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Introduction 
Congenital fibrinogen disorders (CFD) encompass a het-

erogeneous group of fibrinogen deficiencies.1 Diagnosis of 
CFD is based on the assessment of functional and antigenic 
fibrinogen levels, allowing to differentiate afibrinogenemia 
(complete absence of fibrinogen), hypofibrinogenemia (de-
creased levels of functional fibrinogen), dysfibrinogenemia 
(normal levels of dysfunctional fibrinogen) and hypodysfib-
rinogenemia (decreased levels of dysfunctional fibrinogen). 
Assessment of fibrinogen antigen is mandatory to distinguish 
dysfibrinogenemia from hypofibrinogenemia. However, fib-
rinogen immunological assays are not widely available in he-
mostasis laboratories. The prothrombin-derived fibrinogen 
assay is an accurate alternative in view of its good correlation 
with the fibrinogen antigen level in dysfibrinogenemia.2 In ad-
dition, a recent communication from the Subcommittee FXIII 
and Fibrinogen of the International Society of Thrombosis and 
Hemostasis proposes a classification in several subtypes ac-
cording to the genotype and the clinical manifestations.3 

Since the first description of afibrinogenemia in 1920 by 
Rabe and Salomon and the first report on dysfibrinogenemia 
in 1958 by Imperato and Dettori,4,5 hundred families with CFD 
have been identified in the last decades. Gathering and study-
ing CFD cases has improved our knowledge of fibrinogen mol-
ecules and enhanced our understanding of the multiple 
functions of fibrin(ogen).6 Nevertheless, several aspects re-
garding the diagnosis, the prediction of outcomes, and the clin-
ical management still require to be solved. The emergence of 
next-generation sequencing (NGS) rises the possibility to in-
tegrate genetic modifiers to explain the subtle relationship be-
tween genotype and clinical phenotype. Recent development 
in integrative hemostasis assays can help in the determination 
of patients at risk of bleeding or thrombosis. In this short re-
view, we provide some insights into these two selected aspects 
and give some perspectives for further clinical and fundamen-
tal research. 
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Correlation between genotype  
and phenotype 

Genotype is necessary to confirm the diagnosis of CFD, it 
distinguishes between hypofibrinogenemia and hypodysfibrino-
genemia or severe hypofibrinogenemia and afibrinogenemia and 
simplifies family screening and prenatal diagnosis. Of note, 
proper experimental validation at the protein or RNA level is 
important to confirm the pathogenic effect of new fibrinogen 
variants, for instance by protein modeling, mass spectrometry, 
or protein expression.7,8 

A few rare fibrinogen variants are strongly associated with 
a clinical phenotype. This is the case of the fibrinogen storage 
disease (hypofibrinogenemia type 2D according to the ISTH 
classification) and the thrombotic-related fibrinogen variants 
(dysfibrinogenemia type 3B) (Table 1).9-22 Fibrinogen storage 
diseases are usually suspected in familial history of cryptogenic 
liver disease associated with hypofibrinogenemia.23 Diagnosis 
relies on histological observation of fibrinogen inclusion in he-
patocytes and genotype.13 The molecular reasons for fibrinogen 
inclusions are still not understood. Among others, it has been re-
ported that conformational changes in the region of the globular 
domain of fibrinogen involved in the “end-to-end” interaction 
can cause an abnormal exposure of hydrophobic patches in the 
fibrinogen γ chain, which becomes available for interactions 
with lipids enhancing the accumulation of fibrinogen and 
apolipoprotein B.12 

Thrombotic-related dysfibrinogenemia variants were first 
described in communication by SSC ISTH in 1995. An associ-
ation between thrombophilia and the fibrinogen variant was 
clearly observed in 26 probands with a history of personal and 
familial thrombosis at a young age without other biological risk 
factors. Different mechanisms, often overlapping, may account 
for the increased risk of thrombosis in these fibrinogen variants: 
i) elevated levels of circulating thrombin resulting from the fail-
ure in fibrin(ogen) binding; ii) altered strength, architecture, and 

stability of the fibrin network; iii) decreased fibrinolysis result-
ing from impaired binding of plasminogen or tissue-type plas-
minogen activator to abnormal fibrin.24 In addition, many defects 
in dysfibrinogenemia affect fibrinogen clottability to different 
degrees and can lead to a mild bleeding phenotype. In a recent 
review, Li et al. identified several fibrinogen variants that could 
be related to bleeding. These included: i) mutations in the NH2-
terminal portion of the Aα chain that hamper fibrinogen fitting 
into the active site cleft of thrombin and drastically slow the con-
version of fibrinogen into monomeric fibrin; ii) mutations 
adding new N-linked glycosylation sites introduce bulky and 
negatively charged carbohydrate side chains and undermine the 
alignment of fibrin monomers during polymerization; iii) muta-
tions generating unpaired cysteine form extra disulfide bonds 
between the abnormal fibrinogen chains and produce highly 
branched and fragile fibrin networks; iv) truncation mutations 
in the fibrinogen αC regions impair the lateral fibril aggregation, 
as well as factor XIII crosslinking, endothelial cell, and platelet 
binding.25 However, in a multicentric study of 101 patients with 
dysfibrinogenemia with a mean follow-up of 8.8 years the most 
frequent mutations (i.e., FGA Arg35His/Cys and FGG 
Arg301His/Cys) were statistically associated neither with major 
bleeding (HR 0.8, 95% CI 0.1-4.1, P=0.79) nor with thrombosis 
(HR 0.8, 95% CI 0.3-2.4, P=0.68).26 

One of the most striking clinical features of CFD is the het-
erogeneity of symptoms even among patients with the same 
genotype. Based on historical records on dysfibrinogenemia and 
more recent cohort studies, it is accepted that at diagnosis about 
55% of patients are asymptomatic, 25% have a tendency to bleed 
and 20% have a thrombotic phenotype (in venous and arterial 
territories).26-30 Similarly, while most patients with afibrinogen-
emia suffer from severe, sometimes life-threatening, bleeding, 
about 20% also experience thrombotic events and a few are even 
asymptomatic.31 The thrombotic occurrence in afibrinogenemia 
is a clinical conundrum. Among others, concomitant throm-
bophilia and fibrinogen supplementation especially with fresh 
frozen plasma or cryoprecipitates, may increase the risk of 
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Table 1. Variants of hypofibrinogenemia associated with fibrinogen storage disease and variants of dysfibrinogenemia associated with 
thrombosis. 

Mutant fibrinogen                            Gene                        Exon                      Native protein                  Reference 

Fibrinogen storage disease 
  Aguadilla                                                   FGG                                9                                 p.Arg401Trp                                 9 
  AI duPont                                                  FGG                                8                                 p.Thr340Pro                                10 
  Angers                                                       FGG                                8                         p.delGVYYQ372-376                        11 
  Ankara                                                       FGG                                8                                 p.His366Asp                                12 
  Beograd                                                     FGG                                9                                 p.Gly392Ser                                13 
  Brescia                                                       FGG                                8                                 p.Gly310Arg                               14 
  Pisa                                                            FGG                                8                                p.Asp342Asn                               13   
  Trabzon                                                      FGG                                9                                  p.Thr397Ile                                 15 
Thrombotic-related dysfibrinogenemia 
  Caracas V                                                  FGA                                5                                 p.Ser551Cys                                16 
  Dusart*                                                      FGA                                5                                p.Arg573Cys                               17 
  Ijmuiden**                                                FGB                                2                                 p.Arg44Cys                                18 
  Melun                                                        FGG                                8                                 p.Asp390Val                                19 
  Naples***                                                  FGB                                2                                  p.Ala98Thr                                 20 
  New York                                                   FGB                                2                                  p.del39-102                                21 
  Nijmegen                                                   FGB                                2                                 p.Arg74Cys                                22 
*also named Paris V, Chapel Hill III; **also named Christchurch II, London VIII, St-Germain III, Vicenza III; ***at homozygous state. 
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thrombosis in afibrinogenemia.32 Of note, when evaluating the 
patient’s clinical phenotype, it is crucial to take into account the 
family history and environmental risk factors that can contribute 
to the heterogeneity of symptoms, beyond the genotype.33 In hy-
pofibrinogenemia, the bleeding phenotype is strongly correlated 
to the fibrinogen concentration.34 However, to date, no prospec-
tive data have been published allowing us to determine the real 
incidence of bleeding in hypofibrinogenemia or leading to iden-
tify factors modulating their clinical phenotype. 

So far, most studies on CFD employed traditional Sanger 
sequencing to identify molecular defects, thus missing other mu-
tations that could influence the patient’s clinical phenotype.8 
NGS now provides information on the most known genetic mod-
ifiers of fibrinogen and the hemostatic balance.35,36 In addition, 
NGS allows the development of a large data set and the identi-
fication of mutations not detected by standard PCR amplifica-
tion. However, strong bioinformatic tools are required to analyze 
the amount of data and especially filtering variants against the 
allele frequencies. When considering NGS in the investigation 
of a rare bleeding disorder, it is important to highlight that: i) 
additional analyses may be required to determine whether a vari-
ant is pathogenic or not; ii) that physicians may have to deal with 
incidental findings and ethical issues; iii) that NGS has a great 
accuracy for single nucleotide changes, but complex rearrange-
ments are not detected.37 

Increased fibrinogen concentrations are associated with de-
creased fibrin clot permeability and tighter clots when associated 
with a polymorphism (rs5985) of the F13A gene encoding factor 
XIII subunit A Val34Leu.38 Coding polymorphisms in the fib-
rinogen genes also influence the fibrin clot structure. The com-
mon FGB BβArg478Lys polymorphism (rs4220) is associated 
with thin fibrin fibers, small pores, increased stiffness, and hy-
pofibrinolysis,39 while the FGA AαThr331Ala polymorphism 
(rs6050) alters FXIII-dependent fibrin cross-linking.40 In the fu-
ture, the largest studies focusing on the significance of polymor-
phisms and the impact of variants of other genes involved in 
coagulation will provide a global view of the hemostatic balance 
of patients with CFD. 

 
 

Global hemostasis assays  
and fibrin clot study 

Integrative hemostatic assays, such as thrombin generation 
assay and studies of fibrin clots may provide additional infor-
mation on the global hemostasis balance of the patient. In afib-
rinogenemia, thrombin generation has been tested to monitor the 
effect of fibrinogen replacement on the overall thrombotic po-
tential. In a series of 20 patients, infusion of a standard dose of 
fibrinogen concentrate led to a statistically significant increase 
in endogenous thrombin potential even though without reaching 
values observed in healthy controls.41 This study was not pow-
ered to determine whether basal decreased or increased thrombin 
generation was correlated with a risk of bleeding or thrombosis. 
In dysfibrinogenemia, thrombin generation measured by ST 
Genesiaâ with both Bleed- and ThromboScreen was not corre-
lated with the clinical phenotype in a series of 22 patients.42 
Given the strong interplay between thrombin and fibrin,43 it 
could be worth deeply investigating how the absence or the pres-
ence of dysfunctional fibrinogen may have an impact on the 

complex mechanism of thrombin generation or, on the contrary, 
on the fibrinolytic potential.44 

Several lines of growing evidence have pointed out the im-
portant role of fibrin structure in thrombosis and/or bleeding.45 
The structure of the fibrin clot is a major determinant of the me-
chanical properties and of the clot resistance to fibrinolysis by 
tissue plasminogen activator and the plasmin system.46 There-
fore, many efforts have been done in determining the effect of 
dysfunctional fibrinogen on the fibrin clot network and proper-
ties.47 On one side, patients with a bleeding phenotype have ab-
normal polymerization profiles, increased lysis, and thick fibrin 
fiber with large pores.48 On the other side, patients with a throm-
botic phenotype have fibrin networks composed of thin fiber 
strands that have small pores and are more rigid and less per-
meable.49 If these methods are often investigated to explain the 
clinical presentation of single cases, data on large series are lim-
ited. Recently, defective fibrin polymerization and prolonged 
fibrinolysis have been reported in 24 patients with dysfibrino-
genemia compared to healthy individuals, even though without 
statistical significance.50 Overall, a comprehensive functional 
assessment of properties and ultrastructure of the fibrin clot in a 
large cohort of patients is lacking. Moreover, fibrin clot studies 
in dysfibrinogenemia rarely take into account other genetic vari-
ations that might influence or modulate the fibrin clot (i.e., in-
termediate phenotype),24 and no prospective data are available 
so far. Overall, such studies could allow us to better predict the 
clinical outcomes and offer a more personalized therapeutic 
strategy toward precision medicine. 

 
 

Conclusions 
We should start considering CFD as an oligogenic rather 

than just a monogenic disease and focus research on the assess-
ment of common variants that might contribute to clinical vari-
ations between patients with CDF. Today we are far from having 
clinically relevant information on most genetic modifiers and 
their impact on the hemostasis balance. Understanding the ge-
netic-related thrombin generation and fibrin clot mechanisms 
involved in a patient’s phenotype will help in understanding the 
pathophysiological mechanisms underlying the bleeding and/or 
thrombosis in CFD. 
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