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Abstract: Recent works recognize musicality is based on and constrained by our cognitive and biological system. Taking
in account a concept from cognitive science ‐ cognitive offloading ‐ as a principle for technology‐supported musical
activities, in this paper we discuss some suggestions (guidelines) to be taken into account when designing, developing
and evaluating computer music technologies, especially those related to ubimus. We believe that Ubimus technology
can shape the way we think about music and have a positive (or negative) influence on our musicality.
Keywords: Cognitive Offloading; Musicality ; Ubimus technology.

PODEM AS TECNOLOGIAS UBIMUS AFETAR NOSSA MUSICALIDADE?
Resumo: Trabalhos recentes reconhecem que musicalidade é baseada e limitada pelo nosso sistema cognitivo e bi‐
ológico. Levando em consideração um conceito originário da ciência cognitiva ‐ cognitive offloading ‐ como umprincípio
para atividades musicais suportadas por tecnologia, neste artigo discutimos alguns princípios (diretrizes) a serem leva‐
dos em consideração ao projetar, desenvolver e avaliar tecnologias de música computacional, especialmente aquelas
relacionadas a Ubimus. Acreditamos que a tecnologia Ubimus pode moldar a maneira como pensamos sobre música e
ter uma influência positiva (ou negativa) em nossa musicalidade.
Palavras‐chave: Cognitive offloading ; Musicalidade; Tecnologia Ubimus;
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1. Introduction

Music is universal and, although there is no inter‐culturally correct definition of music, several presumptive
universals indicate that musicality is a prominent and distinctive characteristic of humankind (Trehub et al.
2015). Indeed, we think everyone is a skilled and sophisticated musical listener. Even those who consider
themselves to be ”unmusical” or do not themselves produce music have implicit knowledge of their culture’s
musical forms and styles (even if they cannot be expressed explicitly). For instance, all individuals have an
implicit understanding of the melodic, rhythmic, and harmonic regularities of their cultures’ music, in the
same way, they unconsciously know the structure and rules of our native language (Honing 2018).

Since our cognition is influenced, perhaps determined, by our experiences in the physical world, our goal is
to investigate howmusicality is affected by the technology we are using (and building) to support our musical
activities. It is not a pioneering work: some time ago, Malloch and Wanderley (2017) adopted an embodied
cognition perspective to investigate DMIs design and performance; technology has created newmodalities for
our everyday activities. The growing man‐machine integration results in a broader understanding of human
experience and cognition. The same way McLuhan (McLuhan and Lapham 1994) discussed how communi‐
cation technology, i.e. all kinds of media, mainly electronic media, becomes technological extensions of our
bodies, configures the awareness and experience of each of us and also affects our cognitive organization,
we think that the use of ubimus technology could equally shape the way we think about music and have a
positive (or negative) influence on our musicality.

In the last years, we have been particularly interested in investigating howwe can provide better technological
support for musical activities and also in making the Computer Music‐ HCI connection more explicit. Here we
aim to discuss how Computer Music ‐ in particular Ubiquitous Music ‐ could borrow a number of Cognitive
principles from an HCI perspective; and also how Cognitive Offloading concepts and principles (Risko and
Gilbert 2016) could be adapted and used in the design and evaluation of ubimus technologies. By cognitive
offloading, we imply the reliance on using a (computer‐based) device to reduce the cognitive demand of
performing a task.

In this paper, we intend to discuss and present our hypothesis: our musicality is influenced (positively or
negatively) by ubimus technology. After presenting some fundamentals of ubimus and some ideas from cog‐
nitive and biological traits related to music and musicality, we discuss a number of suggestions (guidelines)
to be taken into account when designing, developing and evaluating computer music technologies, especially
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those related to ubimus. Our final intention is to provide insight into if and how sound cognitive user‐centered
knowledge can be transferred to the computer music context, particularly adopting the cognitive offloading
perspective.

The paper is structured as follows. First, we present a panoramic view of ubimus technologies. Second, we
summarize some works relating cognitive and biological concepts to musicality, aiming to use them as funda‐
mentals of our approach . Third, we propose a number of suggestions ‐ inspired from these fundamentals ‐
we consider useful to design, develop and evaluate computer music technologies. The last section contains
a final discussion.

2. Ubimus technologies: a panoramic view

The rise in popularity of touchscreen smartphones and mobile apps and rapidly advancing networks, mobile
processors, and storage technologies led to a convergence where smartphones replaced mobile phones, or‐
ganizers, and portable media players as the single device most people carried. Such advances in computing
technologies and products, which are integrating more and more functionality and continuously changing at
an increasing rate, have been a motivating force behind changes in media arts theory and practice, demand‐
ing broader and challenging approaches. As we move from desktop personal computers, firstly to a multi‐
platform and distributed Internet, with its web and rich applications, and now to mobile convergence devices
and multi‐user ubiquitous computing environments, we need to cope with the significance of this media in
many people’s lives. As more advanced portable devices become available, it is becoming increasingly impor‐
tant to have more sophisticated and, at the same time, more intuitive creativity support tools, particularly
allowing users to participate in musical activities such as music creation, performance, experimentation.

We have proposed the adoption of the term Ubiquitous Music (Keller et al. 2014) – or simply Ubimus – to
promote practices that empower participants of musical experiences through socially oriented, creativity‐
enhancing tools. To achieve this goal, our group has been engaged in a multidisciplinary effort to investigate
the creative potential of converging forms of social interaction, mobile and distributed technologies and in‐
novativemusic‐making practices. One of our goals is to develop tools which take advantage of these inclusive
contexts, providing conditions to novices to participate in creative activities, ideally in any place and at any
moment. One strategy to achieve this goal is to repurpose everyday consumer mobile devices (devices peo‐
ple already own, and are familiar with) as ubiquitous music interfaces to be used in musical activities, taking
benefit from their distinctive capabilities of portability, mobility, and connectivity and above all from their
availability to the average person.

Ubimus research has targeted both more accessible forms of music making and a search for new modali‐
ties of artistic practice. These endeavors entail a deep understanding of the underlying creative phenomena
‐ both the ones approached by disciplines such as musicology or music cognition and the emerging forms
of creativity tied to the intense deployment of technology and involving the adaptive and opportunistic uti‐
lization of resources found in everyday settings ‐ i.e., little‐c music (De Lima et al. 2017). As in other fast
growing fields, there is a tendency to incorporate technological resources without the support of a firm ex‐
perimental evidence or a consistent theoretical scaffolding. Take for instance the recent emergence of the
Internet of Musical Things. This proposal was formulated in parallel by Turchet and Barthet (2017) and Keller
and Lazzarini (2017). After several exchanges in the ubimus community, the various acronyms were dropped
(IoMT, IoMUT, etc.) and the label IoMusT was adopted. In addition, Ubimus studies present useful direc‐
tions, such as observing that musicians and naïve users have different requirements in exploratory musical
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activities (Miletto et al. 2007). Musicians find instrumental metaphors straightforward to use and expressive.
Non‐musicians do not necessarily share this view. Interfaces based on traditional musical instruments are not
rated as expressive and productive when exploring the musical possibilities of a tool. With Ubimus technol‐
ogy, the traditional roles in music creation and performance (composer, interpreter, listener) are changed.
Ubiquitous music technology has undergone considerable improvements over the last decade, and now it
makes possible the use of ubimus technology as attractive tools for musical accomplishments.

This profile‐specific characteristic reinforces the importance of a careful design of user interfaces for musical
activities but also the need to search for new theories, concepts, metaphors and patterns in order to find how
to adopt these everyday devices and technologies in musical activities.

3. Musicality: Cognitive and Biological Musical Traits

The ability to rely on the externalmindmight have detrimental consequences to cognition (Carr 2010) because
humans act as ”cognitive misers”, meaning that people tend to eschew costly analytic thought in favour of
comparatively effortless intuitive processing (Barr et al. 2015). Cognitive Miser is a term introduced by Taylor
(1981) which refers to the idea that only a small amount of information is actively perceived by individuals
when making decisions, instead cognitive shortcuts are used to attend to relevant information and arrive at
a decision. Human cognition’s miserly nature lends itself to an overreliance on simple heuristics and mental
shortcuts (Stanovich 2004; Kahneman 2011). The evidence suggests that excessive smartphone users are
genuinely lower in cognitive ability and have a more intuitive cognitive style.

For instance, Sparrow et al. (2011) pointed out that when people expect to have future access to information,
they have lower recall rates of the information itself and enhanced recall for where to access it instead. In
a musical context, it is known that short‐term memory capacity is crucial to the segmentation strategy used
by good sight‐readers whenever reading a musical score (Bean 1939; Gabrielsson 2003). Sight‐reading is
especially crucial in the first stage of the musical performance plan while acquiring knowledge about the
piece and developing preliminary ideas about how it should be performed.

According to Gabrielsson (2003), it is also in this first stage that the structural analysis reveals the realmeaning
of the musical information. Such a cognitively demanding task requires a substantial amount of analytical
reasoning that, in turn, can be ultimately trusted to our smartphones, as demonstrated by Barr et al. (2015).
The second stage ‐ the musical performance plan ‐ involves hard work on technical problems to establish the
spatiomotor pattern required to perform the music.

Finally, the third and final stage is a fusion of the two previous stages with trial rehearsals that produce a final
version of the performance (Gabrielsson 2003). The last two stages demand executive functioning and anxiety
control, and yet, once again, the dependence on smart devices plays a significant disrupting role in performing
this task (Clayton et al. 2015; Hartanto and Yang 2016). Despite the evidence, it would be premature to state
that the very best technology designed to support musical activities is atrophying our musicality.

Nevertheless, it is possible to approach this issue from a different angle: researching the cognitive and bio‐
logical traits involved in musical thinking and applying it in the design of new ubimus tech. By doing so, we
would lean towards innate and primitive structures related to music‐making, which is unlikely to change due
to these technologies’ behavioural overuse. If musicality can be defined as a natural, spontaneously devel‐
oping set of traits based on and constrained by our cognitive and biological system, music in all its variety can
be defined as a social and cultural construct based on that very musicality (Honing and Ploeger 2012), as will
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be discussed in the next section.

We all can perceive and enjoy music. Over the years, it has become clear that all humans share a predis‐
position for music, just like we have for language. To recognize a melody and perceive the music’s beat is
an example of a trait based on and constrained by our cognitive abilities and underlying biology (trivial skill
for most humans). Even infants are sensitive to such features, which are shared across cultures (Savage et al.
2015; Trehub et al. 2015). Other common human traits in musicality reported by Honing (2018) are a) relative
pitch (e.g., contour and interval analysis; b) regularity and beat perception; c) tonal encoding of pitch; and
d) metrical encoding of rhythm. Until relatively recently, most scholars were wary of the notion that music
cognition could have a biological basis. Music was viewed as a cultural product with no evolutionary history
and no biological constraints on its manifestation. This explanation is supported by the belief that music has
not been around long enough to have shaped perceptual mechanisms over thousands of generations.

Moreover, in contrast to speech, this musical knowledge is acquired relatively slowly and not equally by all
individuals of a given nature (Repp 1991). However, such notions do not explain the presence of music in
all cultures and time periods, let alone other species. More recently, studies have indicated that our music
capacity has an intimate relationship with our cognition and underlying biology, mainly when the focus is
on perception rather than production (Winkler et al. 2009; Fitch 2006; Honing 2018). Comparative research
shows that although music itself may be specifically human, some of the fundamental mechanisms that un‐
derlie humanmusicality are shared with other species. For Darwin, music had no survival benefits but offered
a means of impressing potential partners, thereby contributing to reproductive success. If so, the possibility
that these cognitive traits are the target of natural selection (bear in mind that cognitive traits are polygenic).
Darwin argued that musical vocalizations preceded language(Fitch 2013). Impressing potential partners may
be a feasible purpose for music. However, there are divergent studies on that matter. Other reported pur‐
poses for music are: a) the promotion and maintenance of group cohesion, working as a glue that enhances
cooperation and strengthens feelings of unity (Merker et al. 2009), b) to ease the burdens of care‐giving and
promote infant well‐being and survival (Dissanayake 2008) (this perspective sees such vocalizations as having
paved the way not only for language but also for music (Brown 2011)), and c) that music is a technology or
transformative invention that uses existing skills and has consequences for culture and biology (Patel 2008).

While there might be quite some evidence that musicality components overlap with non‐musical cognitive
features, this is in itself no evidence againstmusicality as an evolved biological trait or set of traits. It still has to
be demonstrated that the constituent components of musicality are indeed domain‐specific when identified.
As in language, musicality could have evolved from existing elements through evolutionary processes, such
as natural or sexual selection. Alternatively, based on the converging evidence for music‐specific responses
along specific neural pathways, it could be that brain networks that support musicality are partly recycled
for language, thus predicting more overlap than segregation of cognitive functions. All in all, a consensus is
growing thatmusicality has deep biological foundations, based on accumulating evidence for the involvement
of genetic variation (Särkämö et al. 2016; Oikkonen et al. 2016). Recent advances in molecular technologies
provide an effective way of exploring these biological foundations, such as the association studies of genome
aiming to capture the polymorphic content of a large phenotyped population sample.

4. Suggestions for the Design of Interactions in UbiMus

In this section we propose a number of suggestions related to Interaction and Ubimus, eventually affecting
the way ubimus technologies can be designed and evaluated. So far, based on the literature reviewed, it has
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been established that: a) there might be cognitive and biological traits related to musical activities; b) some
human cognitive skills could be affected by ubiquitous technology, especially by connected mobile devices.
The question then is: how to design ubiquitous technology formusical activities (UbiMus) thatmakes themost
of our innate predisposition to music (musicality) to minimize the detrimental cognitive effects of extensive
use of such devices? Historically, digital artefacts were primarily tools intended to be used instrumentally
for solving problems and carrying out tasks, and mostly to be used individually. In this scenario, concepts
such as user goals, task flows, usability and utility were (and still are) very valuable. However, it turns out
that digital technology in today’s society is mostly used for communication (many‐to‐many), entertainment,
and pleasure. Here is where user experience design thrives. As the name suggests, user experience design is
about designing the ideal experience of using a service or product. It is about how people feel about a prod‐
uct and their pleasure and satisfaction when using it, looking at it, or holding it. Every product that is used
by someone involves user experience. Numerous theories, methodologies, and frameworks help designers
design products focused on user experience. Though it is not in this work’s scope to discuss these, they all
suggest paying close attention to user’s needs and expected behaviour (e.g. User‐Centered Design). The user
should be in the center of the designing process; they should be listened to and be involved. Overall, it is
essential to consider what people are good and bad at, both in a motor and cognitive level. For that reason,
Human‐Computer Interaction (HCI) has historically been related to the fields of ergonomics and cognitive sci‐
ences (Preece et al. 2015). Next, some important aspects of human cognition related to music are presented,
aiming to guide new computer music technology development.

4.1. Physicality of the Musical Instruments

One of the essential qualities of a DMI is how it compares to existing systems (Miranda and Wanderley 2006)
since this provides much of the context in which both performers and audiences will interpret its behaviour.
This may be linked to the design principle of consistency.

Interactions with traditional acoustic and electroacoustic musical instruments can usually be typified as phys‐
ical manipulation of a vibrating object or objects. Interactions with digital musical instruments are profoundly
different from the perspective of control since sensors are manipulated and the virtual vibrating system (or
equivalent sound synthesis generator) is modified by the sensor signals only as mediated by a computer (Mal‐
loch and Wanderley 2017). This can lead to the loss of the very subjective feeling of actually objectifying the
sound by themusicians. Although DMIs are typically tangible, they may lack a clear physical relation between
physical and digital representations. The production of structured communicative sounds by striking objects
with limbs, other body parts, or other objects (e.g. ”drumming”) appears to constitute a core component of
human musicality with clear animal analogues (Fitch 2015).

Past experiences, preconceptions, opinions and tastes of performers and audience influence their perception
of the interaction. Furthermore, audiences see the interaction between a musician and their instrument in
a given context. Thus, musicality or expressivity are not inherent in an instrument, but it emerges in the
performer’s interaction with this instrument (Malloch and Wanderley 2017).

There is an intimate relation between human cognition and manipulation of the body and objects in the
physical environment. For example, we rely on smartphones and search engines to store and retrieve in‐
formation. In other words, we often think using our bodies and the external world. One critical function
that these mind/body/world interactions afford is cognitive offloading ‐ the use of physical action to alter the
information processing requirements of a task in order to reduce cognitive demand (Risko and Gilbert 2016).
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As noted by Malloch and Wanderley (2017), DMIs do not necessarily need to comply with physical laws (vi‐
bration of air columns, strings, membranes or bars); therefore, the connection of the interface (or input de‐
vice) and the synthesis algorithms is somewhat arbitrary. This fact poses a challenge to the designers since
acoustic instruments include specific properties due to their materiality, limiting its sound scope. There are
”natural” mappings between bodily energy exertion and the resulting sound, either by plucking a string or
hitting a drum with a stick (Magnusson and Mendieta 2007). Furthermore, the haptic feedback, which is de‐
termined by acoustic instruments’ shape and physicality, is entirely missing in the digital counterparts (Bech‐
Hansen 2013). In acoustical instruments (the human voice included), the production of vibrato is related to
the amount of force applied to the instrument, which gives the player a sense of the instrument’s state. This
is not the case with software and DMIs.

One of the most profound differences between traditional and digital musical instruments is that DMIs are
generally reprogrammable. Since themapping between gesture and sound is implemented in software rather
than in a physical structure, DMIs (or software instruments) tend to be too broad to get to know it thoroughly
(”frightening blank space,” meaning the endless possibilities). The perception of making the physical object
vibrate and feel the sound source directly and naturally is something that computer systems lack. Playing
digital instruments seems to be less of an embodied practice (where motor‐memory has been established)
as the mapping between gesture and sound can be easily changed. In a survey with over 200 musicians,
Magnusson and Mendieta (2007) reported that participants expressed the wish for more limited expressive
software instruments, i.e. not software that tries to do it all but ”does one thing well and not one hundred
things badly.”

Another relevant aspect regarded the physicality of musical instruments is a concern with its perennity and
durability. It is frustrating having to deal with updates, fixing, compatibility issues, and the overall uncertainty
of the continuation of commercial digital instruments or software environments. An acoustic instrument does
not have a due date, and it will not become updated with the next year’s release. They have been around for
so long that it is probable that one can find all the support and spare parts one needs in a local music shop.
It is about credibility, an essential value of the user experience.

So, does that mean there are only positives with the acoustic instruments? Surely not. When the sound
production mechanics are tied with the interface, the instruments may not prioritize the ergonomics, leading
to discomfort, errors, and injuries. Modern technology has made it possible to separate the user‐interface
from the sound production mechanism of an instrument. As a result of this separation, the user interface
can be optimized for usability, while the sound production of the instrument can be separately optimized
without the need for constraints such as keeping the pipes close enough for a musician to be able to reach
each pipe or each finger hole with her fingers (Mann and Steve 2007). Despite the advantages, the price paid
for separating the user interface from sound‐producing medium is decreased physicality. The synthesizer
fundamentally changed the haptic aspects of musical performance by virtually eliminating it. Simultaneously,
however, the synthesizer also augmented the sonic vocabulary, paving the way for new musical expression
through sounds and timbres (Bech‐Hansen 2013).

Musical instruments should ideally produce high‐quality sounds, while not being too challenging to play, be
durable, and relatively affordable (Manchester 2006). Manipulating an acoustic musical instrument for an
extended period of time will almost certainly lead to injuries resultant of the accumulation of micro traumas
when the human physiological limits are exceeded. In fact, the problem is so severe that 48‐66% of string
players report injuries severe enough to interfere with their ability to perform (Shan and Visentin 2003).
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We summarize three suggestions related to physicality of musical instruments: a) to invest in a durable de‐
sign using good quality materials that evokes desire in the users – not a toyish design; In fact, a redesigned
augmented instrument would be preferred; b) to limit the features of the instrument in a way that it would
have an easy learning curve but incorporates deep potential for further explorations, so it will not to become
a boring; c) to avoid the temptation to just copy the interface of the acoustic instrument on a new digital
counterpart. It is positive to incorporate familiar materials (i.e. guitar strings) and make use of the known
haptic vocabulary (i.e the vibration of the string when plucked). Do it after ergonomic studies and evaluation
with actual users to avoid possible injuries.

4.2. Establishing a reference to be imitated

(True) imitation is innate. It is well‐developed in humans being observed in new‐borns babies both for foster‐
ing learning and for yielding pleasure. There is a distinction between imitation that copies the task structure
and hierarchical organization, and imitation that copies movements. True imitation focuses on the goal; in
other words, the execution of the action as a function of the goal(Byrne and Russon 1998). In a musical
context, it can be approached from different viewpoints, such as imitation skills, musical figures, imitation
of symbols, imitation of moving sonic forms (corporeal imitation), and imitation of group behaviour (allelo‐
imitation). Playing a musical instrument starts with the imitation of low‐level skills and low‐level challenges.
However, as skills improve, the challenges can rise to a higher level. When skills and challenges are in equilib‐
rium, this gives rise to an optimal experience or pleasure. Learning to play a musical instrument is, therefore,
a typical example of true imitation. It draws on the ability of the student to focus on what is essential in the
teacher’s example. Even if the instrument is not the same, it is still possible to imitate particular behaviours
and playing styles because the student has more focus on the goals and less of a focus on the precise move‐
ments. However, the student’s ability to see the movements and gestures of the teacher may be an essential
component in learning to play a musical instrument. The visual observation of expressive movements may
facilitate themirroring of the teacher’s intentions to the student’s intentions (Leman 2008). The role ofmirror‐
ing in music education has been confirmed by a brain imaging study (Buccino et al. 2004). Musical instrument
performance was used to show that the decomposition into elementary motor components was encoded by
themirror neurons. When the action to be imitated corresponded to an elementary action already present in
the mirror neuron system, this act was forwarded to other structures and replicated. In that case, no learning
was needed (Leman 2008)]. The conclusion here is that, in order to capitalize on the innate human capability
to imitate, the designers of a computational performance tool must take into account ways of facilitating this
process of true imitation either by providing key examples as well as awareness of the performer on actions
compared to others. Guidance and a reference are needed.

We summarize three suggestions related to usage of (true) imitation as a strategy to musical learning and
communication. A) Implementation of comparison mechanisms that allows casual players to match their
performances against more skilled ones; b) Tutorials with professional players (setting an idol reference) in
immersive learning environments (multi‐angle)may contribute to a faster development of the requiredmotor
skills; c) adoption of elementarymotor gestures andmovements in an effort to reducemotor‐related learning
making sure, however, the movements are meaningful and not conflicting with one another or established
patterns.

4.3. Building blocks

Barr et al. (2015) studies suggest that people who think more intuitively and less analytically when given rea‐
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soning problems were more likely to rely on their connected devices, suggesting that people may be prone to
look up information that they actually know or could quickly learn, but are unwilling to invest the cognitive
cost associated with encoding and retrieval. In that sense, a possible approach is to offer building blocks that
simplify a set of complex tasks that can be looked closer whenever the user feels prepared to do so. Those
abstractions can represent performer’s actions, musical structures (i.e. arpeggios), emotional intention, im‐
provisation strategy (with the use of AI), riffs, samples, rhythmic patterns, etc. Not only should these blocks
be readily available and searchable, but they should also be suggested based on context and user profiling.
Note, however, that music is still believed to be mostly a matter of the ”intuitive” right brain – the avatar of
emotion and creativity (Repp 1991). If that so, chances are the user will never look into those building blocks
since onemight choose not to engage in costly elaborative encoding, as they know that knowledge can be pro‐
cured externally. Therefore, besides being an excellent approach to manage frustration and anxiety, building
blocks strategy might not be ideal, for example, for musical learning software.

We summarize three suggestions related the building blocks approach: a) improved search engines based on
musicality: vocalization/humming searching and/or rhythmic searching based on physical relation between
the physical and digital representation (i.e. drumming). Also, the results could be sorted based on the user’s
skill level. Mainly, do not offer too much too soon nor too little too late; b) Intelligent recommendation sys‐
tems: autocompletemusical phrases, intelligent harmonizers and timbre recommendation system based on a
particular musical style and user profile; c) performance‐related assistance such as adaptive accompaniment
systems or an intelligent “autopilot” mode. Whatever the level of the assistance offered, the design must
also reflect a well‐thought balance between assistance and

4.4. Movements and Gestures

As previously mentioned, people’s engagement with music is in a way similar to how they engage with other
people (Leman 2008): the process of music appreciation‐ although also including cognitive appreciation and
interpretation ‐is firmly based on mirroring body movement. To sound natural in performance, expressive
timing must conform to the principle of human movement (Honing 2003). People’s tendency to move in
synchrony with auditory rhythms is known as the ideomotor principle: perception of movement will always
induce a tendency to perform the same or similar movements(Knuf et al. 2001) . The effect is observable in
the tendency to tap along with the beat of the music (Leman 2008), including moving with the instrument up
and down while playing (Wanderley 2002). The beat is the most natural feature for synchronized movement
because it appeals to fundamental biomechanical resonances (Hallam et al. 2005). In this regard, Knuf et al.
(2001) ran a comprehensive study on ideomotor actions and verified that movements did not always occur
without awareness, but they did occur without awareness of voluntary control. They have also found clear
evidence that people tend to perform the movements they would like to see (intentional induction), whereas
results are less clear regarding perceptual induction (movements that people see). Perceptual induction could
only be verified thru noninstrumental effectors: in their experiment, the effect appeared for both head and
foot. For hand movements (the instrument effectors), intentional induction is much more pronounced than
perceptual. Corporeal articulation is also related tomusical expressiveness (Wanderley et al. 2005) and can be
seen as indicators of intentionality (studied as seen above in terms of this mirroring process)(Leman 2008). In
general terms, movement in response to music is often seen as a gestural expression of a particular emotion
(sadness, happiness, love, anger) that is assumed to be imitated by the music Friberg and Sundberg (1999).
Therefore, a fundamental question is: if articulations are a kind of expression, how do they relate to expres‐
siveness in music? (Leman 2008) Bear in mind that the expression of emotion is only one aspect of corporeal
involvement with music since corporeal articulations can also be used to annotate structural features, such as
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melody, tonality, and percussion events. In summary, our gestures and movements give away our intentions
and must be considered when musical activities take place.

Regarded to mappings of gestures and movements, four suggestions as: a) Movements are important for
controlling rhythmic information, both during the performance and for data input. Hand and upper body
limbs (instrumental effectors) movements are preferred; b) Movement is also importnat to control dynamic
and other parameters ofmusical expression. Other forms of body language, such as face expression detection,
may also leads to good results; c) Do not impose a set to gestures and movements that does not conform to
our existing sensorimotor body movement skills. Movements that represents manipulation skills should be
avoided (i.e. air guitar). It might be a good idea to observe and learn personal movements of a particular user
during a musical performance; d) Perceptual induction could be used as a way to get engagement feed‐back
from the audience.

4.5. Tempo, timing, regularity

Todd (1992) defends the principle that performance, perception of tempo andmusical dynamics are based on
an internal sense of motion. This principle reflects upon the notion that music performance and perception
have their origins in the kinematic and dynamic characteristics of typical motor actions. For example, regular‐
ities observed in a sequence of foot movements during walking or running are similar to regularities observed
in sequences of beats or note values when amusical performance changes tempo. A shared assumption from
these lines of works is that we experience andmake sense of musical phenomena bymetaphorically mapping
the concepts derived from our bodily experience of the physical world into music. Accordingly, listeners hear
the unfolding musical events as shaped by the action of specific musical forces that behave similarly to the
forces behind our movements in the physical world such as gravity and inertia(Dogantan‐Dack 2006). Baily
(1985) even argues that the performer’s internal representation ofmusic is in terms ofmovement, rather than
sound. Honing (2012) defends that regularity and beat perception is one of the human’s innate musical traits.
ten Cate et al. (2016) go beyond studying in different species, both the ability to recognize the regularity in
the auditory stimulus and the ability to adjust the ownmotor output to the perceived pattern. Although rare,
this ability appears to some animals as well. Human rhythmic abilities obviously did not arise to allow people
to synchronize to metronomes but rather to other humans’ actions in groups, known as social synchroniza‐
tion. Thus, by the ecological principle, the concept of mutual entrainment among two or more individuals
should be the ability of central interest rather than BPS to a mechanical timekeeper (Fitch 2015). In the wild
(i.e., outside the lab), the mutual entrainment of two or more individuals by such a mechanism obviously
cannot occur unless they themselves are capable of producing the evenly paced entraining stimulus of some
kind (such as clapping, stomping, or drumming) within the tempo range of its predictive timing mechanism
(Merker et al. 2015). The most sophisticated form of synchronization involves beat‐based predictive timing,
where an internal beat is tuned to the frequency and phase of an isochronous time‐giver, allowing perfect
0‐degree phase alignment. This stimulus makes the very next beat in the sequence predictable, allowing the
timing mechanism to align—or latch—its produced behavioural to the stimulus with zero, or even small neg‐
ative (anticipatory), phase lag, typical of human sensorimotor synchrony (Fraisse 1982). Because of reaction
time limitations, it cannot, therefore, be based on responding to that stimulus event. Instead, it requires a
predictive (anticipatory) and cyclical motor timing mechanism that takes an evenly paced stimulus sequence
as input. Naturally, reaction times too predictable stimuli are shorter than those to unpredictable ones; hence
preparatory cues such as ”ready, steady” or a drummer’s count down allow quicker responses.

Related to ability to recognize and synchronize with auditory signals, it is suggested: a) Make use of auditory

10



Costalonga, Leandro et al. 2020. “Can Ubimus Technologies affect our Musicality?”
Per Musi no. 40, Computing Performed Music: 1‐16. e204019. DOI 10.35699/2317‐6377.2020.25941

predictive cue to synchronized‐demanding actions. Sound has been largely used as a way to call for attention
in interactive systems, however in interactive systems for music performance this approach must be used
very carefully not to disrupt the system main usage. That said, it is possible to lean on our innate ability
encode metrical information, such as rhythm, to call for the user attention when some action is required. For
example, we can use syncope or other rhythmic cues as a feedback for the user. In part, this is a very common
strategy used by DJ’s when mixing electronic musical styles. b) Offers support to rhythm‐related activities
when BPM drops below 70 (i.e. a visual representation of the tempo). c) People are good at synchronizing
with other people, not machines. Tangible User Interfaces are a good option to provide support for more
than one person to explore the interface together, using the innate ability of synchronization.

4.6. Tonal hearing

Humans readily recognize tone sequences that are shifted up or down in log frequency because the pattern
of relative pitches is maintained (referred to as interval perception or relative pitch). Humans also have a
sensitivity to the spectral contour of musical signals (like birds), but relative pitch is the preferred mode of
listening for humans. The tonal encoding of pitch also seems to be another innate human ability regarded
to music. There is substantial empirical evidence that listeners use this tonal knowledge in music perception
automatically. Central to pitch organization is the perception of pitch along with musical scales. A musical
scale refers to the use of a small subset of pitches in a given musical piece. Scale tones are not equivalent
and are organized around a central tone, called the tonic. Usually, a tonal musical piece starts and ends on
the tonic. Tonal organization of pitch applies to many music types, but it does not occur in processing other
sound patterns, such as speech. Although the commonly used scales differ somewhat from culture to cul‐
ture, most musical scales use pitches of unequal spacing that are organized around 5–7 focal pitches and
afford the building of pitch hierarchies. The tonal encoding module seems to exploit musical predispositions,
as infants show enhanced processing for scales with unequal pitch steps (ten Cate et al. 2016). Innate mu‐
sical predispositions imply specialized brain structures to deal with music: tonal encoding can be selectively
impaired by brain damage; for example, after damage, some patients are no longer able to judge melodic
closure properly. A recent functional neuroimaging study has identified the rostromedial prefrontal cortex
as a likely brain substrate for the’ tonal encoding’ module (Fitch 2015). Musical memory is also organized,
at least partially, independent of the hippocampus ‐ the brain structure central to memory formation. It is
possible that the enormous significance of music throughout all times and in all cultures contributed to the
development of an independent memory for music (Merker et al. 2015). After all these findings, we need to
rethink the specificity of music related brain cells may be not fully exploited by the traditional (ubimus) design
decisions.

We summarize two suggestions related to tonal and pitch encoding. a) recommendation systems based rel‐
ative pitch (contour perception) and tone detection (i.e. autocomplete musical phrases based on scales); b)
improved perceptual models based on out most sensitive frequency range.

5. Discussion

Music, as we know it, has been done in the sameway for centuries. Musical instruments have indeed evolved
to provide a better (not ideal) fit to our body, sound quality has been improved, newmusical styles appeared
while others died, and the musical industry reinvented itself several times over. Nevertheless, the cognitive
and biological traits that support all this activity, from producing to enjoying music, have been mostly the
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same. Evolution on this matter is slow. The fact is, humans excel at doing music this way. With the popu‐
larization of computer technology, much progress had to be made in the field of HCI to allow the computers
to be usable by nonspecialized regular people. Currently, computers (in all its modern shapes and forms) are
involved in virtually all activities known by human beings, music included. A relevant change of paradigm
in HCI was Weiser (1991) vision of ubiquitous technology (UbiComp).The readings of UbiComp concepts and
technology by fields such asMusic and Arts led to the birth of a subfield so‐called UbiquitousMusic (UbiMus);
This field is concerned with ubiquitous systems of human agents and material resources that afford musical
activities through creativity support tools. In practical terms, ubimus is music (or musical activities) supported
by ubiquitous computing concepts and technology. It relates to concepts such as portability, mobility, con‐
nectivity, availability (including for non‐musicians).

More recently, another emerging research field positioned itself at the intersection of the Internet of Things,
new interfaces for musical expression, ubiquitous music, human‐computer interaction, artificial intelligence,
and participatory art ‐ it is known as the Internet ofMusical Thing (IoMusT). Froma computer science perspec‐
tive, IoMusT refers to the networks of computing devices (smart devices) embedded in physical objects (musi‐
cal things) dedicated to the production and/or reception ofmusical content. Possible scenarios for IoMusT are
augmented and immersive concert experiences, audience participation; remote rehearsals; music e‐learning;
and smart studio production (Turchet et al. 2018). These are fascinating research areas, but the big question
is: are we cognitively equipped to make the most of it? Could we thrive in this new way of making music,
or will it become ”yet‐another” short‐lived cool interface for music‐making? Is this new technology paying
attention to the way we do things, considering what we are good and bad at? Clearly, there is an intrinsic ex‐
ploratory value in these initiatives, and it will undoubtedly lead to unpredictable artistic outcomes, but this is
insufficient to answer the questions above. Moreover, is there a price to pay when we rely so heavily on such
tech to perform an activity such asmusic‐making? One of themost pertinent questions for the 21st century is
how these increasingly intelligent and invasive technologies will affect our minds. The term ”extended mind”
has been used to refer to the notion that our cognition goes beyond our brains and suggests that individuals
may allow their smart devices to do their thinking for or with them (Barr et al. 2015). The ability to rely on
the external mind might have detrimental consequences to cognition (Carr 2010). This is yet to be examined
in close detail in the musical context and this can only be done by applying some of the proposed sugges‐
tions discussed in 4 in the design of new music technologies and validating them with the users. This paper
discussed and presented some innate abilities involved in musical activities that – in the authors’ viewpoint ‐
could be considered in the current designs of digital musical instruments and ubimus technology as a whole.
Even though further experimental work is needed, recent biomusicology and neuroscience findings indicate
musical activities may have idiosyncrasies that are not covered by the traditional approaches of interaction
design and user experience design.
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