)T
k

]
to

express the innovation cross-covariance as Σ
η(rs)

k = D(r)
y

(
E

[
ykη

(s)T
k

]
−

(
Imny − Λk

) (
CkAk | Hk

)
Z

(rs)
k−1,k

)
.

Then, from (4.6) for η(s)
k , and taking into account (7.4) for E

[
ykz(s)T

k−1

]
, it is clear that:

E
[
ykη

(s)T
k

]
=

(
Σ

y
k −

(
Imny − Λk

) (
CkAk | Hk

)
Σz(s)

k−1

(
CkAk | Hk

)T (
Imny − Λk

))
D(s)T

y , k ≥ 1,

and expression (5.5) is concluded simply by using (5.4) forZ(rs)
k−1,k. �
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Appendix D. Proof of Lemma 2

Expression (5.6) for Σx̂(rs)

k/h , h > k, is directly obtained from (4.8), by denoting X̂(rs)
k,h = E

[
x̂(r)

k/h−1η
(s)T
h

]
.

In order to derive (5.7), we use (4.6) for η(s)
h , and denote Σx̂z(rs)

k,h−1 = E
[
x̂(r)

k/h−1z(s)T
h−1

]
to obtain X̂(rs)

k,h =(
E

[
x̂(r)

k/h−1yT
h

]
− Σx̂z(rs)

k,h−1

(
ChAh | Hh

)T (
Imny − Λh

))
D(s)T

y . Then, taking into account that –from the OPL–

E
[
x̂(r)

k/h−1yT
h

]
= E

[
xk̂y

(r)T
h/h−1

]
, we need only use (7.3) for ŷ(r)

h/h−1.

Finally, expression (5.8) of Σx̂z(rs)

k,h , h > k, is obtained straightforwardly simply by using (4.8) for x̂(r)
k/h

and (4.3) for z(s)
h . Its initial condition is derived directly from (4.1) and Σz(rs)

k = E
[
z(r)

k z(s)T
k

]
. �
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