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Mitochondria play a critical role in energy metabolism and signal transduction,
which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and
ion homeostasis are mainly mediated by channels and transporters present on
mitochondrial membranes. Mitochondria comprise two distinct compartments,
the outer mitochondrial membrane (OMM) and the inner mitochondrial
membrane (IMM), which have differing permeabilities to ions and metabolites.
The OMM is semipermeable due to the presence of non-selective molecular
pores, while the IMM is highly selective and impermeable due to the presence of
specialized channels and transporters which regulate ion and metabolite fluxes.
These channels and transporters are modulated by various post-translational
modifications (PTMs), including phosphorylation, oxidative modifications, ions,
and metabolites binding, glycosylation, acetylation, and others. Additionally, the
mitochondrial protein quality control (MPQC) system plays a crucial role in
ensuring efficient molecular flux through the mitochondrial membranes by
selectively removing mistargeted or defective proteins. Inefficient functioning
of the transporters and channels inmitochondria can disrupt cellular homeostasis,
leading to the onset of various pathological conditions. In this review, we provide a
comprehensive overview of the current understanding of mitochondrial channels
and transporters in terms of their functions, PTMs, and quality control
mechanisms.
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1 Introduction

Mitochondria are the cellular power station and signaling hub, consisting of a double
membrane system that forms the outer mitochondrial membrane (OMM) and inner
mitochondrial membrane (IMM), creating the intermembrane space (IMS) and
mitochondrial matrix (MM). The OMM is porous, allowing free passage of molecules
less than 10,000 Da, with no membrane potential across it. On the other hand, the IMM acts
as a highly discerning barricade against small molecules and ions, permitting regulated
passage exclusively through specific membrane transport/channel proteins (Gray, 2001;
Kuhlbrandt, 2015). The IMM is divided into two distinct regions: the inner boundary
membrane (IBM), which connects with the outer mitochondrial membrane (OMM), and the
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cristae membrane (CM), which forms inward-folded structures
within the MM (Hoshino et al.). IBM and CM are functionally
distinguished and have different protein compositions. The CM is
enriched with respiratory chain complexes, iron-sulfur cluster
assembly proteins, and selective channels/transporters while the
IBM contains the protein translocation and membrane fusion
machinery (Vogel et al., 2006; Suppanz et al., 2009). Cristae
junctions are tube-like membrane invaginations of ~25 nm
diameter that separate IBM and CM (Rabl et al., 2009; Davies
et al., 2012; Busch, 2020). The cristae occupy most of the inner
membrane surface, indicating their crucial role in cellular
physiology. Mitochondria are essential for various cellular
processes such as oxidative phosphorylation, calcium (Ca2+) and
redox regulation, mitochondrial protein folding, mitophagy,
metabolic pathways such as tricarboxylic acid-, β-oxidation- and
urea cycle TCA cycle, and controlling signaling events from cell
survival to cell death (Manoli et al., 2007; Murphy et al., 2016). To
carry out these high-energy-requiring cellular processes, the
crosstalk between mitochondria and the cytoplasm occurs uni- or
bi-directionally through various channels and transporters present
on the mitochondrial membranes, which function as gatekeepers,
restricting access to the organelle from the cytoplasm. This
selectivity of both the OMM and IMM helps to maintain MM’s
volume by regulating influx and efflux mechanisms for ions and
metabolites, primarily K+ and Ca2+. Additionally, these fluxes help to
balance the levels of other important ions such as Na+, Cl−, and H+.
Disruptions in ion homeostasis in the cytosol and MM can lead to
detrimental consequences, ultimately causing cell death (Javadov
et al., 2018).

Mitochondrial (~99%) proteins are mostly encoded by the
nucleus and equipped with specific targeting sequences that guide
them from the cytosol to the mitochondrial surface receptors,
ensuring correct protein localization and assisting in protein
quality control. The translocases not only transport newly
synthesized proteins to their correct mitochondrial
destinations but also establish a complex dynamic network
(Dolezal et al., 2006; Neupert and Herrmann, 2007). The
efficiency of protein import into mitochondria is a significant
indicator of the healthy energetic state of mitochondria.
Dysfunction in mitochondrial metabolism decreases inner
membrane potential (ΔΨm) and impairs protein import
(Nunnari and Suomalainen, 2012; Frazier et al., 2019). The
mitochondrial transport machinery plays a vital role in
protein biogenesis, and its quality control is essential for
understanding mitochondrial stress response-related diseases.
The mitochondrial proteome quality is necessary for cellular
survival and is maintained by various interlinked cellular
processes (Calvo et al., 2016; Gómez-Serrano et al., 2018). The
mitochondrial protein quality control system ensures proper
protein production, maintenance, functional switching, and
degradation (Anand et al., 2013). Various interlinked cellular
processes, from the molecular to the organellar level, participate
to maintain mitochondrial proteome/homeostasis based on
cellular need and this is achieved by the mitochondrial protein
quality control (MPQC) system (Jadiya and Tomar, 2020). The
cytoplasmic protein quality control machinery helps eliminate
misfolded proteins in the OMM, while each interior
compartment of mitochondria (IMS, MM) possesses its own

specialized machinery, including mitochondrial chaperones,
proteases, and disaggregases (Baker and Haynes, 2011; Song
et al., 2021). As mitochondria play a crucial role in cellular
events, including essential pathways of amino acid
biosynthesis, fatty acid oxidation, and signal transduction,
stress response apoptotic pathways, maintaining a healthy
mitochondrial environment is crucial for cell function (Schon
and Manfredi, 2003). Therefore, uninterrupted checks and repair
of mitochondria are necessary to keep a healthy mitochondrial
pool in cells.

Post-translational modifications (PTMs) are crucial for
maintaining the proteome and mitochondrial homeostasis.
Throughout the protein molecular transition process, which
includes transcription, post-transcription, translation, and
post-translation, mitochondrial channels and transporters are
tightly regulated by PTMs. These modifications, such as
acetylation, phosphorylation, ubiquitination, nitrosylation,
and oxidation, alter the chemical properties of amino acid
residues, thereby influencing protein distribution, stability,
and function (Doyle and Mamula, 2001; Beltrao et al., 2013).
Although the influence of PTMs on misfolded proteins is
extensively studied, our understanding of the underlying
molecular pathways governing these PTMs and their
significance in mitochondrial proteins, specifically channels
and transporters, is still incomplete. Moreover, the molecular
identity of numerous mitochondrial channels and transporters
has been recently discovered or remains unknown, which has
limited exploration of their PTMs. In this review, we aim to
present an up-to-date overview of various mitochondrial
channels and transporters, along with their associated PTMs
and MPQC mechanisms (Figures 1, 2), shedding light on their
roles in both normal physiological processes and pathological
conditions.

2 Mitochondrial transporters/channels

Mitochondrial transporters and channels play a critical role in
regulating the exchange of metabolites between the MM and the
cytoplasm while maintaining the electrochemical proton gradient
required for oxidative phosphorylation (OXPHOS). These channels
are located in both the OMM and IMM and the exchange of
metabolites/ion fluxes is maintained by various chemical signals
and mechanical stimuli, allowing metabolites compartmentalization
and regulation of cell volume and ΔΨm (O’Rourke, 2007; Szabo and
Zoratti, 2014). Understanding the molecular processes of
mitochondrial channels and transporters is critical to
comprehend their biological significance.

2.1 OMM channels/transporters, their
control mechanisms, and PTMs

The OMM contains around 200 proteins that act as the first line
of defense against the influx of metabolites into the mitochondria
(Pfanner et al., 2019). The main transporters and channels present in
the OMM, along with their PTMs and quality control mechanisms,
are discussed in detail here.
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2.1.1 Translocation of proteins through OMM
2.1.1.1 Translocase of the OMM (TOM) complex

The TOM complex serves as the main access point for proteins
into the mitochondria. High-resolution cryo-electron microscopy

studies show that it consists of three receptors, Tom20, Tom22, and
Tom70, the channel forming unit, Tom40, and three small proteins,
namely, Tom5, Tom6, and Tom7. Tom20 and Tom70, the
peripheral TOM receptors, bind to incoming proteins and

FIGURE 1
Channels and transporters present at the OMM and IMM. The transporters and channel proteins present on OMM and IMM are depicted with the
exchange ion/molecule machineries. VDAC-Voltage-dependent anion channel; SAM- Sorting and Assembly Machinery; MAC-Mitochondrial Apoptosis-
induced Channel; TOM-Translocase of the OMM; MIM-Mitochondrial import; CLIC-Mitochondrial Chloride (Cl−) channel; UCP- Uncoupling proteins;
mtCU- Mitochondrial calcium uniporter channel; MICOS- Mitochondrial contact site and cristae organizing system; ANT-ADP, ATP translocase;
TIM- Translocase of the Inner Membrane; PiC- Mitochondrial phosphate carrier; MPTP- MPermeability Transition Pore; NCLX- Na+/Ca2+/Li+ exchanger;
HCX- H+/Ca2+ exchanger; IMAC-Mitochondrial inner membrane anion channel.

FIGURE 2
Post-translational modifications on mitochondrial channels and transporters. The PTMs occur at specific sites on the transporters. The various
regulatory PTMs exhibited by both OMM and IMM transporters and channels are denoted. VDAC-Voltage-dependent anion channel; TOM-Translocase
of the OMM; UCP- Uncoupling proteins; mtCU- Mitochondrial calcium uniporter channel; ANT-ADP, ATP translocase; TIM- Translocase of the Inner
Membrane; PiC- Mitochondrial phosphate carrier; PTP- Permeability Transition Pore; NCLX- Na+/Ca2+/Li+ exchanger; HCX- H+/Ca2+ exchanger;
IMAC-Mitochondrial inner membrane anion channel; CLIC-Mitochondrial Chloride (Cl−) channel.

Frontiers in Cell and Developmental Biology frontiersin.org03

Kadam et al. 10.3389/fcell.2023.1196466

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1196466


recognize pre-sequence or mitochondrial localization sequences.
The main subunit of the TOM complex is Tom40, the β-barrel
protein which can form a protein-conducting channel. Tom22 is the
docking site for Tom20 and Tom70, enabling protein precursor
transfer from the receptor toward the translocation channel (Wang
et al., 2020; Guan et al., 2021).

PTMs of TOM subunits play a crucial role in quality control. For
instance, during mitochondrial stress, ubiquitylation of Tom22 can
lead to mitochondrial membrane depolarization consequently (Wu
et al., 2018). Additionally, the phosphorylation of Tom22 by casein
kinase 2 (CSNK2) has been found to be essential for TOM complex
biogenesis in yeast (Kravic et al., 2018). In contrast, in mammalian
cells, phosphorylation of Tom22 is required for regulating Pink1/
Parkin-related mitophagy, as it enhances Pink1 import. The loss of
this phosphorylation impedes Pink1 import and promotes
mitophagy (Horie et al., 2003). Furthermore, Tom70 undergoes
ubiquitylation and phosphorylation as PTMs, but their precise
functions remain to be fully explored (Zhang et al., 2017). To
ensure the proper functioning of the TOM complex, the
mitochondrial protein translocation-associated degradation
(mitoTAD) pathway plays a critical role in quality control at the
entry gate of the OMM. This pathway aims to prevent blocking of
the TOM complex and retro-translocate IMS and IMM proteins
through TOM complex into the cytoplasm for ubiquitin-mediated
proteasomal degradation (Figure 3) (Ravanelli et al., 2020). To
initiate the mitoTAD pathway, first Ubx2 binds to the TOM
complex. Secondly, the cytosolic AAA ATPase Cdc48 then binds
to the UBX domain of Ubx2 and pulls the substrate. Thirdly, it
further causes the extraction and unfolding of the bound protein at
the expense of ATP hydrolysis, leading to proteasomal degradation
of the unbound protein (Bodnar and Rapoport, 2017). This process
blocks the fusion of damaged mitochondria and accelerates their
removal by mitophagy (Onishi et al., 2021). When mitochondrial
proteins are stalled in the TOM complex due to defects in
mitochondrial import, the Cis1-Msp1 recruitment mechanism is
activated by the mitochondrial compromised protein import
response (mitoCPR). Cis1, a cytosolic protein, is induced and

localized to the OMM, where it connects AAA ATPase
Msp1 and Tom70. Msp1 removes precursors from the import
channel for proteasomal degradation (Figure 3).

In addition, the accumulation of Pink1 due to mitochondrial
dysfunctions leads to interactions with various components of the
TOM complex, such as Tom22, and Tom70 has been found to be
critical for maintaining mitochondrial quality control (Lazarou
et al., 2012; Maruszczak et al., 2022). The Tom70 and Parkin
interaction triggers mitophagy upon mitochondrial import
blockage, and Parkin mutant cells exhibit reduced Tom70-Parkin.
Furthermore, Tom70 is important for Pink1 import (Kato et al.,
2013), although further studies are required to understand the
mechanistic insights on Pink1/Parkin import with the TOM
complex.

2.1.1.2 Mitochondrial import (MIM) complex
MIM complex is also one of the major translocases to insert the

proteins having a single or multiple α-helical membrane anchors. It
is made up of two membrane-spanning alpha-helical proteins,
Mim1 and Mim2, with Mim1 as a major constituent (Dimmer
et al., 2012). Mim1 can form pores in a lipid bilayer, while
Mim2 may recognizes positively charged residues in precursor
proteins (Krüger et al., 2017).

The MIM complex is a highly dynamic system that operates in
three distinct states or pools to import various precursor proteins
into the OMM. In the first pool, the MIM-TOM complex accepts
precursor proteins from Tom70. Tom70 imports single-spanning
proteins such as Pth2 and Mcy1, while Tom20 helps import Gem1.
Once these proteins are brought to the MIM complex, they are
incorporated into the OMM. The second pool, known as the MIM-
SAM complex, plays a crucial role in enhancing the early assembly
events of small TOM subunits. The third pool, free MIM, inserts
single-spanning proteins like Msp1 and Tom20 that are imported in
a Tom70-independent manner. This dynamic coupling to partner
proteins allows the MIM complex to import various types of
precursor proteins, making it an essential regulator in the
biogenesis of OMM proteins (Doan et al., 2020; Vitali et al.,

FIGURE 3
TOM complex associated ubiquitination of mitochondrial proteins. The “mitoCPR” pathway initiates through stress-stimulated dysfunctional
mitochondrial protein import. It further causes localization of Cis1 at the TOM complex through its physical interaction with TOM70 subunit. Cis1 then
recruits the AAA ATPase ATAD1/Msp1 at the TOM complex to remove the ubiquitinated protein and put them for proteasomemediated degradation. The
“MitoTAD” pathway continuously checks the import channel, removing the blockade through TOM-Ubx2-p97/Cdc48 complex. The
“retrotranslocation” pathway includes the export of unfolded intra-mitochondrial proteins to the cytoplasm for their ubiquitin-mediated proteasomal
degradation. The “import associated ubiquitination” is mediated byOMM localized E3 ligase, March5, which constitutively ubiquitinates the incoming pre-
proteins whereas USP30 deubiquitinase remove the ubiquitin, mediating mitochondrial protein import.
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2020). The MIM complex comprises multiple copies of Mim1,
which form a channel in a lipid membrane, and one or two
copies of Mim2 (Krüger et al., 2017). Recent studies have shed
light on the critical role of the MIM complex in facilitating the
import, assembly, and localization of OMM proteins (Vitali et al.,
2020). By working together with TOM receptors and the SAM
complex in a sequential and co-operative manner, theMIM complex
can integrate different types of proteins into the OMM, including
signal-anchored, tail-anchored, and single-spanning proteins.
Nevertheless, further research is required to fully understand the
molecular mechanisms by which sorting, and insertion of alpha-
helical outer membrane proteins occur.

MIM is also involved in the biogenesis of various OMM
proteins, such as Tom20, Tom70, and tail-anchored receptors
Tom5, Tom6, and Tom7 (Thornton et al., 2010). So far, PTMs
of MIM are not well studied. However, import of Tom70 precursor
depends on phosphorylation at Ser12/16 of MIM1 by casein kinase
2 in Yeast (Schmidt et al., 2011). The cytosolic domains of
Atg32 and Gem1, which are targeted to and integrated into the
OMM, depend on MIM involvement, indicating its critical role in
OMM protein biogenesis (Vitali et al., 2020). Moreover, MIM has
been found to regulate the assembly of Fzo1 and Ugo1, two proteins
involved in mitochondrial fusion (Dimmer et al., 2012), as well as
Ubx2, an ER-resident protein involved in the ER-associated
degradation pathway (Mårtensson et al., 2019), ultimately
contributing to MPQC. The beta-barrel precursor proteins
initially cross the TOM channel and are then incorporated via
the SAM complex from IMS. The TOM receptors also bind to
alpha-helical precursor proteins and bring them to the MIM
complex. The MIM and SAM complexes work together to
assemble the alpha-helical embedded and beta-barrel protein
subunits of the TOM complex, highlighting the crucial role of
the MIM complex in OMM protein biogenesis.

2.1.1.3 Sorting and Assembly Machinery (SAM)
The sorting and assembly of complex β-barrel proteins in OMM

requires additional machinery beyond the TOM complex, such as
the SAM complex. The SAM complex mainly contains three
subunits Sam50 (Tob55, Omp85), and the two peripheral
components, Sam35 (Tom38, Tob38), and Sam37 (Mas37).
Homology studies identified that human Sam50 is essential for the
biogenesis of human Tom40 which is a β-barrel protein and
Sam37 stabilizes mature Tom40 protein through electrostatic
interactions, consequently facilitating successive TOM assembly
(Humphries et al., 2005; Wang et al., 2021). Sam50 plays a key role
in β-barrel precursor recognition and binding, as well as interacting
with the MICOS complex for respiratory complex assembly (Ding
et al., 2015). Additionally, Sam50 is involved in PINK1-Parkin-
mediated mitophagy and mitochondrial dynamics, and recent
research suggests its cooperation with p62/SQSTM1 mediates
efficient mitophagy (Abudu et al., 2021). Sam37 is involved in the
release of precursor proteins from SAM, indicating SAM’s
substrate specificity is not limited to β-barrel proteins but also
involves most α-helical Tom proteins. In C. elegans, the
Sam50 homolog is essential for mitochondrial maintenance
(Jian et al., 2018), suggesting its importance in mitochondrial
function is evolutionarily conserved.

2.1.2 Transport of metabolite across OMM
Being the most abundant key protein of the OMM, voltage-

dependent anion channels (VDAC) is a β-barrel membrane protein
that spans the inner and outer environment of OMM where it
participates in and regulates most of the metabolites such as
inorganic phosphates, ADP, pyruvate and certain amino acids
(approximately 4 kDa of molecular weight) transported across the
OMM based on their conductance property (Colombini, 2012; De
Pinto, 2021; Mannella, 2021). It has two different conductance

TABLE 1 PTMs of the mitochondrial channels/transpoters

Name of the
transporter/channel

Location PTMs References

TOM OMM Phosphorylation and ubiquitylation Kravic et al. (2018); Zhang et al. (2017)

MIM OMM Phosphorylation Schmidt et al. (2011)

VDAC OMM Acetylation, phosphorylation, GlcNAcetylation,
ubiquitination and deamidation

Reina et al. (2016); Queralt-Martín et al. (2020); De Pinto et al.
(2016); Johnsen et al. (2013); Pittalà et al. (2020)

ANT IMM Phosphorylation, acetylation, succinylation,
glutathionylation and oxidation

Lam et al. (2013); Nguyen et al. (2013); West et al. (2006); Lozano
et al. (2020)

TIM IMM Oxidation Ramesh et al. (2016)

LETM1 IMM Phosphorylation, and methylation Huang et al. (2017); Liu et al. (2019)

MCU IMM Methylation, oxidation, phosphorylation,
glutathionylation

Lee et al. (2016); Dong et al. (2017); Joiner et al. (2012); Zhao et al.
(2019)

CLIC OMM
and IMM

Phosphorylation Guo et al. (2018)

PiC IMM Methylation, phosphorylation and acetylation Alves-Figueiredo et al. (2021)

mitoKCa IMM Phosphorylation, nitrosylation, and sulfhydration Walewska et al. (2018); Rotko et al. (2020a); Walewska et al. (2022)

UCP IMM Ubiqutination, sulfonylation, glutathionylation Mookerjee and Brand. (2011), Chouchani et al. (2016); Mailloux
et al. (2011)
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states, permitting a selective route for metabolites and ions: an open
(anion selective high conductance) and a closed (slightly cation-
selective low conductance). Regardless of little variation in the
conformation states of the N-terminus, all possible structures
were demonstrated to correspond to the open high conductance
state whereas no structural explanation of the closed state has yet
been evidenced (Choudhary et al., 2014). This different conductance
is important for maintaining the membrane permeability of ATP/
ADP, Ca2+ homeostasis, and apoptotic signaling. The dissociation of
hexokinase from VDAC triggers apoptosis due to influx of Ca2+ into
mitochondria (Keinan et al., 2010). Three VDAC isoforms, namely,
VDAC1, VDAC2 & VDAC3 in humans have been found.
VDAC2 and VDAC3 structures are less studied, however, all
VDACs are believed to contribute to the same general structural
features (Böhm et al., 2020). Although isoforms of VDAC are
characterized by slight differences in their amino acid sequences,
studies suggest different function in physiological and disease
conditions for each VDAC isoform (Anflous et al., 2001; Cheng
et al., 2003; Menzel et al., 2009).

VDAC undertakes various PTMs, namely, oxidative PTMs
(which modify the redox status of a cell), acetylation,
phosphorylation, GlcNAcetylation and ubiquitination. Different
numbers of cysteines found in VDAC isoforms led researchers to
study their PTMs. Mutagenesis studies in Yeast with the individual
or cluster cysteines of VDAC3 showed an inverse relationship
between the number of cysteines and the pore-forming activity,
likely due to the formation of intrachain disulfide bridges, signifying
PTMs role in modulating VDAC3 (Reina et al., 2016; Queralt-
Martín et al., 2020). The study by the Saletti group revealed that
VDAC cysteine residues can undergo progressive oxidation of sulfur
which may be reversible or irreversible under physiological
conditions. This oxidation consists of a series of events from
redox reactive thiol (–SH) to disulfide bonds (RS-SR), sulfinic
acid (SO2H), or sulfonic acid (SO3H), sulfhydration (SSH), and
sulfenylation (SOH) (Reina et al., 2020). Oxidative PTMs of
cysteines suggested a preferential sensitivity to oxidation for each
sulfur-containing amino acid of VDAC (De Pinto et al., 2016). A
distinct modification of each cysteine can correlate to a specific
functional/structural role of VDAC, understanding the oxidative
potential for reactive oxygen species (ROS) generation, especially in
IMS which has acidic pH and is favorable for oxidation. Other
common PTMs such as phosphorylation at Ser104 by a protein
kinase C (PKC), a cAMP-dependent protein kinase A (PKA), and a
glycogen synthase kinase-3β (GSK3β) and acetylation at the
N-terminal amino acid have also been found in VDACs. PKA
and c-Jun N-terminal kinase-3 (JNK3) mediated phosphorylation
of VDAC1 controls apoptotic activity, modulating its interaction
with cytoskeletal components (Kerner et al., 2012; Reina et al., 2020).
Elevated levels of VDAC O-GlcNAcylation are seen in rats having
low running capacity, indicating this modification may serve
increased mitochondrial stability (Johnsen et al., 2013).
Moreover, the extent of ubiquitination of VDAC3 is observed
directly proportional to the duration of hypothermia, may
serving as a protective pathway in hypothermia against oxygen-
glucose deprivation/recovery (OGD/R) (Zhao et al., 2020).
Furthermore, a very unusual PTM, the deamidation at asparagine
(Asn37, Asn106, Asn207, Asn214, and Asn239) and glutamine
(Gln166 and Gln226) of VDAC1 was discovered in response to

oxidative stress and known to interact with superoxide dismutase1
(SOD1) mutant (SOD1G93A) in NSC34 cells of amyotrophic lateral
sclerosis (ALS) (Pittalà et al., 2020). The structural changes in
VDAC1 due to these PTMs clarifies the interaction between
VDAC1 and mutant form of SOD1 as well as ALS pathogenesis
(Pittalà et al., 2020). Although the evolutionary roots highlight the
importance of VDACs in mitochondria, gaining a deeper
understanding of the connection between the structure and
function of VDAC conductance, the structural variances
influenced by the placement of PTMs in amino acid sequences,
and their voltage-dependent mechanism would simplify the
investigation of VDAC isoforms’ functions and their involvement
in neurodegenerative therapeutics.

Not all three isoforms of VDAC but VDAC1 is known to have a
function in MPQC. An OMM localized translocator protein, TSPO
was found to interact with VDAC1, stimulating a ROS-mediated
inhibition of activation of PINK1/Parkin-dependent mitophagy
(Gatliff et al., 2014). In Pink1/Parkin-dependent mitophagy,
depolarization of the IMM results in the accumulation of
Pink1 on the OMM, recruiting Parkin, an ubiquitin ligase. This
in turn leads to the ubiquitination of the OMM proteins, including
VDAC, and consequent degradation by the proteasome. Under
TSPO-VDAC1 interaction, increased ROS levels cause a change
in ΔΨm that enables Pink1 kinase import and blocks recruitment of
Parkin and thereby mitophagy. TSPO overexpressing cancerous
cells caused increased VDAC1 binding that led to dysfunctional
mitochondria, signifying that coordinated TSPO-VDAC1
interaction is required to maintain mitochondrial homeostasis
(Shoshan-Barmatz et al., 2019). Further information is needed on
the structure of the closed state, how binding partners or ΔΨm could
lead to the open/closed states, the function and mobility of the
N-terminal α-helical domain of VDAC, and the physiological role of
VDAC oligomers.

2.1.3 OMM channels involved in cell death
Mitochondrial Apoptosis-induced Channel (MAC) is a

voltage-independent and gigantic channel having high
conductance for both heterogeneous and small proteins like
cytochrome c and is regulated by Bcl-2 family proteins.
Nonetheless, MAC and Permeability Transition Pore (PTP)
opening may behave alone or accompanied, based on cell type
and death stimuli (Pavlov et al., 2001). Moreover, MAC activity is
considerably unique from the VDAC and TOM complex which
are integral channels of OMM. The very basic function of MAC is
to provide the passage for the release of cytochrome c (12.5 kDa)
in early apoptotic events. The onset of MAC activity corresponds
to the release of cytochrome c in several cell systems (Martinez-
Caballero et al., 2009). Bcl-2 family members are responsible for
MAC formation and its activity. The loss of MAC activity and
oligomeric Bax (pro-apoptotic studies) provide strong data that
oligomeric activated Bax is a structural component of MAC
(Dejean et al., 2005). On the contrary, anti-apoptotic
molecules like Bcl-2 prevent Bax oligomerization, directly
binding to pro-apoptotic effectors (Leber et al., 2007).
Regulation of MAC is also mediated through BH-3-only
proteins. These proteins are required to decipher the survival
and death signals throughout the cell. They act either as
activators or sensitizers. Bid, Bim, p53, and perhaps PUMA
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directly interact with Bax and Bak, causing a conformational
change, which activates their oligomerization leading to MAC
formation (Chipuk and Green, 2008).

MAC directly is not involved in the modulation of MPQC.
However, Bcl-2 family members were found to take part in the
maintenance of a healthy mitochondrial milieu, regulating Parkin/
PINK1-dependent mitophagy. Bcl-xL and Mcl-1 bind to Parkin/
PINK1 and prevent Parkin translocation to depolarized
mitochondria and thus block Parkin-dependent ubiquitination of
mitochondrial substrates and downstream signaling, implying Bcl-2
effectors can also be a target for therapeutics (Hollville et al., 2014;
Zhang et al., 2020).

2.1.4 OMM as a site of inter-organelle contacts and
lipid transfer

Mitochondria–Endoplasmic reticulum contact sites (MERCs)
[Endoplasmic reticulum–mitochondria encounter structure
(ERMES) in yeast] is a multimeric protein complex that joins the
endoplasmic reticulum (ER) andOMM. The tethering proteins from
both ER and mitochondria build a bridge to form MERCs. The
tethering molecules include vesicle-associated membrane protein
associated protein B (VAPB) (De Vos et al., 2012), protein tyrosine
phosphatase-interacting protein-51 (PTPIP51) (De Vos et al., 2012),
mitofusin1/2 (MFN1/2) (Sebastián et al., 2012), inositol 1,4,5-
trisphosphate receptor (IP3R)-glucose-regulated protein 75
(GPR75)-voltage-dependent anion channel (VDAC1) complex
(Szabadkai et al., 2006a), and B-cell receptor-associated protein
31 (BAP31) and fission 1 homolog (FIS1) (Iwasawa et al., 2011).
MERCs are notable to shape the flux of Ca2+ and to maintain
synthesis and composition of membrane lipids, shuttling import and
export of lipids (Petrungaro and Kornmann, 2019). MERCs are
enriched with two transmembrane proteins; Sarco/endoplasmic
reticulum Ca2+ ATPase (SERCA) and inositol 1,4,5-trisphosphate
receptors (IP3R) provide Ca2+ shuttle service from the cytosol into
the ER lumen (Camello et al., 2002) and Ca2+ from the ER lumen
into the mitochondria (Szabadkai et al., 2006b). The ER-
mitochondrial resident structural proteins such as GTPase
MFN2 also participate in Ca2+ signaling (Naon et al., 2016). It
directly binds and transfers phosphatidyl serine (PS) across the ER-
mitochondria juncture (Hernández-Alvarez et al., 2019) to convert it
into phosphatidylethanolamine (PE) (Ardail et al., 1991). PS to PE
conversion warrants the suitable environment for PS transport and
mitochondrial health (Horvath and Daum, 2013). Apart from Ca2+

signaling, homeostasis of membrane lipids is one of the signatory
roles of MERCs. The precursor of cardiolipin (CL) synthesis,
phosphatidic acid mostly comes from the ER through MERCs
(Potting et al., 2013) and CL is very well known to be involved
in various mitochondrial physiological processes like mitochondrial
bioenergetics, structure, and mitophagy (Hsu et al., 2015). Besides
CL, MERCs also serves as site for phosphatidyl serine and other lipid
synthesis pathways. Lipid droplets bud from ER and provide fatty
acids to mitochondria for regulating fatty acid oxidation and the
tricarboxylic acid (TCA) cycle. The abundance of cholesteryl esters
(CE) and triacylglycerols (TG) producing enzymes; acyl-CoA
cholesterol acyltransferase-1 (ACAT1) and diacylglycerol
acyltransferase 2 (DGAT2) respectively at MERCS implies their
role in the biogenesis of lipid droplets (Stone and Vance, 2000; Stone
et al., 2009). Another entity of ER-mitochondria tethering proteins,

PDZ domain-containing protein 8 (PDZD8) ER transmembrane
protein is recognized as a regulator of Ca2+ dynamics in neurons
(Hirabayashi et al., 2017).

In yeast, ERMES is mainly formed by the mitochondrial
distribution, and morphology (MDM) complex. The OMM
protein, mitochondrial distribution, and morphology protein 10
(Mdm10) is a subunit of bothMDM and SAM complexes, physically
connecting the OMM and ER membrane to help in lipid transport
between the two membranes (Esposito et al., 2019). The switching
between MDM and SAM is controlled by Tom7. Thus, these
interlinking TOM, SAM, and ERMES complexes behave as a
functional network, maintaining mitochondrial structure and the
transport of metabolites. Along with Mdm10, other OMM proteins
like Mdm12, Mmm1, and Mmm2 are also components of ERMES.
Moreover, other transporters, like VDAC, Tom70, etc., are also
involved in the formation of ER-mitochondria contact sites
(Meisinger et al., 2006; Kornmann et al., 2009; Murley et al.,
2015). The SAM-Mdm10 complex offers an assembly platform
for the TOM complex and the Tom22 precursor uses Mdm10 for
its biogenesis, fostering an effective assembly of the TOM complex.
Interestingly, ERMES is connected to SAM via the Mdm10, and
ERMES subunits show strong genetic interactions with
mitochondrial contact site and cristae organizing system
(MICOS) subunits to maintain mitochondrial organization
(Hoppins et al., 2011). Give and take relationship between ER
and mitochondria provides a platform to understand the lipid
metabolism and signaling in both ER and mitochondria
compartments, extending the crucial role of MERCs in diseases
linked with alterations in lipid pool.

2.2 IMMchannels, their controlmechanisms,
and PTMs

IMM is the second level of entry barrier which is highly selective
and more secure for entry into the MM. The transporters or ion
channels, the part and parcel of IMM, are keenly engaged in
maintaining mitochondrial processes.

2.2.1 ADP, ATP translocase (ANT)
ANT is an antiporter in nature and belongs to the mitochondrial

carrier family (SLC25). It exchanges ATP from the MM and ADP
from ATP consumption in the remainder of the cell. The ANT can
be found in two states; the matrix and the cytoplasmic states,
compatible with the establishment of a high-conductance carrier
to dissipate the ΔΨm and lead to mitochondrial swelling (Vieira
et al., 2000). Initially, it was supposed as a dimer, but structural,
functional, and biophysical data now prove that this exists and
works as a monomer (Kunji and Ruprecht, 2020). Other than ADP/
ATP exchange, it also involves in stimulation of the Mitochondrial
Permeability transition Pore Complex (MPTP) by Ca2+ and ROS, a
mild uncoupling movement that is activated by anion superoxide,
peroxidized lipids, and fatty acids. All these functions are controlled
by ΔΨm (Brenner et al., 2011). ANT also modulates mitophagy, the
coordinated degradation of mitochondria, irrespective of its
nucleotide translocase catalytic activity. In response to the
bioenergetic collapse due to mitochondrial stress causing agents
(either CCCP or suppressors of OXPHOS), the ANT complex is
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necessary for inhibition of the presequence translocase TIM23,
stabilizing PINK1. ANT controls TIM23 indirectly, interacting
with TIM44. ANT1 knockout mice led to blunted mitophagy,
accumulating aberrant mitochondria, and indicating a novel
function of ANT as a fundamental facilitator of mitophagy
(Hoshino et al., 2019).

ANT undergoes numerous PTMs such as phosphorylation,
acetylation, succinylation at lysine, etc. ANT phosphorylation at
T84 and Y191 in the hearts of mice and humans have been observed
vital for cell fate and heart conductance (Lam et al., 2013).
Acetylation of ANT is associated with compromised cardiac
metabolism in mitochondria in the absence of Cyclophilin D
(CypD) in mice (Nguyen et al., 2013). Moreover, ANT
S-glutathionylation has been found on Cys57 in cardiac-specific
inducible NO synthase transgenic mice (Finoshin et al.). The CypD
binding site is situated alongside the glutathiolated Cys57,
modulating its function (West et al., 2006). Oxidation of the thiol
group of ANT is recently noticed to lead to mitochondrial
dysfunction through MPTP opening upon silicon dioxide (SiO2)
nanoparticles treatment (Lozano et al., 2020). The structural aspects
of the conformational changes for the interconversion of matrix and
cytoplasmic states and the free and substrate-bound intermediates
still ought to be solved. Further functional investigations are
necessary to find out PTMs, deepening insights into molecular
mechanisms and physiological relevance in diseases.

2.2.2 Translocase of the inner membrane (TIM)
TIM is the major gateway of IMM. TIM23, translocase of IMM

comprises Tim17, Tim21, Tim23, and Tim50 proteins which are
incorporated into the IMM displaying functional domains to the
IMS side, and Tim44, Tim14/Pam18, Tim16/Pam16, Pam17, and
Tim44 facing matrix side. Tim17 shares sequence similarity with
Tim23 presumably to form the translocation pore in the IMM.
Tim50 guides preproteins released from TOM to enter the
TIM23 complex and this transport is further controlled by
Tim21. The small TIM chaperone molecules are imported to the
OMM by an N-terminal end of Tom40. Tim54 interacts with small
TIM chaperones through its IMS domain and sends the precursors
to the carrier translocase of the inner membrane (TIM22) in aΔΨm-
dependent manner to release the proteins laterally into
IM(Herrmann and Neupert, 2013). The translocation from TOM
to TIM is regulated by the membrane potential, bolstering the
passage of the positively charged pre-sequences to the negatively
charged matrix side of IMM. The mitochondrial HSP70 chaperone
protein (mtHSP70) then forms a complex with the pre-sequence
associated motor (Hernández-Alvarez et al.), interacting with
TIM23 core components to force the proteins inside the matrix
at the expense of ATP. TIM23 also interacts with complexes III and
IV to translocate pre-protein into the matrix in an ATP-driven
manner. Mostly, the pre-sequence is cleaved by matrix
mitochondrial processing peptidase (MPP). The TIM23 complex
also confirms the lateral insertion of precursor proteins into the
IMM(Schulz et al., 2011). The mitochondrial intermembrane space
import and assembly (MIA) machinery brings in cysteine-rich
proteins such as the small TIM proteins into the IMS for their
oxidative folding. In addition to this, TOM complex precursors are
also guided by TIM to SAM complex. The oxidase assembly (OXA)
translocase mediates the sorting of IMM proteins imported by TOM

and Tim23-PAM machinery and exports them to IMM.
Interestingly, the N terminus of Pink1 is also imported through
the Tim23 import pathway (Silvestri et al., 2005), proposing the
possible role of TIM23 in mitophagy.

Although PTMs of TIMs are poorly understood, it has been
studied that oxidation of Tim17 by sulfhydryl oxidase Erv1 is
mediated by the mitochondrial disulfide relay. Tim17 contains a
pair of highly conserved cysteine residues which form a disulfide
bond when it is exposed to the IMS. This disulfide bond mediates
efficient protein translocation through the TIM23 complex and
dynamic gating of its pre-protein-conducting channel (Ramesh
et al., 2016).

2.2.3 Ion exchangers
Mitochondrial calcium (mCa

2+) plays an essential role in many
cellular functions maintaining proper levels of both cytosolic and
mitochondrial Ca2+ which is critical for cellular homeostasis. mCa

2+

efflux is regulated by both Na+-dependent (mitochondrial Na+–Ca2+

exchanger, NCLX) pathway and an Na+-independent (H+–Ca2+

exchanger) pathway. NCLX is a distinct exchanger from the
plasma membrane Na+–Ca2+ exchanger (NCX) and is found in
most cell types and tissues, with activity mainly observed in excitable
cells (Jiang et al., 2009; Palty et al., 2010). The activity of the H+–Ca2+

exchanger is mainly found in non-excitable cells. The ΔΨm,
stoichiometry of NCLX, and electrochemical gradient for Na+

entry into the MM from the cytosol all influence Ca2+ extrusion
from the matrix (Jiang et al., 2009). NCLX is endogenously
expressed in the IMM (Palty et al., 2010), consisting of two
transmembrane domains, α1 and α2, which bind ions and
translocate them across the membrane (Khananshvili, 1991). The
regulation of NCLX by ΔΨm is mediated through catalytic and
regulatory domains, which can link mitochondrial metabolic state
and Ca2+ signaling (Kostic et al., 2015). NCLX is also post-
translationally regulated by phosphorylation at Ser258 by protein
kinase A (Yang et al., 2003; Kostic et al., 2015) and palmitoylation at
cysteine (Reilly et al., 2015), which ubiquitously regulates Ca2+

homeostasis and ΔΨm in cells.
HCX (H+/Ca2+): HCX activity is shown to be dominant in

certain tissues such as lung, liver, smooth muscles, and kidney
where NCLX activity is weak (Gunter and Pfeiffer, 1990).
Though the molecular identity of HCX is yet to be revealed,
high-throughput RNA interference screening in fruit fly,
Drosophila identified a gene responsible for mitochondrial Ca2+

and H+ [LETM1 (leucine–zipper–EF hand-containing
transmembrane region), the human homolog] (Jiang et al., 2009).
Initial studies suggested that LETM1 functions as a Ca2+ influx
candidate (Jiang et al., 2009) but later studies demonstrated Ca2+

efflux from cardiac mitochondria in a free matrix Ca2+ concentration
dependent manner (Natarajan et al., 2020). The function of
LETM1 is controversial and debated as to whether it acts a
K+/H+ exchanger (KHE) as originally supposed or an Ca2+/H+

exchanger (CHE) as evidenced in studies (Austin and Nowikovsky,
2019; Lin and Stathopulos, 2019). LETM1-KD H9c2 cells altered
Ca2+ efflux, indicating LETM1-HCX mediated Ca2+ efflux
(Natarajan et al., 2020) whereas another finding showed that
LETM1 mediated mitochondrial Ca2+ regulation is facilitated by
a LETM1-KHE activity, modulating the activity of the
mitochondrial Na+/H+ exchanger (mNHE) eventually affecting
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NCLX-mediated Ca2+ efflux (Austin et al., 2017). A recent study
demonstrates that MICS1 is the long-sought mitochondrial CHE
and interacts with LETM1, modulating its activity (Austin et al.,
2021). Irrespective of its individuality, LETM1 has been implicated
in interaction with signaling proteins such as MRPL36, BCS1L and
CTMP to modulate protein import and assembly in IMM,
mitochondrial morphology and metabolism (Park et al., 2014; Li
et al., 2019).

LETM1 is known to be a direct target for phosphorylation by
PINK1, which constitutively phosphorylates LETM1 and regulates
Ca2+ signaling through a LETM1-CHE activity (Huang et al., 2017).
LETM1methylation has also been identified as an epigenetic marker
in obese patients associated with fasting insulin levels (Liu et al.,
2019). While LETM1’s primary role as HCX or CHE is still unclear,
loss of LETM1 has been shown to adversely affect mitochondrial
Ca2+ signaling.

In addition to LETM1, Transmembrane BAX Inhibitor-1 Motif
5 (TMBIM5) has been recently investigated as a Ca2+/H+ exchanger
in the IMM that allows Ca2+ efflux from mitochondria, preventing
mitochondrial membrane hyperpolarization (Austin et al., 2022;
Patron et al., 2022). In vivo and in vitro gene alteration studies show
that TMBIM5 is an essential unit of mitochondrial ion transport.
Overexpression of TMBIM5 carries out mitochondrial Ca2+ uptake
through aspartate residue of channel pore whereas TMBIM5 loss
modulates matrix ion composition with no major effect on Ca2+

uptake (Zhang et al., 2022). Further studies are required to explore
the mechanism of mitochondrial ion homeostasis by both
TMBIM5 and LETM1.

2.2.4 Mitochondrial calcium uniporter channel
(mtCU/MCU)

mCa
2+ is a versatile molecule that regulates intracellular signaling

events under both physiological and pathological conditions. The
fundamental physiological role of the mitochondrial calcium
uniporter (MCU) is to modulate the Ca2+ signaling, aerobic
metabolism as well as apoptosis (De Stefani et al., 2015).
However, excessive Ca2+ accumulation in the MM can trigger cell
death through the opening of the MPTP. Therefore, maintaining the
balance of Ca2+ levels is essential, which is achieved through the
activity of IMM Ca2+ permeable transporters and channels
(Zavodnik, 2016). MCU is a conserved protein found throughout
eukaryotes, except in yeast. MCU is primary route for the Ca2+ influx
inMM and only known channel to allow acute Ca2+ entry in theMM
(Palty et al., 2010; Baughman et al., 2011). MCU’s function has been
well documented in cellular proliferation and apoptosis (Bachmann
et al., 2019). This multi-subunit complex consists of MCU (pore-
forming protein), MCUB (anMCU paralog), EMRE (essential MCU
regulator), the regulatory Ca2+ sensing MICU proteins (MICU1,
MICU2 & MICU3), and MCUR1 (mitochondrial calcium uniport
regulator 1) (Perocchi et al., 2010; Baughman et al., 2011; De Stefani
et al., 2011; Mallilankaraman et al., 2012a; Mallilankaraman et al.,
2012b; Plovanich et al., 2013; Raffaello et al., 2013; Sancak et al.,
2013; Tomar et al., 2016; Patron et al., 2019). EMRE andMCUR1 act
as scaffolding regulators of MCU channel and essential for mCa

2+

flux. MCUR1 directly interacts withMCU and enhances Ca2+ uptake
inside mitochondria (Vais et al., 2015). Downregulation of
MCUR1 reduces mitochondrial Ca2+ uptake, OXPHOS activity,
and hence ATP production (Mallilankaraman et al., 2012b;

Tomar et al., 2016). The cytosolic Ca2+ threshold is set by
MICU1, if the level of Ca2+ is exceeded above the threshold, i.e.
1-2 μM in most cell types, the EF-hands of MICU1 sense this
elevation and switch the status of the channel from closed to
open conformation (Mallilankaraman et al., 2012b).

The activity and expression of MCU and its regulators are
regulated at several levels, transcriptional, post-transcriptional,
and post-translational levels. Small non-coding regulatory
microRNAs, such as miR-25 and miR-138, regulate the
expression of MCU subunits (Hong et al., 2017). The majority of
PTMs of MCU include methylation, oxidation, and
phosphorylation. Oxidation of conserved cysteines, including
C67, C97, and C191, in the N-terminal domain (NTD) by
increased levels of ROS leads to S-glutathionylation of C97
(Dong et al., 2017). This modification remodels the
conformational change in NTD of MCU, boosting MCU activity,
and increasing the rate of Ca2+ entry into the MM (Lee et al., 2016;
Dong et al., 2017). Another PTM is phosphorylation by Calmodulin
kinase II (CaMKII) at S57 and S92 of the NTD of the MCU complex
(Joiner et al., 2012) as well as phosphorylation by the proline-rich
tyrosine kinase 2 (Pyk2) and AMP-activated protein kinase
(AMPK). Both Pyk2 and AMPK-dependent MCU
phosphorylation enhances Ca2+ entry to the matrix and
intensifies mitochondrial respiration and energy production
(Zhao et al., 2019).

Moreover, the MCU regulator, MICU1 is modulated through
arginine methyltransferase 1 (PRMT1), reducing Ca2+ uptake into
the matrix (Madreiter-Sokolowski et al., 2016). Recent studies have
also shown that the S92 of MCU NTD is phosphorylated by protein
kinase C isoforms, namely, PKCβII, PKCδ, and PKCε, which
amazingly switch the exchange between cytosolic Ca2+ and
mitochondrial Ca2+ and manipulate the expression level of MCU
(Lee et al., 2020). Moreover, MCU, previously known solely as a Ca2+

transporter, has been found to play a role in mitochondrial quality
control. Cho and colleagues demonstrated that during
mitochondrial fission, the recruitment of Drp1 occurs at regions
where the ΔΨm is reduced. At this point, Drp1 interacts with the
mitochondrial zinc transporter Zip1-MCU complex, allowing for
Zn2+ entry and subsequent fission. Healthy mitochondria are able to
restore MMP levels through the fusion-fission cycle, while
dysfunctional mitochondria undergo mitophagy (Cho et al.,
2019). Additionally, MCU upregulation has been shown to
activate calpain and reduce OPA1 levels during ischemia/
reperfusion (IR) injury, resulting in an imbalance in
mitochondrial dynamics (Guan et al., 2019). However, further
research is needed to fully understand the molecular mechanisms
by which MCU contributes to mitochondrial quality surveillance.

2.2.5 Mitochondrial chloride (Cl−) channel proteins
Chloride channels (Cl−) are a diverse group of proteins

predominantly present in intracellular organelles, serving
important roles in many physiological processes. The different
types of Cl-channels include the voltage-sensitive ClC subfamily,
glycine receptors, transmitter-gated GABAA, Ca2+-activated Cl-
channel, the cystic fibrosis transmembrane conductance regulator
(CFTR), volume-regulated channel, and high (maxi) conductance
Cl-channel (Ashley, 2003). In addition, a few Chloride Intracellular
Ion Channels (CLICs) have recently been shown to be localized to
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mitochondria. Two mitochondrial chlorides (mtCl) channels,
namely, CLIC4 and CLIC5 have been identified in mitochondria
(Ponnalagu and Singh, 2017). CLIC4 was first identified to be
present on IMM of mouse keratinocyte mitochondria
(Fernández-Salas et al., 1999) whereas in adult cardiomyocytes, it
is found in OMM. CLIC5 is located in IMM of adult cardiomyocytes
(Ponnalagu et al., 2016). These belong to the class of intracellular
anion channels (CLICs) and have been shown to play a role in
various physiological processes.

Recent studies have shown the presence of CLIC4 in
mitochondrial-associated membranes, implicating its involvement
in cardioprotection (Ponnalagu et al., 2022). There are six paralogs
of CLICs (CLIC1-CLIC6) stated in mammals, four (AtDHAR1-
AtDHAR4) in Arabidopsis thaliana, three in invertebrates in
Drosophila Melanogaster (DmCLIC) and two in Caenorhabditis
elegans (EXC4 and EXL1) (Gururaja Rao et al., 2017; Ponnalagu
and Singh, 2017; Gururaja Rao et al., 2018). It is suggested to have a
pro-apoptotic role in p53-mediated apoptosis (Fernández-Salas
et al., 2002). The other chloride channel is from the ClC family,
ClC-Nt, and has been intended as a component of IMAC (Lurin
et al., 2000). Despite several articles on mtCl channels,
understanding their molecular identity, structure, and role in
physiological and pathological states is yet inadequate.

CLICs have also been found to be modulated by PTMs such as
phosphorylation. Cyclin-dependent kinase 5 mediated serine
phosphorylation of CLIC4 stimulates its stability and regulates
cell death (Guo et al., 2018). In addition to CLICs, Maxi-
Chloride channels are also present in mitochondria. While their
molecular structure remains unidentified, it is believed that they
have a strong relationship with the permeability transition pore
complex (PTPC) as their activity is similar to that of monomeric
PTPC (Sabirov et al., 2006). It is well known that CLICs modify
mitochondrial activity through modulation of ROS levels. For
example, the loss of CLIC5 in cardiac mitochondria has been
shown to enhance mitochondrial ROS and modulate the Ca2+

retention capacity of mitochondria (Ponnalagu et al., 2016;
Ponnalagu et al., 2019). However, the direct influence of
mitochondrial CLICs on mitochondrial function remains unclear
and requires further investigation. Overall, the role of mitochondrial
chloride channels in regulating mitochondrial activities is complex
and requires further research. A better understanding of the
molecular identity, structure, and function of these channels in
physiological and pathological states could potentially lead to the
development of new therapeutic strategies for the treatment of
various diseases.

2.2.6 Mitochondrial inner membrane anion
channel (IMAC)

The inner mitochondrial membrane (IMM) harbors various
chloride (Cl-) anion-selective channels, including the inner
membrane anion channel (IMAC). IMAC has a single-channel
conductance of approximately 100 pS, with slight anion
selectivity. Small molecules such as bicarbonate, phosphate,
chloride, citrate, ATP, and succinate can pass through this
channel. The modulation of IMAC by palmitoyl-CoA Mg2+,
amphiphilic amines, and pH has also been observed. Although
the function of IMAC in pathophysiological conditions is well
established, its physiological role is still uncertain, as it appears to

facilitate ion movement only in the presence of an alkaline matrix
environment. It has been proposed that anion efflux through
IMAC can be a protective mechanism against excessive matrix
swelling (Beavis, 1992). Recently, mitochondrial anion efflux has
been linked to hypoxic preconditioning, further highlighting the
potential importance of IMAC in cellular homeostasis (Vanden
Hoek et al., 1998). Despite its significance, the molecular identity
of IMAC remains elusive, which is the major limitation in
researching this channel. The regulation of IMAC activity has
been linked to glutathione levels, where inhibition of
mitochondrial glutathione uptake, the NADPH-dependent
glutathione reductase, or the NADH/NADPH
transhydrogenase was found to stimulate IMAC opening (Aon
et al., 2007). These findings suggest that redox-dependent
activities might play a role in modulating IMAC activity.
Further studies are required to understand the molecular
identity of IMAC and the underlying redox-dependent PTMs.

2.2.7 Mitochondrial phosphate carrier (PiC)
The PiC is an important mitochondrial phosphate carrier

protein, encoded by SLC25A3 in humans. It facilitates the
transport of inorganic phosphate, a key substrate of OXPHOS,
across the IMM. The mammalian mitochondrial PiC is
ubiquitously expressed and exists in two distinct isoforms, PiC-
A and PiC-B. Together with ANT and complex V, PiC forms the
ATP synthase microdomain for ATP production. Furthermore,
PiC transport is significant for efficient mitochondrial Ca2+

handling. mCa
2+ uptake requires the presence of anions such as

Pi, acetate, bicarbonate, and glutamate to provide protons for the
respiratory chain. Reduced anions restrict Ca2+ uptake, leading to
low O2 consumption. Pi may be required for both boosting the
MCU-mediated Ca2+ influx and inhibiting the exchanger-
mediated Ca2+ efflux (Chalmers and Nicholls, 2003; Wei et al.,
2012). PiC transgenic mice with elevated and shRNA mediated
diminished levels of cardiac PiC have been characterized by
cardiac hypertrophy, unaltered respiration, ATP content, Ca2+

retention, and activation of the MPTP (Gutiérrez-Aguilar et al.,
2014). Alongside, inducible and cardiac-specific deletion of PiC
also showed the same phenotype as seen in shRNA mediated
deletion of PiC. Notably, time-dependent mitochondrial
phosphate uptake was eliminated, and the mitochondrial ATP
content was reduced with no impaired Ca2+ retention and was in
fact elevated. However, the absence of phenotypes of the PiC
transgenic mice might be due to the abundance of PiC which does
not regulate the transport in accord with PiC’s high turnover rate.
The diminished ATP and cardiac hypertrophy in PiC depleted
model are in line with the phenotype of the ANT knockout mouse,
in which another component of the ATP synthasome is absent
(Narula et al., 2011). Hence, insufficient Pi transport and
oxidative phosphorylation might be the reasons for PiC
phenotypes. Pathogenic mutations in PiC show different
phenotypes based on tissue-specific expression and distinctive
enzymatic activity of isoforms. Three PTMs for PiC, namely,
methylation at lysine 112, phosphorylations at tyrosine 196 and
246, and acetylation at lysine 99, 209, and 234 are associated with
cardiac diseases (Alves-Figueiredo et al., 2021). More studies are
warranted to uncover PiC mutations in various models in stress
response.
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2.2.8 Potassium (K+) channels
Mitochondrial K+ channels play an important role in regulating

the electrochemical gradient and mitochondrial function. Two types
of K+ channels located at the IMM, mitoKATP and mitochondrial
Ca2+ activated K+ channel (mitoKCa), are regulated by various
factors including ROS, ATP, Ca2+ and free fatty acids (Wrzosek
et al., 2020).

2.2.8.1 Mitochondrial KATP (mitoKATP)
MitoKATP was first observed in the liver and is similar to the

KATP channel present in the sarcolemma of cardiac cells, albeit with
a lower conductance. The elevated mitochondrial inner membrane
permeability to K+ has been hypothesized to enhance tolerance to IR
injury in a cell (O’Rourke, 2007). Recently, a novel protein complex
consisting of a channel forming subunit (MITOK) and a regulatory
subunit carrying the ATP-binding domain (MITOSUR) was
identified for ATP-sensitive K+ transport across the IMM (Paggio
et al., 2019). MitoKATP facilitates the uptake of potassium (K+)
driven by the negative ΔΨm and is repressed by physiological ATP
levels. Endogenous molecules such as adenosine and bradykinin can
decrease infarct size by stimulating mitoKATP channels in a PKC-
dependent approach.

2.2.8.2 Mitochondrial KCa
KCa channel family members are categorized through their

differing single channel conductance into three types, namely, big
conductance (BKCa, 200–300 pS), intermediate conductance (IKCa,
32–39 pS) and small conductance (SKCa, 4–14 pS) channels (Diness
et al., 2015). In addition to plasma membrane, KCa channels have
also been localized in mitochondria. The large-conductance Ca2+

-activated K+ channel (BK channel) is also present in the IMM of
cardiomyocytes and brain, suggesting that the molecular identity of
mitoKCa could be similar to the BK channel. These channels take
part in oxidative regulation at the plasma membrane. However, no
study is done in the context of their redox-sensitive PTMs (Nishida
et al., 2009). Therefore, elucidating the molecular basis of redox-
sensitive PTMs in these channels could provide new insights into
oxidative regulation at the plasma membrane. Another selective K+

channel detected in IMM from human glioma cells by direct patch-
clamp of mitoplasts is the Ca2+-stimulated K+ channel (mitoKCa)
(Siemen et al., 1999). mCa

2+ uptake can be raised through mitoKCa
against extreme mitochondrial Ca2+ accumulation and that might
control the tuning between mitochondrial volume and/or Ca2+

accumulation under increased cardiac workload conditions
(O’Rourke, 2007). SKCa channels are shown to be localized in
IMM of cardiomyocytes and neurons, regulating mitochondrial
respiration and mCa

2+ uptake (Stowe et al., 2013; Honrath et al.,
2017). MitoSK channel activation generates a protective decrease in
ischaemia-induced mitochondrial Ca2+ overload and ROS,
balancing sarcoplasmic reticular (Ponnalagu et al.) Ca2+ release
(Stowe et al., 2013). These findings together imply SK2 channels
as potential targets for ameliorating ROS mediated mitochondrial
stress.

2.2.8.3 Kv1.3
The Kv1.3 channel, which is identical to the plasma membrane

Kv1.3 channel, has been detected in the IMM of Jurkat T
lymphocytes (Szabò et al., 2005). This channel has increased

expression in cancerous cells, making it a potential target for
drug therapy (Szabò et al., 2005). However, the molecular
identity and pharmacology of these channels are not well studied,
and further research is necessary to develop treatments against
diseases by targeting these channels. The experimental evidence
on PTMs of mitoK channels is far limited. It has been found that the
activity of mitoKATP and mitoBKCa is regulated by PKC, PKA and
PKG through phosphorylation. The phosphorylation of
mitochondrial potassium channels might induce cardioprotective
cascade (Rotko et al., 2020b; Checchetto et al., 2021). mitoK
channels are regulated by gaseous transmitters such as carbon
monoxide (CO), hydrogen sulfide (H2S) or nitric oxide (NO)
through PTMs such as S-nitrosylation or S-sulfhydration
(Walewska et al., 2018; Rotko et al., 2020a). A very recent study
showed that applications of the H2S donor NaHS causes mitoBKCa
S-sulfhydration of cysteines without hampering the channel activity
(Walewska et al., 2022).

2.2.9 Uncoupling proteins (UCPs)
Uncoupling proteins (UCPs) are a group of mitochondrial

transporter proteins that play a crucial role in the regulation of
energy metabolism and redox homeostasis (Ponnalagu and Singh,
2017). In response to stress conditions, ROS overproduction and
dysfunction in ATP synthesis, mitoKATP channel and UCP get
activated and produce mild uncoupling. This in turn attenuates
mitochondrial ROS formation (Zhang et al., 2001). This feedback-
induced decreased ROS protects mitochondria and allows for rapid
oxidation of the reducing equivalents that overfeed the
mitochondrial respiratory chain. However, under physiological
conditions, the mitoKATP channel and UCPs are likely inhibited,
preserving the efficiency of ATP synthesis (Slocińska et al., 2016).
Among the UCP family, UCP1-UCP3 are the most well-studied.
UCP1 is primarily expressed in brown adipose tissue and is
responsible for the production of heat through thermogenesis.
UCP2 and UCP3 are widely expressed and involved in regulating
ROS levels, protecting against oxidative damage and balancing

mCa
2+ uptake (Trenker et al., 2007; Azzu and Brand, 2010).

Electrophysiological analysis has proven that UCP2 and
UCP3 modulate MCU-dependent Ca2+ current in mitoplasts
(Bondarenko et al., 2015). On the other hand, UCP4, UCP5, and
UCP6 are mainly expressed in the central nervous system and carry
out the transport of thiosulfate, sulfate, and inorganic ions
(Monteiro et al., 2021).

Apart from their traditional role in proton gradient and ROS
homeostasis, UCPs are implicated in several mitochondrial quality
control pathways, such as mitophagy and MAD. UCP2 and
UCP3 are substrates for ubiquitination and proteasome
degradation (Mookerjee and Brand, 2011). Compared to UCP1,
UCP2 protein has a very short half-life which is rapidly degraded by
the ubiquitin-proteasome system (Azzu and Brand, 2010). The
implication of UCP2 degradation in diseases is not yet fully
understood. UCPs are also known to be involved in redox
signaling and homeostasis. For instance, UCP1 is regulated by
ROS levels through sulfonylation of the Cys253 residue,
increasing thermogenesis (Oelkrug et al., 2010; Chouchani et al.,
2016). UCP2/3 can be modulated by glutathionylation, where GSH
is conjugated to cysteine residues. When mitochondrial ROS levels
are low, UCP2/3 remains inactive in the presence of
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glutathionylation. Elevated ROS levels turn on GSH, inducing de-
glutathionylation, and subsequent stimulation of UCP2/3 (Mailloux
et al., 2011), regulating ROS in a cell. Overall, UCPs play a critical
role in regulating energy metabolism, redox homeostasis,
mitochondrial quality control pathways, and redox signaling.
However, further research is needed to fully understand the
implications of UCP degradation in diseases and the broader
implications of UCPs in redox signaling and homeostasis.

2.2.10 Other mitochondrial ion transporters
Mitochondria transport various metal ions, including

magnesium (Mg2+), zinc (Zn2+), iron (Fe2+), and manganese
(Mn2+). Mg2+ is important for respiratory function, and its
concentration is required for Mg2+-sensitive matrix enzymes (e.g.,
pyruvate dehydrogenase) and transporters (e.g., Ca2+ uniporter)
(Pradhan et al., 2011; Yamanaka et al., 2016). Mitochondrial
Mg2+ levels are tenfold greater than the cytoplasm, mediating
ADP/ATP exchange (Gout et al., 2014) and participating in the
release of cytochrome c. The effects of Mg2+ on mitochondrial
functions emphasize energy metabolism, mitochondrial Ca2+

processing, and apoptosis (Pilchova et al., 2017). The transporter
of Mg2+ of mitochondrial RNA splicing protein 2 (MRS2) channel
uptakes Mg2+ selectively (Schindl et al., 2007; Yamanaka et al., 2016)
and expression levels of MRS2 are linked to the levels of Mg2+

(Piskacek et al., 2009). The impaired Mg2+ in cells and mitochondria
has been studied to be implicated in the neurodegenerative process
of Parkinson’s disease (Shindo et al., 2015).

Zn2+ is one of the most abundant ions in mitochondria as
compared with other subcellular organelles (Sun et al., 2016) and
is important for maintaining the antioxidant status of a cell
(Adebayo et al., 2016). However, excessive Zn2+ within the
mitochondria can lead to negative consequences such as loss of
MMP, increased ROS, and reduced ATP levels (Pochwat et al.,
2015). Studies on MCU knockout mice indicate that Zn2+ is
transported into mitochondria via MCU (Ji et al., 2020), and it is
suggested that the regulatory proteins MICU1 and
MICU2 indirectly modulate the transport of both Zn2+ and Ca2+

levels. To better understand the compartment-specific levels of Zn2+

in mitochondria, further investigation is needed.
Mitochondria play a crucial role in iron metabolism, serving as

the primary site for hemoglobin production, heme biosynthesis, and
Fe-S cluster protein assembly. Mitochondrial solute carrier protein
MFRN (SLC25A37) has been proposed to transport iron ions into
the MM. Disruptions in MFRN function can lead to severe
hypochromic anemia and stagnant red blood cell maturation
(Finoshin et al., 2020; Seguin et al., 2020). DMT1, a divalent
metal transporter protein located on the mitochondrial outer
membrane, has also been shown to transport iron ions (Wolff
et al., 2018). However, little is known about the mitochondrial iron
ion efflux channels/transporters and further investigation is needed
in this area.

Mitochondria generates ROS which can be detrimental to cells.
Therefore, it is essential to remove ROS, and this process relies on
SOD (Wang et al., 2018). In mammals, Mn2+ uptake is specifically
mediated by cellular SLC39A8 (ZIP8) and SLC39A14 (ZIP14) (Park
et al., 2015; Tuschl et al., 2016), while SLC30A10 (ZnT10) regulates
Mn2+ efflux from cells (Mercadante et al., 2019). However, the
mechanism of Mn2+ transport in mitochondria is still unclear,

although it has been proposed that Mn2+ uptake from the cytosol
to mitochondria may be mediated via MCU or MFRN1 (Liu et al.,
2021). Though altered Mn2+ homeostasis and toxicity have been
reported in neurodegenerative diseases, whether this is associated
with mitochondrial Mn2+ transport remains to be explored.

2.2.11 Mitochondrial permeability transition pore
(MPTP)

The MPTP is a large conductance channel protein located in the
IMM. Under physiological conditions, it facilitates the exchange of
small metabolites between the matrix and the cytoplasm through its
“open and shut” conformation. However, under pathological or
stress conditions, the MPTP can transition into a high-conductance
state, allowing the uncontrolled access of solutes into the MM,
leading to the permeability transition (PT). PT is a reversible process
but is tightly controlled and activated by various factors such as
Cyclophilin D (CyPD), ROS, matrix Ca2+ accumulation, and low
ΔΨm (Hodge and Colombini, 1997). The MPTP is a supramolecular
non-selective channel that forms at the intersections between the
outer and inner mitochondrial membranes. It can transport
metabolites up to ~1,500 Da molecular weight, provided the
diameter of the pore is ~3 nm. The opening of the MPTP can be
triggered by Ca2+ overload, depolarization of the transmembrane
potential, ROS, and Pi (Brustovetsky and Klingenberg, 1996).
Inhibitors of the MPTP include Mg2+, adenine nucleotides, and
mild acidic matrix pH. There are multiple proteins proposed to be
the MPTP. Earlier, it was believed that the ANT and FoF1-ATP
synthase were responsible for pore formation, but recent evidence
has shown that MPTP formation can occur in their absence (Gerle,
2016; Carraro et al., 2018; Karch et al., 2019; Gerle, 2020). SPG7 is
identified as a potential MPTP core component in a targeted
screening (Shanmughapriya et al., 2015). Therefore, the
molecular identify of MPTP is still debated and there is a
possibility of multiple proteins acting as MPTP based on
upstream signal and cell types. CyPD, a protein found in the
MM, can also modulate the opening of the MPTP. PTMs of
CyPD have been linked to pore formation, and protein kinases
like AKT, cdk5, ERK, PKA, PKC, and PKG can facilitate CyPD
interaction with theMPTP through Ser/Thr phosphorylation (Gerle,
2016; Carraro et al., 2018; Karch et al., 2019; Gerle, 2020).

3 Pathophysiological implications

Biological cell systems rely on uninterrupted directional flow
through metabolic pathways to convert organic molecules into
structural entities and energy supply from the mitochondrion.
Maintaining electroneutrality within the mitochondrion is
essential for regulating the electric field and mitochondrial
membrane potential, which is achieved through the prompt
exchange of metabolites by carriers or transporters. Mitochondria
perform several key cellular activities, including ATP generation
(Wang and Youle, 2009), Ca2+ and ROS homeostasis (Bernardi,
1999; Murphy, 2009), cell death, and ion transport metabolism
(Tzameli, 2012). Dysfunction in these activities has been associated
with various pathophysiological conditions, such as cancer,
neurodegenerative, cardiovascular, inflammatory, metabolic
diseases and others. Numerous studies have demonstrated the
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implications of mitochondria in cardiovascular (Limongelli et al.,
2012), neurodegenerative (Karbowski and Neutzner, 2012),
inflammatory (Vringer and Tait, 2019), and metabolic diseases
(Joseph et al., 2012). Given the crucial role of mitochondrial
transporters and channels in modulation of mitochondrial
activities, their dysregulation may contribute to
pathophysiological implications observed. Here, we briefly discuss
the involvement of mitochondrial channels and transporters in
pathophysiology.

Mitochondria have been implicated in cancer progression,
exhibiting several cancer hallmarks, including increased cellular
proliferation, cell death resistance, induction of angiogenesis, and
metabolic reprogramming. The outer mitochondrial anion channel,
VDAC, is overexpressed in cancerous cells and is associated with
hexokinase 1 (HK1) and hexokinase 2 (HK2) (Wolf et al., 2011;
Rosa and César, 2016; Shoshan-Barmatz et al., 2019). VDAC also
plays a role in apoptosis, as its interaction with the BAK/BAX complex
results an increase in VDAC pore size, leading to the release of
cytochrome c and triggering apoptosis (Banerjee and Ghosh, 2004).
VDAC opening is also responsible for the release of mtDNA fragments
and the onset of lupus-like disease (Kim et al., 2019). Additionally,
UCPs, which are major antioxidants in mitochondria, are involved in
cancer by favoring oxidative metabolism and AMPK activation in
cancerous cells (Robbins and Zhao, 2011). Furthermore, members of
the CLIC family, CLIC1 to CLIC6 are also involved in pathological
conditions, like cancer initiation and progression (Hernandez-Fernaud
et al., 2017), cardiac dysfunction (Takano et al., 2012), and Alzheimer’s
Disease (AD) (Milton et al., 2008). For instance, CLIC5 is the first
Cl−channel discovered in the IMM (Ponnalagu et al., 2016), is expressed
in hepatocellular carcinoma and participates in the invasion and
migration of tumors (Flores-Téllez et al., 2015). CLIC5 is also
overexpressed in acute lymphoblastic leukemia (Neveu et al., 2016).
The ubiquitous nature of the CLIC proteins and their involvement in
various physiological processes make them a potential target for
studying pathological conditions, including cancer. Another ion
exchange molecule, LETM1 is also found to be highly expressed in
various humanmalignancies with low survival rates such as lung, ovary,
colon, breast, stomach and esophagus (Piao et al., 2019; Wang et al.,
2020; Piao et al., 2020). Additionally, reduced NCLX levels are
associated with human colorectal tumors, indicating that the
regulation of mCa

2+ can be a novel therapeutic approach in
metastatic colorectal cancer (Pathak et al., 2020).

Mitochondrial dysfunction and disrupted Ca2+ homeostasis play
significant roles in brain and neurodegenerative diseases. Our
previous research has demonstrated that impaired mCa

2+ efflux
contributes to mCa

2+ overload, accelerating the progression of
Alzheimer’s disease (AD) and leading to cognitive decline in
3xTg-AD mouse models expressing amyloid beta (Aβ) and tau
proteins. Notably, restoring neuronal expression of NCLX in
3xTg-AD mice effectively mitigates cognitive deficits and
neuropathology (Jadiya et al., 2019). Moreover, our recent
findings reveal that the loss of neuronal NCLX expression
induces AD-like dysfunction in aged mice without any genetic
predisposition to AD or neurodegenerative conditions (Jadiya
et al., 2023). This dysfunction includes memory impairment,
accumulation of Aβ plaques, tau hyperphosphorylation, oxidative
stress, and synaptic integrity loss (Jadiya et al., 2023). These
observations highlight the significant contribution of neuronal

NCLX loss and resulting mCa
2+ overload to neurodegenerative

pathology and age-associated cognitive decline. Furthermore, our
study demonstrates that specific deletion of MCU, a protein
responsible for mCa

2+ uptake, in 3xTg-AD mice reduces Aβ and
tau pathology, synaptic dysfunction, and cognitive decline (Jadiya
et al., 2021). Additionally, recent investigations reveal that a loss-of-
function mutation in NCLX is associated with severe mental
retardation and that the absence of NCLX leads to synaptic
dysfunction and deficits in long-term plasticity (Stavsky et al.,
2021). In addition, phosphorylation of NCLX by protein kinase
A (PKA) has been found to enhance its ability to facilitate the efflux
of mCa

2+, effectively preventing the degeneration of neurons lacking
PINK1, a cellular model of Parkinson’s disease (PD) (Kostic et al.,
2015). Interestingly, a recent study has unveiled that increased mCa

2+

uptake, mediated by ERK1/2-dependent upregulation of MCU,
contributes to dendritic injury in a model of late-onset familial
PD harboring a mutation in Leucine-Rich Repeat Kinase 2 (LRRK2).
In various studies, the inhibition of MPTP has shown beneficial
effects in mitigating neuronal cell death caused by glutamate
excitotoxicity, premature aging, traumatic brain injury, ischemia-
reperfusion injury, hepatic IR injury, Parkinson’s Disease, and
Alzheimer’s Disease (Uchino et al., 1995; Schinder et al., 1996;
Caspersen et al., 2005; Du et al., 2008; Hånell et al., 2015; Morciano
et al., 2017; Ludtmann et al., 2018; Panel et al., 2019; Zhou et al.,
2019). These findings highlight the potential therapeutic
implications of targeting MPTP in neurodegenerative conditions.
Furthermore, we have revealed reduced expression of proteins
associated with mitochondrial calcium uptake, such as
MICU1 and MCUB, in the frontal cortex of both sporadic AD
patients and 3xTg-ADmice (Jadiya et al., 2019). Loss of MICU1 due
to homozygous deletion of exon 1 has been implicated in sporadic
neurological and muscular disorders characterized by mCa

2+

overload, impaired metabolism, early muscle weakness, myofiber
damage, cognitive impairment, and extrapyramidal movement
disorders (Logan et al., 2014; Lewis-Smith et al., 2016; Debattisti
et al., 2019). MICU1 variants have also been associated with
congenital brain malformations featuring white matter
abnormalities, cerebellar dysplasia, and acute encephalopathy
(Wilton et al., 2020). Additionally, patients carrying nonsense
mutations in the MICU1 gene exhibit myopathy accompanied by
extrapyramidal symptoms (Kohlschmidt et al., 2021). Studies in
mice with Micu1 deletion have further demonstrated significant
ataxia and muscular defects (Antony et al., 2016; Liu et al., 2016).
Additionally, reduced expression levels of UCP2, UCP4, and
UCP5 have been observed in patients with AD, which
upregulates nitric oxide synthases and compromises
mitochondrial functions (de la Monte and Wands, 2006;
Finoshin et al.). Moreover, LETM1, a contributing factor in PD
and epilepsy, plays a role in calcium handling through constitutive
phosphorylation by PINK1 under normal physiological conditions
(Huang et al., 2017). In epileptic patients, reduced expression of
LETM1 is observed, leading to mitochondrial swelling and increased
seizure duration and frequency (Zhang et al., 2014). Collectively,
these findings provide compelling evidence linking dysregulation of

mCa
2+ exchange to various neurodegenerative diseases.
Dysregulated Ca2+ handling in mitochondria is also implicated in

various cardiovascular diseases such as cardiac hypertrophy,
cardiomyopathies, arrythmia, myocardial infarction, and cardiac IR
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injury (Bonora et al., 2019). MCU/mtCU plays a crucial role in the
heart’s ability to respond to acute increases in workload and regulates
the opening of the mitochondrial permeability transition pore (Kwong
et al., 2015; Luongo et al., 2015). Several studies report that all subunits/
partners of mtCU complex assist in maintaining physiological Ca2+

levels in cells. MCUB, a negative regulator of mtCU complex has been
found to protect against cardiac injury by reducing Ca2+ influx in
mitochondria and inhibiting MPTP opening after IR injury to lessen
pathological remodeling (Lambert et al., 2019; Huo et al., 2020).
Another important component is MCUR1, which binds to MCU
and EMRE to serve as a scaffold protein for the assembly of the
MCU complex. We have reported that mouse cardiomyocytes and
endothelial cells lacking MCUR1 exhibit severe impairment in mCa

2+

uptake (Tomar et al., 2016). Collectively, these studies highlight the
essential role of the MCU transporter in facilitating cardiac adaptation
to acute physiological stress.

Diabetes mellitus is a growing healthcare disease worldwide that
affects multiple organs and tissues, leading to multiple pathologies,
such as cardiovascular disease, leading to structural and functional
abnormalities in the absence of major coronary artery disease,
hypertension, a valvular or neuromuscular disease called diabetic
cardiomyopathy (Rubler et al., 1972). Studies have shown increased
levels of MCUB protein and decreased levels of MCU protein in the
hearts of mouse models of both type 1 (Suarez et al., 2018) and type 2
(Bækkerud et al., 2019) diabetes as well as in mouse neonatal
cardiomyocytes exposed to hyperglycemia (Diaz-Juarez et al.,
2016). Furthermore, we have shown that CRISPR/Cas9 mediated
deletion of MCU in mouse liver and in Danio rerio (zebrafish)
prevents mCa

2+ uptake, delays cytosolic Ca2+ clearance, impairs
OXPHOS, and leads to hepatic lipid accumulation through
dephosphorylation of AMPK by protein phosphatase-4 (Tomar
et al., 2016). These findings highlight the involvement of mCa

2+

handling in the pathogenesis of diabetes-related complications.
Mitochondrial dysfunction is commonly associated with

inflammatory responses and is implicated in the development of
various diseases. Mitochondrial transporters play a crucial role in
modulating inflammatory responses (Ball et al., 2011). For example,
the activation of the NLRP3 inflammasome complex via the VDAC
indicates its involvement in the inflammatory response (Zhou et al.,
2011). UCP2, another mitochondrial transporter, is involved in
regulating the inflammatory response by increasing ROS levels in
macrophages (Ball et al., 2011). Downregulation of UCP2 is
associated with a pro-inflammatory response in autoimmune
encephalomyelitis, where T-cell proliferation and B-cell response
is increased in Ucp2−/− mice (Vogler et al., 2006). CLICs, when
translocated to the cellular membrane, enhance inflammasome
assembly, interleukin-1β release, and caspase-1 activation,
contributing to inflammation. (Tang et al., 2017). Additionally,
elevated levels of myocardial UCP2 under hypoxic conditions can
induce ischemic insult (Tian et al., 2018).

Mitochondrial channels and transporters play significant roles
in both physiological and pathophysiological conditions. However,
due to their dual conductance states (open and closed), establishing
a clear structure-function relationship during disease conditions can
be challenging. Further studies are necessary to understand the
nature of their conductance states in healthy and diseased states.
Such research is essential for designing potential therapeutics and
advancing medical science.

4 Future outlook of mitochondrial
transporters or channels: avenues for
the development of potential
therapeutic target

Mitochondrial transporters and channels play a critical role in
maintaining cellular homeostasis, cell death, and signaling. As
carriers of metabolites, they help maintain the balance between
energy supply and demand, making them crucial determinants of a
cell’s survival. Although the functional and biophysical
characteristics of these transporters have been studied extensively,
their molecular identity and regulatory mechanisms at themolecular
level remains largely unknown. Understanding how these channels
are regulated could lead to the identification of promising
therapeutic targets for mitochondria-related diseases. One major
challenge in targeting PTMs associated with channels is that they
share biophysical properties with plasma membrane channels.
However, a molecular understanding of channels during both
physiological and disease states can provide insight into
designing new therapeutic approaches for various diseases such
as cancer, diabetes, cardiovascular, and neurodegenerative diseases.
Research efforts should be directed towards exploring the structural
conformations of these channels, their transport mechanisms, and
the identification of functional interactors. Such studies could shed
light on the molecular mechanisms underlying mitochondrial
transporters and channels and pave the way for the development
of new and effective treatments for a range of diseases.
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