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Abstract: Media coverage can greatly impact the spread of infectious diseases. Taking into consid-
eration the impacts of media coverage, we propose an SEIR model with a media coverage mediated
nonlinear infection force. For this novel disease model, we identify the basic reproduction number
using the next generation matrix method and establish the global threshold results: If the basic repro-
duction number R0 < 1, then the disease-free equilibrium P0 is stable, and the disease dies out. If
R0 > 1, then the endemic equilibrium P∗ is stable, and the disease persists. Sensitivity analysis indi-
cates that the basic reproduction number R0 is most sensitive to the population recruitment rate Λ and
the disease transmission rate β1.
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1. Introduction

The spread of infectious diseases is a serious threat to human life and health, and the number of
deaths due to infectious diseases accounts for a quarter of the total deaths worldwide every year [1].
When an emerging infectious disease occurs, a vaccine or effective drugs to treat the disease cannot be
developed in time. This makes it very challenging to control the spread of the disease in both temporal
and spatial dimensions, especially in some low- and middle-income countries, where medical resources
are not fully guaranteed. Therefore, reducing the rate of disease transmission has become one of the
most direct and effective means of prevention and control. At the beginning of the epidemic, in order
to prevent the spread of the disease, lockdown, static management at home, quarantine treatment and
other measures are taken to control the spread of the disease. In the era of rapid development of
information technology, media coverage plays an important role in the spread and control of infectious
diseases. Media coverage may change people’s understanding of emerging infectious diseases and
influence people’s attitudes and behaviors during the outbreak of infectious diseases. Simultaneously,
it may warn people to reduce unnecessary contact with others and reduce the transmission rate [2].
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Mathematical modeling has become an essential tool to better understand the impacts of media
coverage on the spread and control of infectious diseases. In this regard, there are three main ap-
proaches addressing the influences of media awareness on the spread of infectious diseases. One
approach is to introduce a reduction factor on the transmission rate. For example, in [3, 4], functions

f (E, I,H) = e−α1E−α2I−α3H and f (I) =
k

(1 + aI2)
were respectively used to reflect the effective transmis-

sion rate affected by media coverage. Cui et al. [5] used the nonlinear incidence of form µ1 − µ2 f (I)
to express the influence of media coverage and education in the process of infectious disease transmis-
sion. Another different form of incidence function, (β1 − β2 f (I))S I, was used in Cui and Wu [6]. The
second approach is to introduce a new independent compartment M(t) to represent the disease infor-
mation level related to media coverage [7–11]. Xing et al. [12] added an independent compartment

M(t), and
M

1 + kM
β f (S )I was used to represent the effective contact rate of diseases under the influence

of media coverage. Yan et al. [13] described the dynamic impact of media reports on the population
as f (M, p) = e−pM, and p was a positive constant that changes with the number of hospital notifica-
tions. The third approach divides the population into conscious and unconscious groups, assuming
the individuals in the unconscious group can be converted to the conscious compartment due to media
coverage [14, 15]. For instance, Latifah et al. [16] considered the level of human awareness of the exis-
tence of certain diseases, and proposed an SIS-M mathematical model. In their model, the susceptibles
were divided into unconscious predisposition S n and conscious susceptibles S a, and the independent
compartment M was added to represent the level of consciousness of the population. The unconscious
susceptible compartment may be transferred to the conscious susceptible compartment through me-
dia coverage, and a certain proportion of conscious susceptibles who lose their disease consciousness
would return to the unconscious susceptible compartment. Agaba et al. [17] analyzed an SIRS model,
which divided susceptible (S ), infected (I) and recovered (R) into conscious and unconscious popu-
lations, and considered the behavioral changes of simultaneous transmission of consciousness in the
population.

In the above mentioned papers, either the exposed compartment was not included or the individuals
in the exposed compartment were assumed to be not infectious. Given that some exposed individuals
also have the ability to infect susceptibles, in this paper, we propose an SEIR model which assumes
transmission of disease for both exposed and infectious compartments, and incorporates a novel non-
linear incidence force mediated by media coverage. We will present our model in Section 2 and study
its dynamics in Section 3.

2. Model formulation

Based on the stages of the disease, we divide the population into 4 disjoint compartments, namely,
Susceptible (S ), Exposed (E), Infective (I) and Recovered (R) compartments. Let S (t), E(t), I(t) and
R(t) denote, respectively, the associated population sizes at time t. Then, the total population size at
time t is N(t) = S (t) + E(t) + I(t) + R(t).

Let Λ > 0 be recruitment and assume all newly recruited individuals are susceptible. Let σ > 0,
ω ≥ 0, η > 0 and γ > 0 be the natural death rate, disease-induced death rate, progression rate
from exposed compartment to infective compartment, and recovery rate from infective compartment,
respectively. We assume that the exposed individuals also have the ability to infect susceptibles (with
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a reduced rate measured by k ∈ (0, 1)) and the infection force is of the form, (β1 − β2
I

m+I )S (I + kE).
Here, β1 represents the transmission rate of disease not affected by media coverage, β2 < β1 is the
maximum reduction rate of disease transmission rate caused by media coverage, and m is the half-
saturation constant. The impact of media coverage on the reduction of transmission rate is quantified

by the function g(I) =
I

m + I
. We also assume that after contacting exposed and infective individuals,

the susceptibles who become infected enter the exposed compartment with the proportion of 1−α and
infective compartment with the proportion of α. Recovered individuals are assumed to gain permanent
immunity.

The above assumptions allow us to describe our model by the following system of differential
equations: 

dS
dt

= Λ − (β1 − β2
I

m+I )S (I + kE) − σS ,

dE
dt

= (1 − α)(β1 − β2
I

m+I )S (I + kE) − (σ + η)E,

dI
dt

= ηE + α(β1 − β2
I

m+I )S (I + kE) − (σ + ω + γ)I,

dR
dt

= γI − σR.

(2.1)

The flow chart of our model is presented in Figure 1, and the associated initial condition is given as

(S (0), E(0), I(0),R(0)) = (S 0, E0, I0,R0) ∈ R4
+. (2.2)

L

a b b- +
+

a b b- - +
+

h g

s s s w+ s

Figure 1. Flow chart of model (2.1).

3. Model analysis: Basic reproduction number and threshold dynamics

Our first result presented below shows that our model is well posed.

Theorem 3.1. Consider model (2.1) with initial condition given in (2.2). There exists a unique solution
(S (t), E(t), I(t),R(t)), which remains nonnegative and is bounded satisfying

lim sup
t→∞

(S (t) + E(t) + I(t) + R(t)) ≤
Λ

σ
=: S̄ .
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Moreover, the set Γ is attracting and is positively invariant, where

Γ =
{
(S , E, I,R) ∈ R4

+ : 0 ≤ S̄
}
. (3.1)

Proof. Note that the vector field, defined by the right hand side of model (2.1), is smooth in R4
+. Thus,

with any initial condition given in (2.2), model (2.1) admits a unique solution.
It follows from (2.1) that

dS
dt

∣∣∣[S =0,E≥0,I≥0,R≥0] = Λ ≥ 0,

dE
dt

∣∣∣[S≥0,E=0,I≥0,R≥0] = (1 − α)(β1 − β2
I

m+I )S I ≥ 0,

dI
dt

∣∣∣[S≥0,E≥0,I=0,R≥0] = ηE + αβ1kS E ≥ 0,

dR
dt

∣∣∣[S≥0,E≥0,I≥0,R=0] = γI ≥ 0.

This shows that the vector field is oriented inward from the plane boundaries, starting from a non-
negative cone. Hence, R4

+ is positively invariant. That is, the unique solution through (S 0, E0, I0,R0) ∈
R4

+ remains nonnegative for t > 0.
Note that the total population N(t) = S (t) + E(t) + I(t) + R(t) satisfies

dN
dt

= Λ − σN − ωI ≤ Λ − σN,

which yields
0 ≤ N(t) ≤ S̄ −

(
S̄ − N(0)

)
e−σt.

Therefore,
lim sup

t→∞
N(t) ≤ S̄ .

Moreover, the set Γ is attracting and is positively invariant.

Obviously, model (2.1) always admits a disease-free equilibrium (DFE), P0 = (Λ
σ
, 0, 0, 0). Lin-

earizing model (2.1) at the DFE and using the next generation matrix method, we find that the basic
reproduction number, R0, is given by

R0 = ρ(FV−1) =
β1S̄ [ασ + η + (1 − α)k(σ + ω + γ)]

(σ + η)(σ + ω + γ)
(3.2)

with

F = β1S̄
(

(1 − α)k (1 − α)
αk α

)
, (3.3)

and

V =

(
σ + η 0
−η σ + ω + γ

)
. (3.4)
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Theorem 3.2. The DFE P0 is globally asymptotically stable if R0 < 1, and is unstable if R0 > 1.

Proof. It follows from [18] that the DFE P0 is locally asymptotically stable if R0 < 1 and is unstable if
R0 > 1. We only need to show that P0 is globally attractive if R0 < 1.

It follows from Theorem 3.1 that
lim sup

t→∞
S (t) ≤ S̄ .

Thus, for sufficiently small real number ε > 0, there exists T1 > 0 such that S (t) < Λ
σ

+ ε.

By the nonnegativity of solution, from the second and the third equations of model (2.1), we have(
E′(t)
I′(t)

)
≤

(
F − V +

ε

S̄
F
) ( E(t)

I(t)

)
, (3.5)

where F and V are given in (3.3) and (3.4), respectively.
Note that, from [18], we see that R0 < 1 implies that all eigenvalues of F − V have negative real

parts. Thus, for sufficiently small ε > 0, all eigenvalues of F − V + ε
S̄ F also have negative real parts.

Consequently, the unique equilibrium, (0, 0), of the following linear system(
e′(t)
i′(t)

)
= (F − V +

ε

S̄
F)

(
e(t)
i(t)

)
(3.6)

is globally asymptotically stable. That is,

lim
t→∞

e(t) = lim
t→∞

i(t) = 0.

By a comparison, we obtain that

lim
t→∞

E(t) = lim
t→∞

I(t) = 0.

Therefore, by the theory of asymptotically autonomous systems [19], the DFE is globally asymp-
totically stable if R0 < 1.

Theorem 3.2 indicates that the disease dies out if the basic reproduction number R0 < 1. Next,
we see if there will be an endemic equilibrium if R0 > 1. Note that an endemic equilibrium P∗ =

(S ∗, E∗, I∗,R∗) exists if the following system has a positive solution.

Λ − (β1 − β2
I

m + I
)S (I + kE) − σS = 0,

(1 − α)(β1 − β2
I

m + I
)S (I + kE) − (σ + η)E = 0,

ηE + α(β1 − β2
I

m + I
)S (I + kE) − (σ + ω + γ)I = 0,

γI − σR = 0.

(3.7)

From the last equation of (3.7), we get

R =
γI
σ
. (3.8)
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From the second and the third equations of (3.7), we can express E in terms of I as follows:

E =
(1 − α) (σ+ω+γ) I

η + ασ
. (3.9)

Adding the first three equations of (3.7) together, we get

S =
Λ(η + ασ) − (σ + ω + γ)(σ + η)I

σ(η + ασ)
. (3.10)

Substituting (3.10) and (3.11) into the third equation of (3.7), we get

a2I2 + a1I + a0 = 0, (3.11)

where
a2 = (β2 − β1)

(σ + ω + γ)(σ + η)
σ(η + ασ)

< 0,

a1 =
(η + ασ)(β1 − β2)Λ − β1m(σ + ω + γ)(σ + η)

σ(η + ασ)
−

(σ + ω + γ)(σ + η)
η + ασ + (σ + ω + γ)(1 − α)k

,

a0 =
m(σ + η)(σ + ω + γ)

η + ασ + (σ + ω + γ)(1 − α)k
(R0 − 1).

If R0 > 1, then a0 > 0. This implies that Eq (3.11) has a unique positive root, I∗, with

I∗=
−a1 −

√
a2

1 − 4a0a2

2a2
. (3.12)

Plugging I∗ into Eqs (3.8)–(3.10), we can obtain R∗ > 0, E∗ > 0 and S ∗, respectively. From the
second equation of (3.7), we see that S ∗ > 0 as long as I∗ > 0. Thus, model (2.1) admits a unique
endemic equilibrium P∗ if R0 > 1.

Let
h(I) = β1 −

β2I
m + I

and set
a11 = −h(I∗)(I∗ + kE∗) − σ = − Λ

S ∗ ,

a12 = −h(I∗)kS ∗,

a13 = −β1S ∗ +
β2S ∗(2mI∗+(I∗)2+mkE∗)

(m+I∗)2 ,

a21 = (1 − α)h(I∗)(I∗ + kE∗),

a22 = (1 − α)h(I∗)kS ∗ − (σ + η),

a23 = (1 − α)S ∗[β1 −
β2(2mI∗+(I∗)2+mkE∗)

(m+I∗)2 ],

a31 = αh(I∗)(I∗ + kE∗),

a32 = η + αh(I∗)kS ∗,

a33 = α[β1S ∗ − β2S ∗(2mI∗+(I∗)2+mkE∗)
(m+I∗)2 ] − (σ + ω + γ),
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and
D2 = −a11 − a22 − a33,

D1 = a11a22 + a11a33 + a22a33 − a23a32 − a12a21 − a13a31,

D0 = −a11a22a33 + a11a23a32 + a12a21a33 − a13a21a32 − a12a23a31 + a13a22a31.

Theorem 3.3. If R0 > 1, then there is a unique endemic equilibrium P∗ = (S ∗, E∗, I∗,R∗), which is
locally asymptotically stable provided that the following conditions hold simultaneously:

D2 > 0,D0 > 0,D1D2 > D0.

Proof. The Jacobian matrix of model (2.1) at P∗ = (S ∗, E∗, I∗,R∗) is

JP∗ =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 γ −σ

 .
Thus, the corresponding characteristic equation at P∗ is given by

(λ + σ)(λ3 + D2λ
2 + D1λ + D0) = 0. (3.13)

Obviously, there exists always a negative eigenvalue, λ = −σ, and other roots need to be determined
by the Routh-Hurwitz criterion. A necessary and sufficient condition for P∗ to be locally asymptotically
stable is D2 > 0,D0 > 0,D1D2 > D0.

We next discuss the global stability of the endemic equilibrium. Since the first three equations of
model (2.1) are independent of R, we only need to consider the following subsystem of (2.1).

dS
dt

= Λ − (β1 − β2
I

m+I )S (I + kE) − σS ,

dE
dt

= (1 − α)(β1 − β2
I

m+I )S (I + kE) − (σ + η)E,

dI
dt

= ηE + α(β1 − β2
I

m+I )S (I + kE) − (σ + ω + γ)I.

(3.14)

Lemma 3.4. (Global asymptotic stability theorem [20]) Let D ⊂ Rn be an open set, and let x 7→ P(x) ∈
Rn be a C1 function defined in D. We consider the differential equation

x′ = f (x), x ∈ D. (3.15)

Let x(t, x0) be the solution of Eq (3.15) satisfying the initial value x(0, x0) = x0. Assume the follow-
ing.

(i) D is simply connected.
(ii) There exists a compact attractive subset K ⊂ D.
(iii) There is a unique equilibrium x ∈ D for Eq (3.15).
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Furthermore, we suppose P−1(x) exists, and it is continuous when x ∈ K. Define

q = lim
t→∞

sup
x0∈K

1
t

∫ t

0
µ (B(x(s, x0)))ds,

where B = P f P−1 + P
∂ f [2]

∂x
P−1, and the matrix P f is the derivative of P(x) along the f direction. µ(B)

is the Lozinskil measure of the matrix, and µ(B) = lim
h→0+

‖I + hB‖ − 1
h

.

Suppose that (i)–(iii) hold, and q < 0 is satisfied. Then, the only equilibrium point of Eq (3.15) is
globally asymptotically stable.

Theorem 3.5. If R0 > 1, and σ(σ+ω+γ)
αΛ

< h(I) < σ(2σ+η)
(1−α)kΛ

, and β1(m + I)2 > β2(2mI + I2 + mkE), then the
endemic equilibrium of model (3.14) is globally asymptotically stable.

Proof. Theorem 3.5 is proved by Lemma 3.4. The existence of attractive compact sets inside Γ is
equivalent to proving that the model (3.14) is uniformly persistent [6]. According to Theorem 3.2,
when R0 > 1, P̄0 is unstable. Because Γ is the positive invariant set of model (3.14), there is always
a unique disease-free equilibrium point ∂Γ, the boundary of Γ. Therefore, model (3.14) is consistent
and persistent, and (i) is proved. The model (3.14) has a unique endemic equilibrium point, and (ii) is
satisfied. The Jacobian matrix of model (3.14) is

J =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
The second additive composition matrix corresponding to matrix J is

J[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .
Let P(x) = P(S , E, I) = diag(1,

E
I
,

E
I

), P f P−1 = diag(0,
E′

E
−

I′

I
,

E′

E
−

I′

I
). Matrix B = P f P−1 +

PJ[2]P−1 can be written as a block matrix

B =

(
B11 B12

B21 B22

)
,

where
B11 = a11 + a22,

B12 =
(

a23I
E

−a13I
E

)
,

B21 =
(

Ea32
I −

Ea31
I

)T
,

B22 =

(
a11 + a33 + E′

E −
I′
I a12

a21 a22 + a33 + E′
E −

I′
I

)
.
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Let (u, v,w) represent the vector in R3 � R

(
3
2

)
, and ‖·‖ is defined as ‖(u, v,w)‖ = max{|u| , |v + w|}.

Using the valuation method, we get µ(B) ≤ sup{g1, g2}, where g1 = µ1(B11)+ |B12| , g2 = µ1(B22)+ |B21|,
|B12| and |B21| are the norms of the matrix with respect to the norm of the l1 vector, µ1 is the Lozinkil
measure with respect to the l1 vector norm.

µ1(B11) = −h(I)(I + kE) + (1 − α)h(I)kS − 2σ − η,

|B12| =
I
E

[β1S −
β2S (2mI + I

2
+ mkE)

(m + I)2 ],

|B21| = max
{E

I
(η + αh(I)kS ),

∣∣∣∣∣−E
I
αh(I)(I + kE)

∣∣∣∣∣}
The absolute value of each column of off-diagonal matrix of determinant B22 is added to the corre-

sponding diagonal elements to obtain

B′22 =

(
a11 + a21 + a33 + E′

E −
I′
I a12

a21 a12 + a22 + a33 + E′
E −

I′
I

)
.

Let
X = ( E′

E −
I′
I ) − αh(I)(I + kE) + α[β1S − β2S (2mI+I

2
+mkE)

(m+I)2 ] − (2σ + ω + γ),

Y = ( E′
E −

I′
I ) − αh(I)kS + α[β1S − β2S (2mI+I

2
+mkE)

(m+I)2 ] − (2σ + ω + γ + η).

Taking the maximum value of two diagonal elements of B22
′, that is, µ1(B22), then, µ1(B22) =

max{X,Y}. Therefore, we have

g1 = −h(I)(I + kE) + (1 − α)h(I)kS − 2σ − η +
I
E

[β1S −
β2S (2mI + I

2
+ mkE)

(m + I)2 ] (3.16)

g2 = max
{E

I
(η + αh(I)kS ),

∣∣∣∣∣−E
I
αh(I)(I + kE)

∣∣∣∣∣} + max{X,Y}. (3.17)

According to the last two equations of model (3.14), the following equation can be obtained:{ I′
I = ηE

I + αh(I)S + αh(I)S k E
I − (σ + ω + γ),

E′
E = (1 − α)h(I)S I

E + (1 − α)h(I)S k − (σ + η).

Substitute in (3.16) and (3.17) to get

g1 = −h(I)(I + kE) + (1 − α)h(I)kS − 2σ − η

+ (
E′

E(1 − α)h(I)S
− k +

σ + η

(1 − α)h(I)S
)[β1S −

β2S (2mI + I
2
+ mkE)

(m + I)2 ]

g2 = max
{

(
I′

I(η + αh(I)kS )
+
−αh(I)S + σ + ω + γ

η + αh(I)kS
)(η + αh(I)kS ),∣∣∣∣∣−(

I′

I(η + αh(I)kS )
+
−αh(I)S + σ + ω + γ

η + αh(I)kS
)αh(I)(I + kE)

∣∣∣∣∣} + max{X,Y}.
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If max {η + αh(I)kS , αh(I)(I + kE)} = η + αh(I)kS , then max{X,Y} = X, |B21| = E
I (η + αh(I)kS ),

and
g2
′ = (

I′

I(η + αh(I)kS )
+
−αh(I)S + σ + ω + γ

η + αh(I)kS
)(η + αh(I)kS ) + X.

If max {η + αh(I)kS , αh(I)(I + kE)} = αh(I)(I + kE), then max{X,Y} = Y , |B21| =
E
I αh(I)(I + kE),

and
g2
′′ = (

I′

I(η + αh(I)kS )
+
−αh(I)S + σ + ω + γ

η + αh(I)kS
)αh(I)(I + kE) + Y.

In addition, g2 = sup{g2
′, g2

′′}. When R0 > 1, σ(σ+ω+γ)
αΛ

< h(I) < σ(2σ+η)
(1−α)kΛ

, and β1(m + I)2 > β2(2mI +

I2 + mkE),

lim
t→∞

1
t

∫ t

0
g1(t)dt = lim

t→∞

1
t

∫ t

0
−h(I)(I + kE) + (1 − α)h(I)kS − 2σ − η

+ (
E′

E(1 − α)h(I)S
− k +

σ + η

(1 − α)h(I)S
)[β1S −

β2S (2mI + I
2
+ mkE)

(m + I)2 ]dt < 0,

lim
t→∞

1
t

∫ t

0
g2
′(t)dt = lim

t→∞

1
t

∫ t

0
−αh(I)S − αh(I)(I + kE) − σ + α[β1S −

β2S (2mI + I
2
+ mkE)

(m + I)2 ]dt

+ lim
t→∞

1
t

In
E(t)
E(0)

< 0,

lim
t→∞

1
t

∫ t

0
g2
′′(t)dt = lim

t→∞
1
t

∫ t

0
(−αh(I)S +σ+ω+γ)αh(I)(I+kE)

η+αh(I)kS + α[β1S − β2S (2mI+I
2
+mkE)

(m+I)2 ]

−αh(I)kS − (2σ + ω + γ + η)dt + lim
t→∞

1
t (αh(I)(I+kE)

η+αh(I)kS − 1)In I(t)
I(0) + lim

t→∞
1
t In E(t)

E(0) < 0.

So, we can get q = lim
t→∞

sup
xo∈K

1
t

∫ t

0
µ (B(x(s, x0)))dt < 0. According to Lemma 3.4, the endemic

equilibrium of system (3.14) is globally asymptotically stable.

Theorem 3.6. When R0 > 1, and σ(σ+ω+γ)
αΛ

< h(I) < σ(2σ+η)
(1−α)kΛ

and β1(m + I)2 > β2(2mI + I2 + mkE) are
satisfied, the endemic equilibrium P∗ of model (2.1) is globally asymptotically stable.

Proof. According to Theorem 3.5, when t → ∞, (S , E, I) → (S ∗, E∗, I∗). We have the limit subsystem
of model (2.1):

dR
dt

= γI − σR.

We can solve it directly to get R = ce−σt + e−σt
∫
γI∗eσtdt. (c is an arbitrary constant). When t → ∞,

R(t) →
γI∗

σ
= R∗. Therefore, the endemic equilibrium of model (2.1) is globally asymptotically

stable.

4. Sensitivity analysis

Note that the basic reproduction number R0 is the threshold determining the disease dynamics. It
is of great interest to explore how model parameters affect R0. Therefore, in this section, we carry out
sensitivity analysis by using the method described in [21].
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Definition 4.1. The normalized forward sensitivity index of a variable u to a parameter q is defined as

Υu
q =

∂u
∂q
×

q
u
. (4.1)

We summarize the computed sensitivity indices of R0 to several important model parameters in
Table 1 and present them in Figure 2.

Table 1. Sensitivity indices of R0.

Parameter Value Sensitivity index Source of parameters
Λ 0.1 1 Estimated
β1 0.027 1 [22]
α 0.3 −0.094586 Estimated
σ 0.016 −0.697876 Data
η 0.143 −0.198472 [23]
k 0.23 0.275644 [24]
ω 0.003 −0.006227 [25]
γ 0.33 −0.684921 [22]

Figure 2. Graph of sensitivity indices of R0.

Sensitivity indices shown in Table 1 indicate that increasing the recruitment, Λ, by 1% will increase
the basic reproduction number R0 by 1%. Increasing the transmission rate, β1, by 1% will also in-
crease the basic reproduction number R0 by 1%. Sensitivity indices in Table 1 show that Λ, β1 and
k have positive effects on R0, while other parameters (α, σ, η, ω, γ) all have negative effects on R0.
For instance, increasing the recovery rate, γ, by 1%, will lower the basic reproduction number R0 by
0.684921%. Table 1 also shows that Λ, β1, σ and γ are the most important parameters affecting the
basic reproduction number R0. In practice, control measures should therefore focus on lowering the
disease transmission rate β1, and increasing the recovery rate γ.
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5. Numerical simulations

According to the expression of basic reproduction number, we analyze the change of R0 when some
parameters change.
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Figure 3. Contour plots of R0 affected by parameters Λ vs. β1, β1 vs. γ, β1 vs. k.

The contour plots of the basic reproduction number R0 with respect to parameters
Λ vs. β1, β1 vs. γ, β1 vs. k are presented in Figure 3. When other parameters are fixed, as shown in
Figure 3, R0 increases as Λ and/or β1 increases, while R0 decreases if β1 decreases and/or γ increases.
This is consistent with the sensitivity analysis presented in Table 1.
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Figure 4. A numerical solution of model (2.1). The initial value (3.50, 1.10, 0.17, 0.23) was
used.

Take m = 40,100, β1 = 0.027, β2 = 0.01 with other parameters given in Table 1. We see that R0 =

0.6203 < 1. Numerical simulation presented in Figure 4 confirms that the DFE, P0 = (6.25, 0, 0, 0), is
globally asymptotically stable, and the disease dies out.
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Now, we increase β1 to 0.08 so that R0 = 1.8380 > 1, and the numerical simula-
tion presented in Figure 5 shows that the solution approaches the endemic equilibrium, P∗ =

(3.4004, 0.2007, 0.1214, 2.5047).
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Figure 5. A numerical solution of model (2.1) with R0 > 1.

If R0 > 1, the disease becomes endemic. Taking different sets of initial values, Figure 6 indicates
that the endemic equilibrium P∗ is globally asymptotically stable.
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Figure 6. Numerical trajectories of model (2.1) showing that the endemic equilibrium P∗ is
globally asymptotically stable.
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It follows from the expression of R0 that media coverage related parameters β2 and m do not affect
the basic reproduction number. However, both β2 and m have impacts on the endemic equilibrium
level.

Take β1 = 0.08, m = 0.1. Set β2 as 0.06, 0.03, 0.01, 0 , respectively, and other parameters are the
same as those in Table 1. Figure 7 presents the time courses of infected population I(t) under different
values of β2 (assuming the same initial value), showing that as β2 increases, the infected population
decreases.
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Figure 7. Numerical solutions (the I(t) component) of model (2.1) with different values of
β2.

Similarly, we can explore the impact of m on the spread of disease. Let β1 = 0.08, β2 = 0.06 and
m be 100, 10, 1, 0, respectively. Numerical solutions shown in Figure 8 show that the smaller the half-
saturation constant m is, the faster the number of infected individuals decreases, with fewer infected
individuals.
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Figure 8. Numerical solutions (the I(t) component) of model (2.1) with different values of
m.

6. Summary

In this paper, we considered an SEIR model with media coverage mediated nonlinear infection
force. Using the next generation matrix method, we identified the basic reproduction number R0.
Similar to many other disease models, our model also exhibits threshold dynamics in the sense that
the disease dies out if the basic reproduction number is less than one, and the disease is endemic if the
basic reproduction number is greater than one.

If R0 < 1, the disease free equilibrium has been shown to be globally asymptotically stable, which
was achieved by using the comparison method. If R0 > 1, a global stability result of the endemic
equilibrium has been established by using the second additive composite matrix method.

We also performed (local) sensitivity analysis of R0 to disease parameters, and we found that pa-
rameters Λ, β1 and k have positive effects on the increase of R0, while other parameters, α, σ, η, ω, γ,
all have negative effects on R0. Of all related parameters, Λ, β1, σ and γ are the most important param-
eters affecting the basic reproduction number R0. However, practical control measures should focus on
lowering the disease transmission rate β1, and increasing the recovery rate γ.

Numerical simulations were carried out to illustrate our theoretical results and to explore how the
basic reproduction number R0 depends on disease parameters. In our model, the media coverage
related parameters β2 and m have no impacts on the basic reproduction number, but they do affect the
endemic equilibrium level: A larger β2 and smaller m will be beneficial to lowering the endemic level
of disease. This suggests that if the disease persists and becomes endemic, proper media coverage
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resulting in public awareness of the disease would lower the endemic level.
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