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Engineering construction in cold regions cannot be separated from permafrost
research. This study aimed to determine the mechanical properties and changing
laws of artificially frozen clay through triaxial tests. Two models have been
established: a physical model based on the tradi-tional phenomenological
constitutive theory and a deep learning model based on the data-driven
constitutive theory, taking into account the softening phenomenon. The
accuracy and applica-bility of the models were verified, followed by a
comparative analysis. The results of the analysis are as follows. The Duncan-
Chang model can describe the characteristics of the hardening-type deviatoric
stress-strain curve, but it cannot describe the characteristics of the softening-type
de-viatoric stress-strain curve. The Modified Duncan-Chang (MDC) model fails to
accurately de-scribe the characteristics of a smooth deviatoric stress-strain curve.
The Strain-Damage Modified Duncan-Chang (SD-MDC) model exhibits a good fit
in both the ascending and descending seg-ments of the curve, but it lacks
effectiveness in the convergence segment of the S-shaped sof-tening curve.
For this reason, this paper has chosen the arctangent function to establish a Strain-
Damage Modified arctangent constitutive model (SD-MAM). This model
accurately re-flects the stress evolution process of different types of frozen
soils. Additionally, the Informer time series prediction algorithm was utilized to
develop the Informer permafrost deviatoric stress prediction model which
achieved an R2 value above 99%. In comparison to the SD-MAM model, the
Informer model demonstrates higher precision, does not rely on assumptions, is
cost-effective, and has a wide range of applications. However, it lacks physical
meaning, and interpretability, and requires further discussion regarding the
reliability of the results. This study offers valuable insights into the
development and application of constitutive models for frozen soils.
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1 Introduction

In seasonally frozen soil areas, changes in the subgrade’s
seasonal temperature can cause frost heaving and thaw
settlement (Lu et al., 2018; Derk and Unold, 2022; Liu et al.,
2022). Soil strength in cold regions is critical for the service life
and structural safety of the high-speed railway and energy
infrastructure projects and residential construction (Teng et al.,
2021). The constitutive theory for frozen soil describes the
relationship between force and deformation in this material. A
widely applicable and accurate constitutive model for frozen soil
(Liu and Lai, 2020; Li J. et al., 2022; Zhao et al., 2022) is essential for
providing important theoretical guidance for engineering
construction in cold regions. Investigation of the constitutive
model for artificially frozen silty clay is a significant area of
research (Song et al., 2021).

Soil mechanics calculations and analyses should consider not
only force balance and displacement coordination equations but also
the mechanical constitutive equations of soil. Constitutive theories
of soil include elastic theory, elastoplastic theory, plasticity inner
time theory, damage constitutive theory, and structural constitutive
theory. The viscoelastic-plastic model (Islam and Gnanendran,
2020) accurately represents soil deformation characteristics,
internal mechanisms, and properties such as hardening,
softening, and shear dilation. The elastoplastic model shows
promise for development and is second in accuracy only to the
viscoelastic-plastic model. The nonlinear elastic model does not
account for the effects of plastic deformation, stress paths, and
second principal stresses. The model is practical for solving formulas
and suitable for engineering calculations and analysis (Liu et al.,
2019).

The DC model is a nonlinear elastic model (Zhao G. F. et al.,
2020). It can be directly obtained from triaxial tests. However, this
model fails to explain the strain-softening phenomenon of frozen
soil. Consequently, Shen et al. (2019) introduced the modified
Duncan-Chang model (MDC) - the single peak curve model - to
address this limitation. The MDC model cannot describe stress-
strain changes following a smooth deviatoric stress variation. Lai
et al. (2008); Lai et al. (2009) introduced the statistical damage
constitutive model of frozen soil using the Mohr-Coulomb criterion,
probability theory, and damage mechanics theory. Using these
theories, Li et al. (2019) enhanced the MDC model and
presented a statistical damage model (SD-MDC), which is
capable of explaining the strain-softening effect of frozen soil
(Vignjevic et al., 2018; Shen et al., 2019; Li et al., 2016). Notably,
this model’s variables consist of the confining pressure, temperature,
and initial water content but do not encompass the freeze-thaw
effect. The constitutive curves of frozen soil with different initial
water contents, confining pressures, and freeze-thaw effects may be
mainly categorized into one of the following three types: strain-
hardening, strain stability, or strain-softening. It is important to note
that most models are only designed to explain one. Accordingly, this
paper presents a statistical-damage, modified arctangent constitutive
model (SD-MAM) that accurately represents the stress evolution of
different types of frozen soil.

Based on previous research summaries, the phenomenological
assumption-based soil constitutive analysis model is a commonly
used research method for constitutive problems. Nevertheless, a

unified constitutive model based on this method remains
challenging, with discrepancies between theoretical and experimental
values. According to (Zhang F. et al., 2021), the physical-driven soil
constitutive model has four major limitations: reliance on set
assumptions, limited applicability, inability to predict experimental
data under various stress paths, and difficulty in engineering
applications. To achieve a more precise and unified model, several
scholars have attempted to use data-driven training constitutive models
based on machine learning methods (Linka et al., 2021; Park and Cho,
2021; Fuhg and Bouklas, 2022). The accuracy of prediction using this
machine learning technology will improve every increase in data size,
resulting in more precise theoretical solutions under any condition.
Thus, this study uses the Informer algorithm to establish a model for
predicting frozen soil constitutive behavior with high precision and fast
computation time. Compared with previous models, this technique
proves to be user-friendly while having high prediction accuracy and
fast computation times, thereby providing a basis for engineering design
applications.

2 Frozen soil research based on triaxial
testing

2.1 Soil material

The object of this experiment is artificially frozen powdery clay
(Niu et al., 2022; Yu et al., 2010; Ma et al., 2019), and the sampling
site is shown in Figure 1 of the Daqing section of the China-Russia
Mohe Pipeline.

The dry density of the test soil sample was determined using the
compaction test method. The liquid limit of the test soil sample was
determined using the liquid limit combined test method. The
relevant physical characteristics of the test soil samples are given
in Table 1, and the particle size distribution of the powdery clay is
shown in Figure 2.

2.2 Triaxial compression test process

Figure 3 illustrates the operational process for the three-axis
compression test (Li Q. et al., 2022; Bai et al., 2022; Zheng et al., 2022).
1) To configure soil particles, dry the sample in an electric hot-air
drying oven at 125 °C for 20 h, crush the soil using a crusher, and
select the particle size with a 1 mm sieve. 2) To configure moisture
content, calculate the water weight needed, add it to the prepared
soil, and seal it with plastic wrap for 12 h 3) For sample size
preparation, use a soil sample with a diameter of 61.8 mm and a
height of 125 mm. 4) For the freeze-thaw cycle, the temperature was
set between −35°C and 35 °C based on meteorological and
geographical data in the study area. The cycle frequency was
varied for each 8-h cycle.

Based on the similarity theory model (Teng et al., 2021), one
freeze-thaw cycle in this experiment is equivalent to the variation
process of 1 year of the actual freeze-thaw cycle. The soil freezing
depth in Daqing is 1.7–2.3 m each year, so the confining pressure of
the soil samples in this experiment is 0.1–0.3 MPa. The operating
condition parameters related to the triaxial compression test in this
experiment are shown in Table 2.
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2.3 Analysis of test results on artificial frozen
silty clay

2.3.1 Characteristic analysis of the deviatoric
stress-strain curve

The data obtained from the soil samples tested under a confining
pressure of 0.1 MPa is presented in Figure 4. The deviatoric stress-

strain curves for the conditions with a confining pressure of 0.2MPa
and 0.3 MPa exhibit similar characteristics and these will be briefly
discussed in the following section. IMC represents the initial
moisture content, and FTC and CP represent the freeze-thaw
cycles and confining pressure.

Figure 4 illustrates the constitutive curve of the tested soil
sample, which can be divided into four main stages: compaction,
initial linear elastic, plastic deformation, and failure (Zhang et al.,
2016). During the compaction stage, the strain increases gradually
with the deviatoric stress during the initial loading phase. In the
subsequent initial elastic phase, the deviatoric stress-strain
relationship demonstrates linear elasticity (Cen et al., 2020). As
the axial load persists, the stress growth rate decelerates in the plastic
deformation stage, indicating plastic deformation of the specimen
(Fan et al., 2018; Zhang and Liu, 2019; Wang et al., 2020). Finally, in
the failure stage, the strain continues to develop and the curve’s slope
gradually decreases or becomes negative.

Figure 4 demonstrates that the highest strength of permafrost
is observed at an initial moisture content of 20%. Among factors
such as confining pressure and the number of freeze-thaw cycles,
different initial water contents have the most significant impact
on the deviatoric stress-strain curve during the failure stage. On
one hand, the phenomena of strain softening and strain
hardening can be attributed to the initial water content. On
the other hand, an increase in the initial moisture content
delays the failure strain. The strength of frozen soil stabilizes
after undergoing nine thawing cycles. Additionally, the deviatoric

FIGURE 1
Roadmap of the Daqing section of the Sino-Russian Desert pipeline.

TABLE 1 Basic physical properties of natural silty clay.

Dry density Cohesion Internal friction angle Liquid limit Plasticity limit Plasticity index

ρd (g/cm3) Cq (KPa) φq (°) ωl (%) ωp (%) IP(%)

1.62 37 12.7 31.7 18.0 13.7

FIGURE 2
The size distribution of frozen powdery clay particles.
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stress of frozen silty clay decreases as the number of freeze-thaw
cycles increases. This can be attributed to the expansion and
resulting pressure of water molecules during freezing, which

leads to the deterioration of the silty clay’s microstructure.
However, this deterioration effect becomes insignificant after
nine freeze-thaw cycles. Under identical working conditions,

FIGURE 3
Triaxial compression test process. (A) Soil sample drying (B) Particle-hole operator sizing (C)Weighing. (D) Configure moisture content (E) Standing
(F) Three valves. (G)Make triaxial specimens (H) Freezing and thawing cycle (I) Filling sample. (J) Frozen soil triaxial apparatus (K) Loading completed (L)
Sample failure.

TABLE 2 Description of test condition parameters design.

Initial moisture content
(IMC)/%

Freeze-thaw cycles
(FTC)/times

Confining pressure
(CP)/MPa

Strain control/
(mm/min)

Test considerations:
Temperature/°C

25, 22.5, 20, 17.5, 15 0, 3, 6, 9, 18 0.1, 0.2, 0.3 1 −15
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different confining pressures do not alter the evolution pattern of
the deviatoric stress.

2.3.2 Strength and parameter analysis of artificially
frozen silty clay

The number of freeze-thaw cycles, confining pressure, and initial
water content are important factors affecting the strength of frozen
soil, which significantly impact the mechanical properties of frozen
soil. The regularity of frozen soil strength changing with the
experimental variables is shown in Figure 5.

According to Figure 5A, under the same confining pressure
conditions, the strength of the soil increases with increasing water
content between 15% and 20% and decreases with increasing water
content between 20% and 25%. This is because the structure is loose
when the water content is lower than complete saturation. The
strength of the silty clay reaches the highest value when the
saturation point of 20% is reached. The deformation and damage
resistance increase with increasing ice content in the soil samples.
However, when the soil is completely saturated or oversaturated, the
strength of the frozen soil tends to be the same as that of the ice.

FIGURE 4
The deviatoric stress-strain curves of different water contents. (A) CP=0.1, FTC=0. (B) CP=0.1, FTC=3. (C) CP=0.1, FTC=6 (D) CP=0.1, FTC=9. (E)
CP=0.1, FTC=18.
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According to Figure 5B, under the same initial water content, the
strength of the soil sample increases with increasing confining
pressure. This is because the confining pressure increases the
sliding friction of soil particles and rearrangement of soil

particles, restricts and reduces the formation of cracks and pores
in frozen soil, and increases the soil sample’s deformation and failure
resistance. The strength of the soil decreases first and then tends to
be stable with the increase in the number of freeze-thaw cycles due to

FIGURE 5
Soil strength distribution. (A) Soil strength distribution law of CP = 0.1. (B) Soil strength distribution of FTC = 0. (C) The distribution of soil strength of
IMC = 25.
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the degradation effect of freeze-thaw cycles, which has been
specifically elaborated on above and will not be repeated here.

According to Figure 5C, when the initial water content is
between 15% and 20%, the strength of the soil sample increases
with increasing water content. In comparison, when the initial water
content is between 20% and 25%, the strength of the soil sample
decreases with increasing water content. The confining pressure has
little effect on the strength change of the soil sample initially
saturated with water. This indicates that the initial water content
has a more significant impact on the soil sample’s strength than the
confining pressure. On the other hand, increasing the confining
pressure will make the structure of the soil sample transition from
loose to tight, and the shear strength of the soil will increase
accordingly.

The cohesion and internal friction angle of frozen silty clay can
be determined under various working conditions usingMohr’s circle
method, as illustrated in Figure 6.

`Figure 6A illustrates that the internal friction angle of the
soil initially increases and then decreases as the water content

increases, following the same pattern as the strength. This is
because, at lower load levels, the cohesion of soil particles and
cemented elements primarily bear the load on the soil sample. At
lower load levels, the cemented elements bear a greater portion of
the load, whereas, at higher load levels, the internal friction angle
bears a larger load. The highest internal friction angle occurs at
an initial water content of 20% with no freeze-thaw cycles. The
number of freeze-thaw cycles affects the change in the internal
friction angle. This indicates that the number of freeze-thaw
cycles alters the microstructure of the soil, possibly as a result of
the interaction between the formation of cementation elements
and the soil structure. Figure 6B demonstrates that the cohesion
of the soil initially increases and then decreases as the water
content increases. The highest cohesion occurs at a moisture
content of 20% with 3 cycles of freezing and thawing. With an
increase in the number of freeze-thaw cycles, the cohesion
initially increases and subsequently stabilizes. As the negative
impact of freeze-thaw cycles intensifies, the cohesion does not
continue to increase and reaches a stable state.

FIGURE 6
Distribution of internal friction angle and cohesion of soil. (A) Distribution law of friction angle in soil. (B) Distribution law of soil cohesion.
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3Constitutive study of frozen soil based
on physical drivers

3.1 Derivation of the modified arctangent
model and unimodal curve model

The Duncan-Chang (DC) model is widely used in theoretical
calculations and engineering guidance models (Zhao G. F. et al.,
2020), and its formula is:

σ1 − σ3 � ε

a + bε
(1)

where σ1 − σ3 is partial stress; σ1 is axial stress; σ3 is confining
pressure; ε is strain, while a and b are test parameters.

The model’s tangent modulus Et is derived as follows:

Et � a

a + bε( )2 (2)

where Et is the elastic modulus.
Since Et cannot be negative, the DC model does not have a

descending branch and cannot effectively describe strain-softening.
Regarding research on the DC model coefficients, some scholars
have proposed adding parameter c to obtain the modified Duncan-
Chang model (MDC) as follows:

FIGURE 7
Physically driven constitutive model validation by various constitutive relations. (A) IMC25-FTC18-CP0.1. (B) IMC22.5-FTC18-CP0.1. (C) IMC20-
FTC18-CP0.1. (D) IMC17.5-FTC18-CP0.1. (E) IMC15-FTC18-CP0.1.
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σ1 − σ3 � a + cε( )ε
a + bε( )2 (3)

where c is test parameters.
It has been found through experimentation that the MDC model

can only describe some of the unique softening properties of
permafrost. Still, it cannot accurately describe the stress-strain curves
where stress softening is not apparent. Regarding derivative research on
the DC model, some scholars have proposed the arctangent model
(AM) by neglecting the 2bƐ in the denominator of the Et integral
adjustment in Eq. 2. The equation for this model is shown in Eq. 4.

σ1 − σ3 � a × arctan bε( ) (4)
where b is test parameters.

A modified arctangent model is obtained by adding a parameter
c to make bƐ become bƐ+c and then subtracting a times the
arctangent of c. The formula for this model is shown in Equation 5.

σ1 − σ3 � a × arctan bε + c( ) − a × arctan c (5)
where σ1 − σ3 is partial stress; σ1 is axial stress; σ3 is confining
pressure; ε is strain, while a, b and c are test parameters.

As the arctangent function is an S-shaped odd function, the
modified arctangent model (MAM) can reflect the characteristics of
S-shaped stress-strain curves.

3.2 Establishment of the damage correction
arctangent model

To overcome further problems in the above models, some scholars
have proposed applying damage theory to constitutive soil models and
established damage models with failure strain as a random variable. In
research on the probability distribution of failure strain in frozen soil,
the normal distribution, log-normal distribution, and Weibull
distribution are the mainstream fitting methods, and some scholars

have proposed that the Weibull distribution has better fitting effects.
The equation for this distribution (Zhu et al., 2021) is shown in Eq. 6.

f ε( ) � m

F0

ε

F0
( )m−1

e−
ε
F0
( )m

(6)

where m and F0 are Weibull parameters.
Based on the above Weibull distribution theory, the typical

representative of the established damage model is the SD-MDC
model, and its formula is shown in Eq. 7.

σ1 − σ3 � a + cε( )ε
a + bε( )2 e

− ε
F0
( )m

(7)

where σ1 − σ3 is partial stress; σ1 is axial stress; σ3 is confining
pressure; ε is strain,m and F0 are Weibull parameters; while a, b and
c are test parameters.

The model can effectively describe the hardening and softening
curves, but it still cannot accurately describe the S-shaped stress
softening curves. Therefore, based on the Weibull distribution, this
paper proposes a statistical damage arctangent modified constitutive
model, the formula of which is shown in Equation 8.

σ1 − σ3 � a × arctan bε + c( ) − a × arctan c[ ]e− ε
F0
( )m

(8)
where σ1 − σ3 is partial stress; σ1 is axial stress; σ3 is confining
pressure; ε is strain,m and F0 are Weibull parameters; while a, b and
c are test parameters.

According to the physical and mechanical meanings of model
parametersm and F0 (Chen et al., 2018), the parameter m is a shape
parameter reflecting the material’s brittleness and ductility
characteristics. The larger the value of m is, the more obvious the
brittleness characteristics of the material and the smaller the peak
strain. The parameter F0 is a size parameter reflecting the material’s
strength characteristics. The larger the value of F0, the greater the
strength of the material and the stronger the ability to resist failure.

FIGURE 8
Accuracy of the physically driven constitutive model. (A) Relationship between R2 and RMSE (B) Comparison of R2 under different initial water
content.
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3.3 Physically driven constitutive model
validation

To verify the accuracy and applicability of the above model,
the deviatoric stress-strain curves obtained from different water
contents in this experiment were compared with the deviatoric

stress-strain curves predicted by the constitutive models, as
shown in Figure 7. DC represents the Duncan-Chang model,
MDC represents the unimodal curve model, SD-MDC represents
the statistical damage unimodal curve model, and SD-MAM
represents the statistical damage modified arctangent model.

Figure 7 shows that the description of the elastic stage is
relatively optimal for each model. However, there are significant
differences in the predictive ability of the models for the plastic
deformation and failure stages. As displayed in Figures 7A,B, the
DC and MDCmodels show better goodness of fit when the strain
is below 1.14%. However, as the strain increases, the
effectiveness of the MDC model in describing the curve
decreases, and the predicted value deviates significantly from
the experimental value. In the softening region of the curve, the
SD-MAM model performs better than the other models. The
DC, MDC, and SD-MDC models inadequately predict the
behavior of the strain-softening S-curve, as there is an
inflection point after the peak. In contrast, the SD-MAM
model accurately captures the deformational behavior during
the softening region. Moreover, while the DC model cannot
reflect the change process of frozen soil strain-softening, the
MDC and SD-MDC models can capture the stress softening
single-peak curve trend. However, the MDC model exhibits a
large deviation in the predicted peak stress magnitude. In
contrast, the SD-MAM model more accurately predicts the
behavior of the curve toward the end of the softening region.
In summary, the SD-AMM model accurately captures the
deformational behavior during the softening region
and better expresses the characteristics of the strain-softening
curve.

To compare the accuracy of the models mentioned above, the R2

and RMSE graphs of each model and the R2 graphs of different
models under different water contents were plotted, as shown in
Figure 8. The R2 and RMSE values of eachmodel are also provided in
Table 3, and the parameter values of the SD-MAM model are given
in Table 4.

Figure 8 shows that the damage model has a larger R2 value and
smaller RMSE value than the DC, MDC, and AM models. This
indicates that the damage model can better describe the constitutive
relationship of artificially frozen clay due to the more
comprehensive expression of the damage model based on the
Weibull distribution for the failure stage of the stress-strain
curve. The R2 value of the SD-MAM model is the largest under
various conditions and is greater than 0.99. Hence, the proposed SD-
MAM model can be used as the optimal constitutive model for
artificially frozen clay.

TABLE 3 R2 and RMSE values.

Constitutive model Initial moisture content R2 RMSE

DC 15 0.1089 0.4352

MDC 15 0.8658 0.1872

AM 15 0.5609 0.3053

SD-AAM 15 0.9981 0.0197

SD-MDC 15 0.9942 0.0351

DC 17.5 0.2898 0.6311

MDC 17.5 0.9116 0.2516

AM 17.5 0.3484 0.6036

SD-AAM 17.5 0.9950 0.0643

SD-MDC 17.5 0.9916 0.0681

DC 20 0.9494 0.2626

MDC 20 0.9494 0.2626

AM 20 0.8864 0.4099

SD-AAM 20 0.9973 0.0586

SD-MDC 20 0.9966 0.0664

DC 22.5 0.9836 0.2049

MDC 22.5 0.9836 0.2049

AM 22.5 0.9525 0.3271

SD-AAM 22.5 0.9996 0.0285

SD-MDC 22.5 0.9981 0.0618

DC 25 0.9738 0.2180

MDC 25 0.9738 0.2180

AM 25 0.9486 0.2884

SD-AAM 25 0.9997 0.0214

SD-MDC 25 0.9996 0.0215

TABLE 4 SD-MAM model parameter values.

Working condition a b c F m

15–18–0.1 1.4762244 −0.3135488 1.2553549 0.050398 −0.4221264

17.5–18–0.1 3.3553355 −0.3531915 2.5375553 0.106521 −0.6643046

20–18–0.1 3.5076545 −5.6765551 71.4068840 14.032044 −0.1591872

22.5–18–0.1 0.9663225 0.2438750 −0.6611883 0.182116 −0.6054805

25–18–0.1 4.7730670 4.7068894 −1.2726382 2.733684 −0.1721517
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4 Data-driven constitutive study of
frozen soil

4.1 ML-based soil constitutive model

Machine learning (ML) is a method of developing constitutive
soil models with pure data technology skills (Zhang F. et al., 2021;
Logarzo et al., 2021; Linka et al., 2021). Its advantages are: 1) ML can
directly learn the deviatoric stress-strain relationship from the
original data without making assumptions. 2) Machine learning
can establish a unified model to simulate the behavior of various
soils as long as the experiments of these soils are included in the
database. 3) With the increase in the number of data sets, the ML
model’s prediction accuracy and application range can be improved.
4) The ML-based model is data-driven. Once the ML configuration
is determined, no parameter calibration is needed.

At present, the algorithms used to construct ML soil constitutive
models include genetic programming (GP) (Cabalar and Cevik,
2011), evolutionary polynomial regression (EPR) (Javadi et al., 2012;
Cuisinier et al., 2013; Ahangar Asr et al., 2018), support vector
machine (SVM) (Zhao et al., 2014; Kohestani and Hassanlourad,
2016), back propagation neural network (BPNN) (Rashidian and

Hassanlourad, 2014; Stefanos and Gyan, 2015; Lin et al., 2019),
radial basis function (RBF) neural network (Peng et al., 2008;
Xiangdong et al., 2008), recurrent neural network (RNN) (Romo
et al., 2001), long short-term memory (LSTM) neural network
(Zhang et al., 2019) and gate recurrent unit (GRU) neural
network (Wang and Sun, 2019). The proportions of these
algorithms are shown in Table 5.

The GP, EPR, SVM, BPNN, and RBF algorithms lack sequence
prediction ability, while the RNN algorithm suffers from gradient
explosion or disappearance. LSTM and GRU algorithms, despite
having sequence prediction ability (Teng et al., 2023), come with
many weights and biases. After extensive research, it has been found
that LSTM and GRU algorithms are more suitable for developing
constitutive relationships, mainly because soil mechanics behavior
has the characteristic of deformation history correlation.
Considering that this study adopted more than 120,000 data
points for model training and the test set size is approximately
2,000, the sequence learning method of deep learning is a better
choice.

4.2 Soil constitutive model based on
informer

Informer (Gong et al., 2022; Wu et al., 2022; Yang et al., 2022) is
an improved model based on Transformer designed for LSTF (long
time series prediction) to solve some serious problems when
Transformer (Geneva and Zabaras, 2022) is applied to LSTF.

TABLE 5 The proportions of algorithms.

BPNN EPR RNN LSTM Other

Proportion (%) 54 12 8 10 16

FIGURE 9
Informer algorithm framework.

TABLE 6 The distribution of the datasets.

Initial moisture content (IMC)/% Freeze-thaw cycles (FTC)/times Confining pressure (CP)/MPa Number

Dataset 25, 22.5, 20, 17.5, 15 0, 3, 6, 9,18 0.1, 0.2, 0.3 75

Training sets 25, 22.5, 20, 17.5, 15 0, 3, 6, 9 0.2, 0.3 70

test sets 25, 22.5, 20, 17.5, 15 18 0.1 5
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Examples include secondary time complexity, high memory usage,
and inherent limitations of the codec structure. The Informer
has three significant advantages: using ProbSparse Self-

attention to filter out the most important queries and reduce
the computational complexity; self-attention Distilling is
proposed to reduce the dimension and network parameters.

TABLE 7 The hyperparameters of the model.

Batch_size Dropout Activation Loss Learning_rate (E) train_epochs s_layers

Informer 16 0.05 GELU MSE 1–6 20 3,2,1

FIGURE 10
Verification of data-driven constitutive models by various constitutive relations.(A) IMC25-FTC18-CP0.1. (B) IMC22.5-FTC18-CP0.1. (C) IMC20-
FTC18-CP0.1. (D) IMC17.5-FTC18-CP0.1. (E) IMC15-FTC18-CP0.1.
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All prediction results are obtained in one step using the
generative style decoder. The overall structure of the
Informer model is shown in Figure 9.

In the aspect of model data input, for the time series prediction
problem, the order relationship between data is very important. To
ensure that the position relationship (order structure) is not lost
after the sequence data are input into the model, the Informer
encodes the position information of each input data (position
embedding), and the specific operation formula is as shown in
Eq. 9, Eq. 10:

PE pos,2j( ) � sin
pos

2Lx( )2j/dmod el
(9)

PE pos,2j+1( ) � cos
pos

2Lx( )2j/dmod el
(10)

where pos is the position (order sequence). The index j =1, 2, · · ·,
dmodel/2, represents the dimension. dmodel represents the
dimensional characteristics of the input, and L is the input
sequence.

The encoder is stacked by the Multi-head ProbSparse Self-
attention module and Distilling mechanism module. The
distillation layer improves the network’s robustness and reduces
the network’s memory usage through the distillation mechanism.
The probabilistic sparse self-attention mechanism is expressed as
follows:

A Q,K,V( ) � Softmax
Q
−
KT��
dk

√⎛⎝ ⎞⎠V (11)

In the formula, Q, K, and V are three matrices of the same size
obtained by a linear transformation of input characteristic variables;
it has the same size as qi but only contains qi under sparse
evaluation; that is, the computational complexity is reduced from
zero to zero; softmax is the activation function.

Inside the decoder, the input data are first subjected to a multi-
head probabilistic sparse self-attention operation with a mask
(masked). Then a multi-head self-attention operation is
performed with the intermediate result of the encoder output.
Finally, the data output dimension is adjusted through the fully
connected layer to obtain the prediction result. The output
prediction results are used to calculate the loss function and
perform reverse gradient propagation to optimize the model
continuously.

Regarding model data output, the decoder can output all the
predicted results simultaneously. The traditional internal
decoders are RNN, LSTM, etc., which are time-dependent,
and the mask operation in the self-attention calculation in
the decoder takes this dependence into account. Therefore, it
is no longer necessary to rely on the previous sequence.
Limitations, thus one-time output.

To assess the model’s performance and optimize the
hyperparameters, the experiment involves a total of 75 data sets,
with 70 of them used for training themodel, and the remaining 5 sets
designated as test sets. Table 6 presents the distribution of the
datasets.

To enhance the training effectiveness and generalization ability
of the Informer model, the balance between underfitting and
overfitting is carefully maintained. The hyperparameters of the
Informer model were adjusted, and recommendations for
hyperparameter optimization were provided. The following
suggestions for tuning hyperparameters were given: 1) Initial
search range: During parameter tuning, it is recommended to
start with a broad search range and progressively narrow it down
for a more precise search. 2) Utilize the validation set: To prevent
overfitting on the test set, it is crucial to utilize the validation set for
model evaluation during the tuning process. 3) Focus on learning
rate tuning: The learning rate is a critical hyperparameter that
significantly impacts the model’s training performance and

FIGURE 11
Data-driven constitutive model validation.
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should be prioritized for tuning. 4) Combined tuning: To achieve
improved performance, it is advisable to consider simultaneous
tuning of multiple hyperparameters. The hyperparameters of the
model are shown in Table 7.

4.3 Data-driven validation of the soil
constitutive model

To verify the Informer algorithm’s accuracy and range of
applicability in establishing a constitutive soil model, various

moisture content deviatoric stress-strain curves obtained from
this experiment were compared with those resulting from the
aforementioned constitutive predictions. This is illustrated in
Figure 10.

From Figure 10, it can be seen that LSTM can describe the
development trend of the stress-strain relationship well
(Malakar et al., 2022), but the prediction accuracy is poor.
For the two working conditions with high water content, the
prediction effect of the strain-hardening curve is good, but it
cannot capture the characteristics of the strain-softening curve
well. The cutting-edge Informer can accurately describe the

FIGURE 12
Comparative analysis of the physical model and data model. (A) IMC25-FTC18-CP0.1. (B) IMC22.5-FTC18-CP0.1. (C) IMC20-FTC18-CP0.1. (D)
IMC17.5-FTC18-CP0.1. (E) IMC15-FTC18-CP0.1.
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development trend of the stress-strain relationship with
high prediction accuracy and fast operation speed and can
accurately capture the biased stress-strain response of each
working condition. Compared with the LSTM model, the
Informer model has more accurate prediction values closer
to the true values in the elastic stage, plastic deformation
stage, and failure stage, with higher prediction accuracy. In
contrast, the LSTM model has a larger deviation between
predicted and true values. The Informer can still achieve
high-accuracy prediction in the plastic deformation and
failure stages as the strain develops. In contrast, the LSTM’s
prediction results greatly differ from the true values. Analysis
shows that because Informer is based on attention mechanism
modeling, it can take advantage of the attention mechanism and
includes a distillation mechanism in the encoding process,
improving the robustness of the network and thus achieving
high-precision prediction. LSTM will still suffer from gradient
disappearance when predicting long-time series. When
introducing the attention mechanism, the Informer can also
improve the disadvantage of gradient disappearance and fully
explore the deep features of biased stress to obtain better
prediction results.

On the other hand, in the prediction process of frozen soil
constitutive models, LSTM is relatively slower and less effective than
Informer. This is because the soil mechanics behavior has the
characteristic of deformation history dependence, and the
deformation of the soil will show complex nonlinear mechanical
behavior and time dependence. The soil deformation depends on the
output of the previous moment (t-1) at time t in time series
prediction. As the time series gets longer, the speed will get
slower, making converging more difficult. Both LSTM and RNN
use a backpropagation algorithm to calculate the loss function for
optimization, and the longer the sequence is, the more difficult it is
to calculate gradients, making it more difficult to converge and
leading to worse results. However, the Informer model can allocate
greater weights to important features, reduce the algorithm’s time
complexity, and improve the prediction speed of the model, solving
the problem of long-term dependence on time series data. The
Informer model can fully explore the correlation between biased
stress and strain data, solve the problem of memory degradation
caused by the long time series of traditional methods, and improve
the accuracy of predicting constitutive soil stress while improving
prediction accuracy.

The R2, MSE, RMSE, and MAE evaluation indicators of the
Informer and LSTM models are shown in Figure 11.

It can be seen from the figure that the evaluation indicators of
the Informer model R2, MSE, RMSE, and MAE are better than those
of the LSTM prediction model under different water content
conditions (Ma et al., 2022); that is, the prediction error is
smaller, which further proves the superiority of the Informer
model sex.

5 Comparative analysis of the physical
model and data model

Soil is a complex material with nonlinear mechanical behavior,
including state dependency, stress-induced expansion, anisotropy,

failure, stress-path dependency, time dependency, and noncoaxial
behavior (Jiang et al., 2020). This paper presents the SD-MAM and
Informer models, established using traditional phenomenological
and data-driven constitutive theories, respectively. Figure 12
shows the prediction and experimental results used to validate
the models.

According to the figures, the two models proposed in this paper
can be applied to the deformation of frozen soil under various
working conditions and accurately represent the changes and
features of the stress-strain curve. The data-driven constitutive
model has higher accuracy and a wider range of applications
because it can learn directly from the raw data without any
assumptions, unlike the physically based constitutive model,
which is limited by its inherent assumptions. However, the
parameters in the data-driven model have no clear physical
meaning or interpretability. Although the data-driven model
appears more accurate, it has limitations in explaining the
mechanism of frozen soil deformation. Thus, the follow-up study
envisages establishing a machine-learning model incorporating
physical information.

6 Conclusion and prospect

6.1 Conclusion

This paper investigates the mechanical properties and
deformation characteristics of artificially frozen clay using triaxial
testing. The SD-MAMmodel and the Informer deep learning model
were established which considers the softening phenomenon. The
accuracy and applicability of the models were evaluated, and a
comparative analysis was performed. The study draws the following
conclusions.

(1) The highest strength of frozen soil is observed when the
initial water content reaches 20% in triaxial compression
tests. Among the factors considered, the deviated stress-
strain curve during the failure stage is most affected by
the initial water content, compared to the confining
pressure and the number of freeze-thaw cycles. The initial
water content induces both strain softening and strain
hardening phenomena, while also leading to a delay in the
occurrence of failure strain with higher initial moisture
content. The strength of frozen soil exhibits stability after
undergoing nine thawing cycles. In identical working
conditions, varying confining pressures do not alter the
evolution law of deviatoric stress.

(2) Regarding physically based constitutive theory, this paper
established a statistical damage-modified inverse tangent
constitutive model by modifying the DC model, in order to
mitigate the available SD-MDC model limitations in predicting
the strain-softening of the S-shaped curve (namely, a turning
point after the peak). Compared to the DC, MDC, and AM
models, the proposed SD-MAM model had a higher R2 value
and smaller RMSE value. Thus, it more accurately predicted
changes in the failure stage from strain-softening to strain
stability, followed by strain-hardening. It more fully
expressed the curve characteristics in the failure stage,
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reflecting the stress-strain curve patterns under different
working conditions.

(3) The Informer prediction model achieves an R2 value exceeding
99% in the context of data-driven constitutive theory. The
model effectively leverages the correlation between deviatoric
stress and strain data, addresses the issue of memory
degradation in traditional methods caused by long time
series, accurately captures the patterns and characteristics of
stress-strain curves, and exhibits adaptability to different
working conditions when developing the constitutive
behavior of soils. By combining experimental data,
theoretical insights, and deep learning techniques, the model
demonstrates superior generalization and robustness, thereby
enhancing the possibilities within data-driven soil constitutive
theory.

(4) A data-driven constitutive model offers higher accuracy and
broader applicability due to its ability to learn directly from raw
data without making any assumptions. In contrast, physical
constitutive models are constrained by their inherent
assumptions. However, a drawback of data-driven models is
that the parameters they use lack clear physical meaning or
interpretability. Despite its apparent accuracy, the data-driven
model faces limitations in explaining the deformation
mechanism of permafrost. When comparing the Informer
model to the SD-MAM model, the former demonstrates
higher precision, does not rely on assumptions, is cost-
effective, and has a wide range of applications. However, it
lacks physical meaning, exhibits poor interpretability, and
requires a discussion on the reliability of its results.
Consequently, future research should aim to develop a
machine-learning model that incorporates physical
information.

6.2 Prospect

The machine learning (ML) model developed using synthetic
data is insufficient for performance andmechanism compared to the
physical-driven constitutive model used for data generation. The
limitations of purely data-driven models stem from the chaotic
nature of physical phenomena, such as bifurcation. As a result, the
output results hold statistical significance but lack physical
significance, making them incongruent with physical reality. To
enhance the credibility and practicality of this model, this study
results strongly suggest further developing physics-informed

machine learning (PIML) models. With data-driven machine
learning models, these models fuse prior physics knowledge, such
as abstract natural phenomena and past human behaviors. This
fusion will effectively mitigate training data insufficiencies, enhance
the model’s generalization ability, and ensure the physical validity of
the results.
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