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Abstract: A transmission dynamics model with the logistic growth of cystic echinococcus in sheep
was formulated and analyzed. The basic reproduction number was derived and the results showed that
the global dynamical behaviors were determined by its value. The disease-free equilibrium is globally
asymptotically stable when the value of the basic reproduction number is less than one; otherwise,
there exists a unique endemic equilibrium and it is globally asymptotically stable. Sensitivity analysis
and uncertainty analysis of the basic reproduction number were also performed to screen the important
factors that influence the spread of cystic echinococcosis. Contour plots of the basic reproduction
number versus these important factors are presented, too. The results showed that the higher the
deworming rate of dogs, the lower the prevalence of echinococcosis in sheep and dogs. Similarly, the
higher the slaughter rate of sheep, the lower the prevalence of echinococcosis in sheep and dogs. It also
showed that the spread of echinococcosis has a close relationship with the maximum environmental
capacity of sheep, and that they have a remarkable negative correlation. This reminds us that the risk
of cystic echinococcosis may be underestimated if we ignore the increasing number of sheep in reality.

Keywords: epidemic model; cystic echinococcosis; basic reproduction number; global asymptotic
stability; sensitivity analysis

1. Introduction

Cystic echinococcosis (CE) is a worldwide parasitic disease produced by echinococcus granulosus.
In the life cycle of echinococcosis granulosus (Figure 1), dogs are the primary definitive host, and
livestock (such as sheep, goats and swine) constitute the major intermediate host. In usual, CE mainly
transmits between dogs and livestock. Humans as accidental hosts of CE, infected by eggs in the
environment but not participating in the spread of the disease. This disease mainly occurs in animal
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husbandry countries and causes about USD 2 billion dollars of economic losses to the livestock industry
every year [1, 2]. The World Health Organization recognizes it as an ignored tropical disease and lists
it as a priority disease [3, 4].

Figure 1. The life cycle of Echinococcus granulosus.

It is a crucial global public health goal to prevent and control the spread of CE [5]. Mathematical
modeling is a powerful tool to solve such problems. A great quantity of mathematical models on CE
have been developed and analyzed [6–8]. Roberts el al. [9, 10] and Gemmell et al. [11–13] explored a
mathematical model of the life cycle of CE in dogs and sheep to discuss previously published
experimental and survey data. Considering that CE cannot spread without eggs in the environment,
Wang et al. [14] constructed a new deterministic model incorporating dogs, sheep, humans and eggs
in the environment, and they used it to examine the transmission dynamics of echinococcosis in
Xinjiang. Recently, Rong et al. [15, 16] improved the compartmental model presented in [14] and
used the new model to investigate the effect of stray dogs and searched the optimal control measures.
Zhao and Yang [17] considered an echinococcosis model that contains four control measures and
discussed the optimal control problem to decrease and eliminate the spread of echinococcosis
between dogs and livestock with comprehensive interventions. Cui [18] analyzed the prevention and
control effects of CE in Pengyang County, predicted the epidemic trend of CE in Pengyang County
and evaluated the impact of prevention and control measures on the spread of the disease. For more
details, the reader can refer to [19–21].

However, these studies disregard the effect of the number of sheep on the prevention and control of
echinococcosis. In fact, the demand for sheep is increasing as the population increases. For example,
the production of mutton in China increased from 4.45 million tons in 2012 to 5.14 million tons in 2021,
and more than 146.2 million sheep were slaughtered in 2017, which is almost 20 million more than
six years ago (http://ncpscxx.moa.gov.cn/). Moreover, sheep, as the main intermediate host, represent
the key link in the spread of echinococcosis, and they are also the main income of many farmers and
herders. Specifically, the importance of considering the effects of the prevalence of echinococcus in
sheep was once mentioned by Yang et al. [22]. They studied the prevalence of CE in slaughtered
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sheep in Emin County, Xinjiang, China. In addition, Xiao et al. [23] investigated the epidemiology of
sheep echinococcosis in Kashi, Xinjiang during 2014–2017. Recently, Gao et al. [24] investigated the
epidemic situation of sheep echinococcus in China from 1983 to 2020 by using meta-analysis. These
studies focused on the epidemiological survey of sheep echinococcosis, and there is no clear qualitative
analysis of the effect of sheep on the spread of CE.

Thus, in this paper, we attempt to elucidate the impact of increasing sheep on the spread of CE by
constructing and analyzing a mathematical model. The remainder of this paper is organized as follows.
Section 2 presents the development of a CE model to highlight the logistic growth of sheep in reality.
The basic reproduction number and the dynamical behaviors of the model are presented in Section 3.
In the next section, the effects of sheep and other control measures are investigated through numerical
simulations. A brief conclusion and discussion are presented in the last section.

2. Model formulation

In this section, a dynamical model based on the transmission of CE among animals is formulated.
Based on the idea of compartmental modeling, the definitive host dogs are divided into susceptible
dogs and infected dogs, and the corresponding numbers at time t are respectively denoted by S D (t)
and ID (t); the intermediate host sheep is divided into susceptible, immune and infected individuals,
and the corresponding numbers at time t are recorded as S L (t), VL (t) and IL (t), respectively; and the
number of parasite eggs in the environment is denoted by E (t) at time t. Let NL(t) = S L(t)+VL(t)+ IL(t)
be the total number of intermediate host sheep that satisfies

dNL

dt
= (b2 − d2)

(
1 −

NL

K

)
NL − θNL, (2.1)

where b2 represents the natural birth rate of sheep, d2 denotes the natural death rate of sheep, K
represents the maximum environmental capacity of sheep and θ is the slaughter rate of sheep. To
model NL(t) as increasing in reality, we assume that b2 ≥ d2 + θ. Based on this compartmental scheme
(Figure 2), a dog-sheep-egg life cycle transmission dynamics model can be given as

dS D

dt
= A1 − β1S DIL − d1S D + σID,

dID

dt
= β1S DIL − (d1 + σ) ID,

dS L

dt
= b2NL − β2S LE − (θ + d2) S L − (b2 − d2)

NL

K
S L − ωS L + δVL,

dVL

dt
= ωS L − δVL − (θ + d2) VL − (b2 − d2)

NL

K
VL,

dIL

dt
= β2S LE − (θ + d2) IL − (b2 − d2)

NL

K
IL,

dE
dt
= αID − deE.

(2.2)

For the definitive host dogs, parameter A1 represents the number of dogs born per year, d1 is the
natural mortality rate of dogs, σ is the deworming recovery rate for infectious dogs, β1 is the dogs’
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transmission rate and β1S DIL represents the transmission of echinococcosis to dogs by ingesting cyst-
containing organs of infectious sheep. For the intermediate host sheep, ω represents the vaccination
rate of sheep, δ is the immune failure rate of sheep, β2 is the transmission rate of sheep and β2S LE
denotes the transmission of echinococcosis to sheep by ingesting parasite eggs in the environment.
Moreover, α represents the release rate of parasite eggs in the environment, and de denotes the natural
extinction rate of parasite eggs.

It should be noted that the release rate of parasite eggs in the environment, α, is determined by the
average annual amount of parasites in each dog, q, the number of eggs laid per adult per unit time,
be, the average life span of a dog, td, and adult mortality in dogs, d. It follows from literature [6] that
α = beq

(
1 − e−dtd

)
/d.

Figure 2. Compartmental model of the transmission dynamics of CE.

Based on the biological meaning of the model, all solutions of the system (2.2) are assumed to
satisfy the following initial conditions:

S D (0) = S D0 > 0, ID (0) = ID0 ≥ 0, S L (0) = S L0 > 0,
VL (0) = VL0 > 0, IL (0) = IL0 ≥ 0, E (0) = E0 > 0.

(2.3)

Define

Γ =

{
(S D, ID, S L,VL, IL, E) ∈ R6

+, S D + ID ≤
A1

d1
, S L + VL + IL ≤

(b2 − d2 − θ) K
b2 − d2

, E ≤
αA1

ded1

}
.

We have the following result.

Theorem 1. All of the solutions satisfying the initial conditions of the system (2.2) are positive; Γ is
the positively invariant set of system (2.2).

Proof. Let x (t) = (S D (t) , ID (t) , S L (t) ,VL (t) , IL (t) , E (t)) be the solution of the system (2.2)
satisfying the initial conditions given by (2.3). We first prove that x (t) is the positive solution.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14596–14615.



14600

Assume that the conclusion is not true; then, there exists a constant t1 > 0 such that

x0 (t1) = min {S D (t1) , ID (t1) , S L (t1) ,VL (t1) , IL (t1) , E (t1)} = 0, for any t ∈ [0, t1) ,

and
xm (t) = min {S D (t) , ID (t) , S L (t) ,VL (t) , IL (t) , E (t)} > 0.

If x0 (t1) = ID (t1) , by the second equation of system (2.2), we have

dID (t)
dt

≥ − (d1 + σ) ID,∀t ∈ [0, t1) .

One can easily calculate that

ID (t1) ≥ ID (0) exp (− (d1 + σ) t1) > 0.

This is inconsistent with x0 (t1) = ID (t1) .
If x0 (t1) = E (t1) , it can be known from the last equation of system (2.2) that

dE (t)
dt
≥ −deE,∀t ∈ [0, t1) .

Then, we have
E (t1) ≥ E (0) exp (−det1) > 0.

This is inconsistent with x0 (t1) = E (t1) .
Similarly results can be obtained when S 0

D (t1) = S D (t1) , S 0
L (t1) = S L (t1) , I0

L (t1) = IL (t1) and
V0

L (t1) = VL (t1). Therefore, all of the solutions satisfying the initial conditions given by (2.3) are
positive solutions for system (2.2).

Next, let us prove that Γ is the positively invariant set of the system (2.2). From the first two
equations of system (2.2), we have

d (S D (t) + ID (t))
dt

≤ A1 − (S D + ID) d1.

Simple calculation implies that

lim
t→∞

(S D (t) + ID (t)) ≤
A1

d1
.

Similarly, we have

lim
t→∞

(S L (t) + VL (t) + IL (t)) ≤
(b2 − d2 − θ) K

b2 − d2
and lim

t→∞
E (t) ≤

αA1

ded1
.

Therefore, Γ is the positively invariant set of system (2.2).

3. Mathematical analysis

In this section, we first investigate the existence of the disease-free equilibrium and endemic
equilibrium and then discuss the global dynamics of system (2.2).
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3.1. Equilibrium and basic reproduction number

Set the right-hand side of system (2.2) as zero; then, we have the following algebraic equation

A1 − β1S DIL − d1S D + σID = 0,
β1S DIL − (d1 + σ) ID = 0,
b2NL − β2S LE − (θ + d2) S L − (b2 − d2) NL

K S L − ωS L + δVL = 0,
ωS L − δVL − (θ + d2) VL − (b2 − d2) NL

K VL = 0,
β2S LE − (θ + d2) IL − (b2 − d2) NL

K IL = 0,
αID − deE = 0.

(3.1)

In the absence of disease, it follows from Eq (3.1) that system (2.2) always has a disease-free
equilibrium Ed f e =

(
S 0

D, 0, S
0
L,V

0
L, 0, 0

)
, where

S 0
D =

A1

d1
, S 0

L = h
(b2 − d2 − θ) K

b2 − d2
,V0

L = (1 − h)
(b2 − d2 − θ) K

b2 − d2
, h =

δ + b2

ω + δ + b2
.

According to the next-generation operator approach proposed by Diekmann et al. [25] and van den
Driessche and Watmough [26], we define

F =


β1S DIL

β2S LE
αID

 ,V =


(d1 + σ) ID

(θ + d2) IL + (b2 − d2) NL
K IL

deE

 .
Note that the disease-free equilibrium of system (2.2) is Ed f e; then,

F =


0 β1A1

d1
0

0 0 β2h(b2−d2−θ)K
b2−d2

α 0 0

 ,V =

d1 + σ 0 0

0 b2 0
0 0 de

 .
Hence, the next generation matrix reads as

FV−1 =


0 β1A1

b2d1
0

0 0 β2h(b2−d2−θ)K
(b2−d2)de

α
d1+σ

0 0

 .
Then the basic reproduction number, which is calculated from ρ

(
FV−1

)
, is as follows:

R0 = 3

√√√√√ α

de
·︸︷︷︸

eggs by per dog

β2h (b2 − d2 − θ) K
(d1 + σ) (b2 − d2)︸                  ︷︷                  ︸
in f ected sheep by eggs

·
β1A1

b2d1︸︷︷︸
in f ected dogs

. (3.2)

Here, R0 represents the average number of new infections produced by infectious dogs during their
respective infection period [26, 27]. In the non-negative neighborhood of the disease-free equilibrium,
the density of echinococcus eggs released by each infectious dog is α/de. In the dogs’ expected
infectious period 1/(d1 + σ), the susceptible sheep [h (b2 − d2 − θ) K]/(b2 − d2) are infected by
contacting parasites eggs with the probability β2. Meanwhile, in the sheep expected infectious period
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1/b2, the total dogs (number: A1/d1) are infected by ingesting infectious cyst-containing organs of
sheep with the probability β1.

If there exist infected dogs or sheep, it follows from Eq (3.1) that system (2.2) has an endemic
equilibrium E∗e =

(
S ∗D, I

∗
D, S

∗
L,V

∗
L, I
∗
L, E

∗
)

when R0 > 1, where

S ∗D =
A1 − d1I∗D

d1
, I∗D =

deb2 (b2 − d2) (d1 + σ)
(
R3

0 − 1
)

αβ2h
[
(b2 − d2 − θ) Kβ1 + (b2 − d2) (d1 + σ)

] ,
S ∗L =

(b2 − d2 − θ) hK − (b2 − d2) hI∗L
b2 − d2

, V∗L =
ω

δ + b2
S ∗L,

I∗L =
d1 (d1 + σ) I∗D
β1

(
A1 − d1I∗D

) , E∗ =
αI∗D
de
.

3.2. Global dynamical behaviors

Based on Theorem 2 presented by van den Driessche and Watmough [26], when R0 < 1, the disease-
free equilibrium Ed f e of system (2.2) is locally asymptotically stable, and unstable when R0 > 1. The
global asymptotic stability of the disease-free equilibrium Ed f e can be given by performing a direct
Lyapunov approach.

Theorem 2. If R0 ≤ 1, the disease-free equilibrium Ed f e of system (2.2) is globally asymptotically
stable.

Proof. Let (S D (t) , ID (t) , S L (t) ,VL (t) , IL (t) , E (t)) be any solution of the system (2.2) that satisfies

S D (t) ≤
A1

d1
, S L (t) ≤

h (b2 − d2 − θ) K
b2 − d2

, NL (t) ≤
(b2 − d2 − θ) K

b2 − d2
,

for ∀t ≥ t0, where ∃t0 > N, N ∈ R+.
Define

V (ID, IL, E) =
αβ2h (b2 − d2 − θ) K

b2de (b2 − d2) (d1 + σ)
ID +

1
b2

IL +
β2h (b2 − d2 − θ) K

b2de (b2 − d2)
E.

By applying its derivative along the solutions of system (2.2) and using the expression of R0, we
calculate that

dV
dt
=
αβ1β2h (b2 − d2 − θ) K
b2de (b2 − d2) (d1 + σ)

S DIL −
αβ2h (b2 − d2 − θ) K

b2de (b2 − d2)
ID +

β2S LE
b2

−
θ + d2

b2
IL − (b2 − d2)

N
b2K

IL +
αβ2h (b2 − d2 − θ) K

b2de (b2 − d2)
ID −

β2h (b2 − d2 − θ) K
b2 (b2 − d2)

E

≤
αβ1β2A1h (b2 − d2 − θ) K
d1b2de (b2 − d2) (d1 + σ)

IL −
αβ2h (b2 − d2 − θ) K

b2de (b2 − d2)
ID +

β2h (b2 − d2 − θ) K
b2 (b2 − d2)

E

−
θ + d2

b2
IL −

(b2 − d2 − θ)
b2

IL +
αβ2h (b2 − d2 − θ) K

b2de (b2 − d2)
ID −

β2h (b2 − d2 − θ) K
b2 (b2 − d2)

E

=
αβ1β2A1h (b2 − d2 − θ) K
d1b2de (b2 − d2) (d1 + σ)

IL − IL
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=

(
αβ1β2A1h (b2 − d2 − θ) K
d1b2de (b2 − d2) (d1 + σ)

− 1
)

IL

=
(
R3

0 − 1
)

IL.

Therefore, dV/dt ≤ 0 if R0 ≤ 1 and dV/dt = 0 if and only if IL = 0. It is not hard to verify
that

(
S 0

D, 0, S
0
L,V

0
L, 0, 0

)
is the unique invariant set of system (2.2). According to Lasalle’s invariant

principle [28], the disease-free equilibrium Ed f e is globally asymptotically stable.

The proof of Theorem 1 implies that system (2.1) has a unique positive equilibrium N0
L and one can

easily verify that N0
L is globally asymptotically stable in Γ, that is,

lim
t→∞

NL (t) =
(b2 − d2 − θ) K

b2 − d2
≜ N0

L.

Using the results from Castillo-Chavez and Thieme [29] and Mischaikow et al. [30], we can obtain
the analytical results by considering the following limit system of system (2.2) in which the sheep
population is assumed to be constant N0

L:

dS D

dt
= A1 − β1S DIL − d1S D + σID,

dID

dt
= β1S DIL − (d1 + σ) ID,

dS L

dt
= b2N0

L − β2S LE − (θ + d2) S L − (b2 − d2)
N0

L

K
S L − ωS L + δVL,

dVL

dt
= ωS L − δVL − (θ + d2) VL − (b2 − d2)

N0
L

K
VL,

dIL

dt
= β2S LE − (θ + d2) IL − (b2 − d2)

N0
L

K
IL,

dE
dt
= αID − deE.

(3.3)

Theorem 3. If R0 > 1, the endemic equilibrium E∗e is globally asymptotically stable .

Proof. Let g (x) = x − 1 − ln x, x > 0. Obviously, g (x) ≥ 0, if and only if x = 1, g (x) = 0. Note
that (x − 1) (1 − y) = g (x) + g (y) − g (xy) for all x, y ∈ R+. Let V# = #∗g

(
#
#∗

)
, where # represents

S D, ID, S L,VL, IL and E.
Then, using the equilibrium equation A1 − β1S ∗DI∗L − d1S ∗D + σI∗D = 0 and differentiating VS D along

system (2.2), one has

dVS D

dt

∣∣∣(2.2) =

(
1 −

S ∗D
S D

)
S ′D

=

(
1 −

S ∗D
S D

) [
−β1

(
S DIL − S ∗DI∗L

)
− d1

(
S D − S ∗D

)
+ σ

(
ID − I∗D

)]
= −β1S ∗DI∗L

(
S DIL

S ∗DI∗L
− 1

) (
1 −

S ∗D
S D

)
− d1S ∗D

(
S D

S ∗D
− 1

) (
1 −

S ∗D
S D

)
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+ σI∗D

(
ID

I∗D
− 1

) (
1 −

S ∗D
S D

)
= −β1S ∗DI∗Lg

(
S DIL

S ∗DI∗L

)
− β1S ∗DI∗Lg

(
S ∗D
S D

)
+ β1S ∗DI∗Lg

(
IL

I∗L

)
− d1S ∗Dg

(
S D

S ∗D

)
− d1S ∗Dg

(
S ∗D
S D

)
+ σI∗Dg

(
ID

I∗D

)
+ σI∗Dg

(
S ∗D
S D

)
− σI∗Dg

(
IDS ∗D
I∗DS D

)
= −β1S ∗DI∗Lg

(
S DIL

S ∗DI∗L

)
+ β1S ∗DI∗Lg

(
IL

I∗L

)
− d1S ∗Dg

(
S D

S ∗D

)
+ σI∗Dg

(
ID

I∗D

)
− σI∗Dg

(
IDS ∗D
I∗DS D

)
− A1g

(
S ∗D
S D

)
.

Using the equilibrium equation β1S ∗DI∗L − (d1 + σ) I∗D = 0 and differentiating VID along system (2.2),
one has

dVID

dt

∣∣∣(2.2) =

(
1 −

I∗D
ID

)
I′D

=

(
1 −

I∗D
ID

) [
β1

(
S DIL − S ∗DI∗L

)
− (d1 + σ)

(
ID − I∗D

)]
= β1S ∗DI∗L

(
S DIL

S ∗DI∗L
− 1

) (
1 −

I∗D
ID

)
− (d1 + σ) I∗D

(
ID

I∗D
− 1

) (
1 −

I∗D
ID

)
= β1S ∗DI∗Lg

(
S DIL

S ∗DI∗L

)
+ β1S ∗DI∗Lg

(
I∗D
ID

)
− β1S ∗DI∗Lg

(
S DILI∗D
S ∗DI∗LID

)
− (d1 + σ) I∗Dg

(
ID

I∗D

)
− (d1 + σ) I∗Dg

(
I∗D
ID

)
= β1S ∗DI∗Lg

(
S DIL

S ∗DI∗L

)
− β1S ∗DI∗Lg

(
S DILI∗D
S ∗DI∗LID

)
− d1I∗Dg

(
ID

I∗D

)
− σI∗Dg

(
ID

I∗D

)
.

Similarly, we have

dVS L

dt

∣∣∣(2.2) = −β2S ∗LE∗g
(

S LE
S ∗LE∗

)
+ β2S ∗LE∗g

( E
E∗

)
− (θ + d2 + ω) S ∗Lg

(
S L

S ∗L

)
−

b2 − d2

K
N0

LS ∗Lg
(
S L

S ∗L

)
+ δV∗Lg

(
VL

V∗L

)
− δV∗Lg

(
VLS ∗L
V∗LS L

)
− b2N0

Lg
(
S ∗L
S L

)
.

dVVL

dt

∣∣∣(2.2) = −ωS ∗Lg
(
S LV∗L
S ∗LVL

)
− (δ + θ + d2) V∗Lg

(
VL

V∗L

)
−

b2 − d2

K
N0

LV∗Lg
(
VL

V∗L

)
+ ωS ∗Lg

(
S L

S ∗L

)
.

dVIL

dt

∣∣∣(2.2) = β2S ∗LE∗g
(

S LE
S ∗LE∗

)
− β2S ∗LE∗g

(
S LEI∗L
S ∗LE∗IL

)
− b2I∗Lg

(
IL

I∗L

)
.
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dVE

dt

∣∣∣(2.2) = αI∗Dg
(

ID

I∗D

)
− αI∗Dg

(
IDE∗

I∗DE

)
− deE∗g

( E
E∗

)
.

Then, consider the following Lyapunov candidate function:

V̄ =
αβ2S ∗L
d1de

(
VS D + VID

)
+ VS L + VVL + VIL +

β2S ∗L
de

VE.

Add the derivatives of VS D ,VID , . . . ,VE along system (2.2); then, combining with σ = 0, we have

dV̄
dt

∣∣∣(2.2) = −
αβ2S ∗LS ∗D

de
g
(
S D

S ∗D

)
−
αβ2S ∗LσI∗D

d1de
g
(

IDS ∗D
I∗DS D

)
−
αA1β2S ∗L

d1de
g
(
S ∗D
S D

)
−
αβ2S ∗Lβ1S ∗DI∗L

d1de
g
(
S DILI∗D
S ∗DI∗LID

)
− (θ + d2) S ∗Lg

(
S L

S ∗L

)
−

b2 − d2

K
N0

LS ∗Lg
(
S L

S ∗L

)
− δV∗Lg

(
VLS ∗L
V∗LS L

)
− b2N0

Lg
(
S ∗L
S L

)
− ωS ∗Lg

(
S LV∗L
S ∗LVL

)
− (θ + d2) V∗Lg

(
VL

V∗L

)
−

b2 − d2

K
N0

LV∗Lg
(
VL

V∗L

)
− β2S ∗LE∗g

(
S LEI∗L
S ∗LE∗IL

)
−
αβ2S ∗LI∗D

de
g
(

IDE∗

I∗DE

)
.

Therefore, dV̄/dt ≤ 0 and dV̄/dt = 0 if and only if S D = S ∗D, ID = I∗D, S L = S ∗L,VL = V∗L, IL =

I∗L, E = E∗. Then, the maximal invariant set of system (2.2) in the set
{
(S D, ID, S L,VL, IL, E)

∣∣∣dV̄/dt

= 0} is
(
S ∗D, I

∗
D, S

∗
L,V

∗
L, I
∗
L, E

∗
)
. Additionally, because the Lyapunov function V̄ has a lower bound of 0

on R6, when ∥(S D, ID, S L,VL, IL, E)∥ → +∞, we have that V̄ → +∞. It follows from LaSalle’s invariant
principle [28] that E∗e =

(
S ∗D, I

∗
D, S

∗
L,V

∗
L, I
∗
L, E

∗
)

is globally asymptotically stable.

4. Numerical simulations

In this section, numerical simulation is used to further illustrate the effects of sheep on the spread
of CE.

4.1. Sensitivity analysis and uncertainty analysis of R0

First, we fit the parameters of the model based on the statistical yearbook of Ningxia Hui
Autonomous Region [31] and surveillance indicators of echinococcosis in Pengyang County, Ningxia
Hui Autonomous Region, from 2011 to 2018 [32]. The monitoring indicators included the infection
rate of sheep (the ratio of infected sheep to the total number of tested sheep) and the infection rate of
dogs (the ratio of canine antigen positive feces to tested feces). Some parameters in the model were
assumed based on actual conditions, and other parameters were selected from the literature. The
biological significance and values of parameters in the model are shown in Table 1. The software used
in this study was Mathematica.
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Figure 3. Time plots of sheep and dog infection rates in Pengyang County. The initial values
of system (2.2) are S D (0) = 0.9463, ID (0) = 0.0537, S L (0) = 0.8587, VL (0) = 0.1, IL (0) =
0.0413, E (0) = 40.

Table 1. Parameters, biological significance and values for system (2.2).

Parameter Biological significance Value Basis
A1 Annual crop of newborn puppies 0.08 Calculation
β1 Transmission rate from sheep to dog 0.4 (0, 0.6) Fitting
d1 Dog natural mortality rate 0.08 [14]
σ Recovery rate of infected dogs 0.74 (0, 2) Fitting
b2 Annual crop of newborn sheep 0.8 Assumption
β2 Transmission rate from parasite eggs to sheep 0.00085 (0, 0.003) Fitting
d2 Natural mortality rate of sheep 0.152 [16]
θ The slaughter rate of sheep 0.49 (0, 0.648) [31]
de Parasite egg mortality rate 10.42 [14]
ω Vaccination rate of sheep 0.65 (0, 1) Fitting
δ Vaccination failure rate of sheep 0.153 (0, 1) [18]
K The maximum environmental capacity of sheep 4.5 Assumption
be Number of eggs laid by each adult per unit time 560 [8]
q Average annual amount of parasites in each dog 42 [33]
d Adult mortality in dogs 12/5 [33]
td Average life span of a dog 5 [33]

Note: The release rate of eggs in the environment α = beq
(
1 − e−dtd

)
/d = 9799.

Based on the parameter values in Table 1, the infection rates of sheep and dogs in Pengyang County
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from 2011 to 2018 are shown in Figure 3. Figure 3 shows that the fitting value is basically consistent
with the actual value. The correlation coefficient R2 in the statistical index is often used to measure
the accuracy of fitting. The closer the value is to 1, the better the fitting effect. In this paper, the R2

values obtained by using the parameters in Table 1 are 0.9699 and 0.9905, respectively, which proves
that the fitting effect meets the requirements. DISO values (distance between indices of simulation
and observation) can easily and quantitatively obtain the accuracy between models. Models with small
DISO values indicate high overall performances, and vice versa [34]. In this study, DIS Osheep = 0.0438
and DIS Odog = 0.05488; the DISO values are close to 0, which also indicates a good fitting effect.
According to the “Health Industry Standards of the People’s Republic of China” issued by the National
Health Commission, the prevalence of echinococcosis in livestock should be less than 1% and the
infection rate of dogs should be less than 1%. According to this standard, it can be seen from Figure
3 that Pengyang County reached the national control standard in 2016. In addition, by 2030, the
infection rate of sheep will be controlled to 0.0068%, and the infection rate of dogs will be controlled
to 0.0058%, which is far lower than the national standard, indicating that the prevention and control
measures of echinococcosis in Pengyang County are very effective.
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Figure 4. Sensitivity analysis and uncertainty analysis of R0. Parameter values are shown in
Table 1; all parameters are assumed to be uniformly distributed within the range.

As the theoretical results have shown, the basic reproduction number R0 is a significant threshold for
the dynamics of CE transmission. Therefore, we first present the sensitivity analysis and uncertainty
analysis of R0. We used the partial rank correlation coefficient (PRCC) method to study the sensitivity
analysis of R0, which illustrates the degree of influence of different parameters on R0 (Figure 4). Figure
4(a) shows that R0 has strong negative correlation with the dogs deworming recovery rate (σ) and
the fraction of annual slaughtered sheep (θ). Moreover, it also illustrates that R0 has strong positive
correlation with the dog infection rate β1 and the sheep infection rate β2. Birhan et al. [20] also pointed
out that the most sensitive parameter of the spread of CE is the transmission rate β2. That is, control
measures must be taken for dogs and sheep, and infection routes must be cut off to reduce the risk of
CE. It should be noted that R0 also has strong positive correlation with the maximum environmental
capacity of sheep (K). This implies that the maximum environmental capacity of sheep is a crucial
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factor affecting the spread of CE. However, this important fact has been neglected for a long time.
Uncertainty analysis of R0 was conducted by using the Latin hypercube method, and it was used to
quantify the influence of parameter uncertainty on R0 (Figure 4(b)). We assumed that the parameters
follow a uniform distribution in their range as given in Table 1; then, the distribution histogram of
R0 can be given by using Mathematica software (sample number: 1000). The results show that the
range of R0 is [0.05, 2.8], with a mean of 0.899 and a variance of 0.507 (Figure 4(b)). Combined with
the theoretical analysis, it is possible to control the epidemic of echinococcosis and even eliminate it
completely.

4.2. Contour plot of R0

The sensitivity analysis in this paper indicates that the vaccination rate of sheep (ω), the dogs’
deworming recovery rate (σ) and the sheep slaughter rate (θ) have strong negative correlations with
R0. Therefore, we constructed the contour plots of R0 with these three parameters to better understand
their respective influences on R0. The results show that, if we want to make the basic reproduction
number less than 1 (R0 ≤ 1), we can increase the dogs’ deworming recovery rate to equal or be more
than 0.185 (σ ≥ 0.185) (Figure 5(a)) or increase the slaughter rate of sheep to equal or be more than
0.15 (θ ≥ 0.15) (Figure 5(b)) when the vaccination rate of sheep is equal to 0.65 (ω = 0.65). It
also shows that we should increase the dogs’ deworming recovery rate to decrease the value of the
basic reproduction number to less than 1 if we fix the slaughter rate of sheep, and vice versa (Figure
5(c)). Figure 5 also shows the effect of control patterns, with an emphasis on canine deworming and a
secondary focus on sheep immunization, on preventing and controlling the spread of CE. It also shows
the important role of the slaughter rate of sheep on the spread of CE, which is always ignored in the
theoretical studies.
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Figure 5. Contour plots of R0: (a) the (σ,ω) plane, (b) the (ω, θ) plane and (c) the (σ, θ)
plane. Other parameters are shown in Table 1.
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Figure 6. Contour plots of R0 at (θ, σ) plane with different maximum environmental
capacities of sheep, K. Other parameters are the same as in Table 1.

Except the transmission rates β1, β2 that have strong positive correlations with R0, the maximum
environmental capacity of sheep, K, also has strong correlation with R0. In former studies, researchers
usually assumed the total number of sheep to be a constant [14–16,20,21]. There is a lack of studies that
investigate how K affects the spread of CE. Combined the slaughter rate of sheep (θ) and the deworming
recovery rate of infectious dogs (σ) are the main factors that influence the value of R0 (Figures 4 and 5).
We also show the contour plots of R0 at the (θ, σ) plane when the maximum environmental capacity
of sheep, K, is different (Figure 6). Figure 6 shows that both the sheep slaughter rate and the dogs
deworming recovery rate increase as the the maximum environmental capacity of sheep increases if
we want to keep R0 = 1. For example, if we fix θ = 0.49, the value of σ increases from 0.155 to 0.18
and then to 0.21 when K respectively increases to 4.5 and 5 from 4. Similar results can be obtained if
we fix σ. That is, the premise of expanding the number of sheep is to increase the deworming strength
for dogs and the slaughter rate of sheep.

4.3. Time plots of infected hosts

Figure 7 shows that the number of sheep tends to be stable over time, and that, when the maximum
environmental capacity of sheep increases, the growth rate of the sheep population becomes faster.
Time plots of infected sheep Il and infected dogs Id (Figure 8(a),(b)) indicate that, if we only expand
the number of sheep without any additional control measures, reducing the sheep and dog infection
rates below national standards takes longer and is more difficult to control. Due to the sheep slaughter
rate having strong correlation with R0, here, we evaluate the effect of the sheep slaughter rate on CE.
As shown in Figure 8(c),(d), when the slaughter rate of sheep increases, it becomes less difficult to
reduce the sheep and dog infection rates below the national standard. When K = 9, that is, when the
number of sheep increases, the control difficulty increases. At this time, the slaughter rate of sheep
increases to 1.25 times and 1.5 times the original rate (θ = 0.49); then, the time to control the sheep
infection rate is significantly shortened. The results show that the premise of increasing sheep size is to
increase the slaughter rate of sheep at the same time, which could effectively control the transmission
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of CE and reduce the difficulty of controlling CE transmission.
Finally, in order to evaluate the priorities of CE prevention and control in a region with different

breeding scales, we analyzed the effects of different intensities of dog deworming and sheep
immunization measures on CE prevention and control. When K = 4.5, the original dog deworming
rate (σ = 0.74) and sheep immunity rate (ω = 0.65) are the baselines, the results are as shown by the
red solid lines in Figure 9. When K increases to 9, if we do not change the strength of dog deworming
and increase the vaccination rate of sheep by 1.25 and 1.5 times, and then for sheep populations, the
greater the strength of sheep immunization, the shorter the time it takes to reduce sheep infection rate
to below the national standard; for dog populations, there is little change in the dog infection rate (see
yellow and blue dashed lines in the Figure 9). If the immunity intensity of sheep is not changed and
the deworming rate of dogs is increased to 1.25 times and 1.5 times of the original, and then for sheep
populations, the greater the deworming rate of dogs, the less difficult it is to reduce the infection rate
of sheep to below the national standard; for dog populations, the increase of the deworming intensity
of dogs leads to a rapid decline in the infection rate of dogs; it significantly reduces the time required
to control the infection rate in dogs (see pink and purple dashed lines in Figure 9). This indicates that
when the number of sheep increases, improving dogs deworming rate allows for better control of the
transmission of CE. If the dog deworming strength and sheep immunity strength are increased at the
same time, the infection rates of sheep and dogs and the time required to control CE are reduced more
quickly (see gray and cyan dashed lines in Figure 9). The results indicate that the dog deworming rate
is more effective in controlling echinococcosis than the sheep vaccination rate, which theoretically
verified the rationality of the control strategy of placing an emphasis on canine deworming and a
secondary focus on sheep immunization to prevent and control the spread of CE.
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Figure 7. Time plot of NL with different maximum environmental capacities K. Other
parameters are the same as in Table 1.
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Figure 8. Time plots of Il and Id. Other parameters are the same as in Table 1.
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Figure 9. Time plots of Il and Id under different efforts of dog deworming and sheep
immunity control.

5. Conclusions

In this study, we attempted to reveal the influence of sheep in the prevention and control of CE.
Based on the mechanisms for transmission of CE among dogs, sheep and eggs in the environment, we
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established a mathematical model and then analyzed its global dynamical behaviors. We computed
the basic reproduction number of the model and obtained that the transmission of CE is mainly
determined by R0. The results showed that, when R0 < 1, the disease-free equilibrium Ed f e is globally
asymptotically stable, and that, when R0 > 1, the endemic equilibrium E∗e is globally asymptotically
stable. That is, when R0 < 1, the disease gradually dies out, and the disease continuous to persist if
R0 > 1. Sensitivity analysis and uncertainty analysis of R0 were conducted to reveal the important
influential factors of R0. The results theoretically validate control patterns with an emphasis on dog
deworming and a secondary focus on sheep immunization aimed at preventing and controlling CE
(Figure 4). Figure 4 also indicated that we cannot ignore the effect of the slaughter rate of sheep and
the maximum environmental capacity of sheep in the control of CE. Contour plots of R0 further
illustrated that the important roles of the slaughter rate of sheep and dog deworming on the spread of
CE (Figure 5). In addition, with an increasing number of sheep, Figure 6 showed that we should
increase the sheep slaughter rate and the deworming rate of dogs to control CE. That is, the risk of CE
will be underestimated if we do not consider the increasing flock of sheep.
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