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Sepsis is a life-threatening organ dysfunction caused by abnormal host response

to infection. Millions of people are affected annually worldwide. Derangement of

the inflammatory response is crucial in sepsis pathogenesis. However, metabolic,

coagulation, and thermoregulatory alterations also occur in patients with sepsis.

Fatty acid mobilization and oxidation changes may assume the role of a

protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs)

are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we

discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty

acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and

their implications in sepsis development.

KEYWORDS
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1 Introduction

Sepsis is a Greek-derived term that initially meant “decomposition of animal or

vegetable organic matter in the presence of bacteria.” This has been documented in

Homer’s Iliad and Corpus Hippocraticum (1). Over the last 120 years, sepsis has received

different modern definitions, most related to the interaction between pathogenic

microorganisms and immune host defenses (2–5). Sepsis is defined “as life-threatening

organ dysfunction caused by a dysregulated host response to infection” (6).

Sepsis is the most common cause of death by multiple organ dysfunction in critically ill

patients, and, as an infectious condition, sepsis can be bacterial, viral, or fungal (7–9). Sepsis

affects 1.7 million adults annually in the United States, and half of all sepsis cases are caused

by gram-negative bacteria, making septic shock a common complication (10, 11). In

addition, gram-positive bacteria cause septic shock. We also must consider that many

studies use lipopolysaccharide (LPS), a component of gram-negative bacteria, which causes
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endotoxemia, but not sepsis, but can be biased considering gram-

negative sepsis. More than 40 million annual cases are estimated to

occur worldwide (12). Detecting the origin of sepsis is crucial in

clinical practice because it presents different pathophysiologies,

clinical patterns, and treatment approaches (13, 14).

To assess sepsis severity, the Sequential Organ Failure

Assessment (SOFA) score evaluates six organ systems: the

respiratory, cardiovascular, hepatic, coagulation, renal, and

neurological systems (15, 16). Dysregulation of lipid oxidation

plays a significant role in organ damage during sepsis, and studies

have indicated a positive correlation between markers of lipid

oxidation dysfunction and SOFA score. Serum malondialdehyde

(MDA) and free fatty acids (FFA) levels also correlated with higher

SOFA scores (17). For example, serum MDA is a marker of lipid

peroxidation and oxidative stress that correlates with SOFA score

and lactatemia (18). Recent research has also shown connections

between MDA levels and SOFA score, as well as with APACHE-II

and coagulation indices (19). In addition, a correlation between

higher FFA levels and patient SOFA scores has been reported (20).

Recent research has identified a correlation between SOFA score

and various lipid metabolites involved in different pathways (21).

Lipid metabolism dysfunction can cause muscle and liver damage

but can also affect other systems evaluated by the SOFA score.

Inflammation is fundamental to sepsis pathogenesis but does

not fully explain progressive organ dysfunction (22). In addition to

inflammation, there are also reported impairments in metabolism,

coagulation, and thermoregulation have also been reported (23).

Mild alterations in metabolic pathways can be beneficial for

regulating the immune response to infection and minimizing

tissue damage (24). In sepsis, there is an interplay between

inflammatory and metabolic changes, where the host response to

infection plays a crucial role, potentially contributing to multiple

organ dysfunction and, in severe cases, death (25). Recognizing the

interdependency of inflammation and metabolism can be vital, as

exploring metabolic alterations and inflammation may unveil new

targets for sepsis treatment, which are currently primarily

supportive rather than curative (26).

Mitochondrial or energetic dysfunction is among the most

widely acknowledged metabolic impairments in sepsis and

contributes to organ dysfunction and mortality (27, 28). As fatty

acid oxidation (FAO) and the Krebs cycle are intramitochondrial

events, a thorough exploration of lipid metabolism in sepsis has

been conducted (29). As changes in fatty acid mobilization and

oxidation are thought to play a role in the complex pathogenesis of

sepsis, they hold significant promise for supporting the

development of novel prognostic, therapeutic, and diagnostic

tools (30).

Several investigations, including “-omics” and “multi-omics”

analyses, have been performed to understand sepsis-induced FAO

impairment, analyzing its consequences, predictive tools, and new

therapeutic target compounds (31–36). Diverse metabolic

adaptations occur in different organs during sepsis and some

events can hamper these adaptations (22). For example, sepsis

disturbances in lipid metabolism impair b-oxidation, which can
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lead to lipotoxicity, worsening the clinical status of these patients

(37). To explore recent developments in our understanding of lipid

metabolism in sepsis, we discuss the impairment of FFA

metabolism induced by bacterial sepsis in the liver and muscles,

including the skeletal and cardiac systems.
2 Sepsis inflammatory response

The latest international consensus (Sepsis-3) defines sepsis as

life-threatening organ dysfunction caused by an abnormal host

response to an infectious insult (6). Dysfunctional inflammatory

and anti-inflammatory responses in sepsis may cause self-damage

to the host organs (38). This is often observed in septic patients with

acute respiratory failure, renal failure, or circulatory shock (39).

Sepsis can result from systemic inflammatory response syndrome

(SIRS), which is caused by the release of pathogen-associated

molecular patterns (PAMPs), such as LPS, peptidoglycans, viral ss/

dsRNA, and bacterial DNA (40, 41). These molecules are recognized

by pattern recognition receptors (PRRs) such as C-type lectin

receptors (CLRs), NOD-like receptors (NLRs), and Toll-like

receptors (TLRs) (42). To date, 13 TLRs have been described in

mammals; ten are expressed in human cells. The activation of this

receptor by its ligands triggers intracellular signaling by adaptor

proteins; for instance, theMyD88-dependent pathway triggers several

kinase proteins, such as p38 MAP kinase, JNK, ERK1, and ERK2,

through phosphorylation. It culminates in activating transcription

factors (e.g., NF-kB and AP-1) and the production of

proinflammatory cytokines such as TNF-a, IL-6, IFN-g, and

enzymes such as cyclooxygenase-2 (COX-2) (43–45). Indeed, using

the cecal ligation and puncture (CLP) sepsis model, TLR4 activation

increased TNF-a serum levels as early as 4 h after surgery (46).

NOD-like receptors (NLRs) are important PRRs involved in

sepsis caused by bacterial infections. They can detect PAMPs and

DAMPs (41). NLR proteins form inflammasomes, which are

multiprotein complexes (47, 48). Inflammasomes consist of NLR,

the adaptor protein apoptosis-associated speck-like protein with a

CARD domain (ASC), and pro-caspase-1, which activates caspase-1

and releases IL-1b and IL-18 (47).

The NLRP3 inflammasome modulates responses to sepsis by

activation when cells are primed with cytokines or LPS and then

stimulated with ATP, reactive oxygen species (ROS), mitochondrial

dysfunction, or K+ efflux (49). Inhibition of the NLRP3

inflammasome during sepsis can improve survival and bacterial

clearance (50), and alleviate acute lung injury. However, it may

impair the immune response of monocytes, leading to higher

mortality (51, 52). Higher levels of NLRP3, caspase-1, and IL-1 b
in the bloodstream of patients with sepsis increase the risk of

mortality (53–55).

PRRs activate cytokines that regulate the immune system and

contribute to inflammatory responses (56). Although the expression

of cytokines is beneficial in the inflammatory response and is

necessary for pathogen clearance, excessive cytokine production

during sepsis can cause harm, known as a cytokine storm (CS) or
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1224335
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Muniz-Santos et al. 10.3389/fimmu.2023.1224335
cytokine release syndrome (CRS). High levels can lead to organ

failure, blood clotting, and even death. (57, 58). For example, in

sepsis, cytokines such as IL-6, TNF-a, IL-1b, and CXCL8 increase

antibody production, vascular permeability, and neutrophil

recruitment (57, 59).

The altered state of endothelial cells, leukocytes, and platelets

caused by cytokine production may cause sepsis-induced

coagulopathy (SIC), which is linked to a poor outcome (60, 61).

During sepsis, monocytes/macrophages express tissue factor and

factor VII, activating the extrinsic coagulation pathway. Platelets are

also activated, contributing to inflammation and thrombosis.

Activated platelets can interact with leukocytes, promoting

cytokine release and the neutrophils’ extracellular traps (NETs)

(61–64).

Sepsis affects endothelial cells, causing an increase in vascular

permeability and the expression of adhesion molecules such as E-

and P-selectins, vascular adhesion molecule (VCAM)-1, and

intracellular adhesion molecule (ICAM)-1, fostering leucocyte

rolling and crawling. Damage to endothelial cells also impairs

vascular tonus due to dysregulated NO production. These

changes can lead to edema and impaired vascular tonus,

compromising organ perfusion and metabolic function (65–69).

Under homeostatic conditions, the ATP demands of immune

cells are regulated by the tricarboxylic acid (TCA) cycle (70). Sepsis

rapidly increases ATP burning as immune cells prompt the fight

against infection. Thus, these cells switch to aerobic glycolysis,

quickly producing lactate and ATP but less efficiently.

Interestingly, lactate is elevated in sepsis, showing a metabolic

turnover in these patients (71), and has also been suggested to be

a reliable prognostic tool that helps in the clinical management of

patients (71). During sepsis, macrophages produce NO, which

inhibits succinate dehydrogenase, a crucial enzyme in the TCA

cycle (72). Also in sepsis, M2 macrophages increase lipid b-
oxidation and upregulate IL-4 and peroxisome proliferator-

activator receptor-g (PPAR-g) (72, 73).
3 Stressful state of sepsis

Sepsis is a sustained and extreme example of a stressful situation.

Stress is “a state of homeostasis being challenged” (74). The stress

system has two types of effectors: central and peripheral. The central

system corresponds to the hypothalamic hormones arginine

vasopressin (AVP), corticotropin-releasing hormone (CRH),

proopiomelanocortin-derived peptides, and norepinephrine. The

peripheral system includes glucocorticoids (the hypothalamic–

pituitary–adrenal axis) and catecholamines (the sympathetic–

adrenal–medullar axis). All these stress mediators reach the CNS

and peripheral functions commanded by the gastrointestinal,

cardiorespiratory, metabolic, and immune systems (75). PAMPs and

DAMPs excessively activate PPRs, which activate proinflammatory

signaling pathways, leading to the release of proinflammatory

chemokines, cytokines, and the expression of endothelial adhesion

molecules (76). Proinflammatory cytokines, such as TNF-a, IL-1-b,
and IL-6, activate the hypothalamic–pituitary–adrenal (HPA) and

sympathetic–adrenal–medullar axes (SAM) (77, 78). Activating these
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axes enhances the synthesis and release of glucocorticoids and

catecholamines, thereby promoting metabolic alterations.

The HPA axis controls glucocorticoid and mineralocorticoid

syntheses. Glucocorticoids (GCs) are steroid hormones that exert

widespread hormone-physiological effects on homeostasis (79).

Under internal and external signals, the hypothalamus secretes

corticotropin-releasing hormone (CRH) and arginine vasopressin

(AVP) (80). CRH is released into the hypophyseal portal

circulation and stimulates the anterior pituitary to produce and

secrete adrenocorticotropic hormone (ACTH). Consequently,

glucocorticoids (cortisol in humans and corticosterone in rodents)

are released from the zona fasciculata of the adrenal cortex (81). GCs

are transported through the globulin-glucocorticoid protein in the

blood. The glucocorticoid receptor (GR), which is ubiquitously

expressed throughout the organism, mediates the glucocorticoid

effects. The GC–GR complex translocates into the nucleus and

modulates target gene expression through glucocorticoid-responsive

elements (GREs) (82). Owing to hyperglucocorticoidemia, the HPA

axis is controlled by negative feedback. During sepsis, immune cell-

derived cytokines such as TNF-a, IL-IL-1-b, IL-6, and IL-10 activate

the HPA axis (77). In experimental sepsis, adrenalectomized GRdim/

dim mice treated with UX38, a GR blocker, showed poor outcomes

(83). Thus, the disruption of the HPA axis plays a vital role in sepsis.

Moreover, as in sepsis, higher vascular inflammation results in

adrenal and HPA axis dysfunctions (84). Some studies showed that

compared to a healthy state, plasma concentrations of total cortisol/

corticosterone (CORT) rose in intensive care unit (ICU) septic

patients and male mice and rats compared to a control group.

However, they also observed reduced serum ACTH levels (85–88).

This has been called “ACTH-cortisol disruption.” Likewise, Téblick

et al. noticed that pro-opiomelanocortin gene expression was

augmented more than usual. However, markers of processing

POMC into ACTH and ACTH secretion were downregulated by

glucocorticoid receptor–ligand binding. This could explain the low

plasma ACTH and high POMC levels (88). Thus, impaired adrenal

response during sepsis improves the circulation of FFA, triglycerides,

glycerol, gluconeogenic amino acids, and glucose, guiding a

starvation response (89, 90).

In conclusion, sepsis triggers a severe stress response that affects

both central and peripheral systems, leading to hormonal and

metabolic alterations. Disruption of the HPA axis and impaired

adrenal response are crucial in sepsis pathophysiology and

associated metabolic changes.
4 Alterations in lipid metabolism
during sepsis

Lipids are the most significant energy reserves in the body, and

FAO provides the most ATP total balance, becoming an essential

energy source in high metabolic demand scenarios, such as sepsis.

Lipids are usually conserved as triglycerides (TGs) in the cytoplasm

of adipocytes. In order to be used as energy substrate, TGs suffer

lipolysis to form fatty acids and glycerol, a reaction mediated by

hormone-sensitive lipase (HSL). (91). Inflammatory stimuli trigger

lipolysis via IRE1 kinase (92). Acyl-CoA synthase activates lipids
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and enters the mitochondria as carnitine derivatives through

membrane transporters such as carnitine palmitoyltransferase 1

(CPT1), which is regulated by the nuclear receptors PGC-1a and

PPAR-a (93). It has been reported that LPS suppresses FAO by

reducing the expression of genes related to essential enzymes in

lipid metabolism, including CPT-1, PGC-1a, and PPAR-a (94).

Also, in an LPS-induced model, Li and coworkers 2021 (95) showed

that CPT-1 and PGC-1a expression were reduced in

cardiomyocytes and suggested a strong dependency of Nrf2 as a

co-factor of PGC-1a. In addition, CPT1A inhibition is associated

with a higher risk of infection and impairment of neutrophil

response (96).

Elevated serum glucocorticoid levels promote endocrine and

metabolic alterations, leading to a catabolic state, peripheral FAO,

and ketogenesis (89, 97). Lpin1, Fabp4, Gpat4, Angptl4, Dgat1, Dgat2,

PNPLA2, and LIPE are glucocorticoid-responsive genes that enhance

adipose tissue lipolysis (98, 99). In patients with sepsis and sepsis

animal models, FFA serum levels are high, and peripheral organs

utilize these FFAs to produce energy. FFA also activates and

upregulates the expression of PPAR-a, the central transcription

factor responsible for inducing the b‐oxidation of FA and the

production of ketone bodies (22). However, according to several

studies, including human and animal models, PPAR-a levels are

downregulated in sepsis, and b‐oxidation is compromised, causing

FFA to accumulate in the liver, heart, kidney, and blood (20, 100–102).

Lipotoxicity occurs when lipids accumulate intra- or

extracellularly, beyond physiological levels (103). In sepsis,

mitochondrial oxidative phosphorylation is affected by the

inflammatory state of the host (104). Therefore, this deficit in

FFA breakdown during sepsis causes energy shortage, lipotoxicity,

and mitochondrial damage due to FFA accumulation.

Supplementation with oleic acid increases FAO and protects

septic mice from organ dysfunction and mortality (105). On the

other hand, FFA can trigger acute respiratory distress syndrome

(ARDS) by inhibiting Na/K-ATPase in the lungs, causing tissue

damage, edema, and inflammation (106–108).

Additionally, GR promotes the transcription of gluconeogenic

genes such as Pck1, Pck2, Pcx, Pfkfb3, Mpc1, Mpc2, and G6Pc (99)

by diminishing glucose uptake by suppressing GLUT4 translocation

(109) and by reducing glucose utilization in skeletal muscle and

white adipose tissue through the upregulation of PDK1 to PDK4

(22, 110). Hence, septic animal models and patients present with

hyperglycemia during the acute phase of sepsis (111). Interestingly,

patients with sepsis show insulin resistance, which causes an

increase in lipid mobilization. In addition, inflammatory signaling

elicited by LPS can induce lipolysis (92), further increasing FFA

levels. Hyperglycemia, increased FFA levels, and insulin resistance

are associated with worse outcomes in sepsis (112) (Figure 1).

Saturated fatty acids (SFA) activate the TLR4/MyD88/NF-kB

pathway leading to endothelial inflammation in vitro upon FFA

stimuli, with increased levels of CCL5, IL-6, IL-8, ROS,

metalloproteinases (MMP-2 and MMP-9), and adhesion molecules

(VCAM-1 and ICAM-1) (113). FFA uptake by cells is mediated by

membrane receptors such as cluster of differentiation 36 (CD36),

which is a transmembrane glycoprotein and a class B scavenger

receptor (SR-B2) widely expressed throughout mammalian tissues
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(114). FFA can cause kidney lipotoxicity through the PPARg/CD36
pathway in mice fed a high-fat diet. CD36 was found to be

upregulated in the kidneys of obese mice alongside PPARg, which
is a crucial CD36 transcription factor, and inflammatory cytokines

such as IL-6 and IL-18 (115). In addition, CD36 has been associated

with metabolic diseases that present alterations in lipid metabolism

(116) and is upregulated in septic patients (117) and sepsis animal

models (118). Furthermore, CD36 deficiency improved sepsis

outcomes in mice (119). CD36 plays a rate-limiting role in fatty

acid uptake, making it a key regulator of cell lipid utilization.

Cell lipids can be used as substrates to generate oxylipins and

other lipid mediators that act on immune cell signaling during

inflammation. CPT1 also plays an essential role in transporting

oxylipins to the mitochondria during infection, as evidenced by the

accumulation of oxylipins in the peritoneal lavage of animals

challenged with LPS and CPT1 inhibitors. Similarly, CPT1

controls COX/LOX-derived oxylipin secretion by increasing its

uptake into the mitochondria. The authors suggested that CTP1

inhibition dampens the inflammatory response by increasing PGE2

and PGI2 levels (120).

In the face of sepsis, the body’s tissues confront a dire state of

reduced oxygen supply, instigating a decline in FAO within the

muscles. The liver tries to adapt swiftly by augmenting

gluconeogenesis and FAO for energy production (22). However,

intensified FAO by the liver can ultimately produce ketonic bodies

(121). Moreover, the critical interplay between dwindling oxygen

levels and the potential upsurge in FAO applies an unwavering

pressure on the respiratory chain, culminating in a cascade of ROS

generation (122, 123). Such intricate metabolic changes may have

far-reaching implications for the pathogenesis of sepsis and clinical

outcomes of affected patients.

Alterations in lipid metabolism are critical contributors to

sepsis outcome. Despite being an important energy source, the

accumulation of lipids in both the tissue and blood circulation can

have harmful effects. In sepsis, the uptake of FFA by cells increases,

but its oxidation by mitochondria is impaired, leading to

lipotoxicity. FFA originating from augmented lipolysis activates

inflammatory signaling pathways, thereby increasing the

imbalanced host immune response. The endocrine system also

plays a role in lipid metabolism by regulating the expression of

lipid utilization genes through the activation of the HPA axis.
5 Heart and skeletal muscle
metabolism during sepsis

Sepsis-induced myocardial injury is an acute type of

cardiomyopathy that is a common complication of sepsis (124,

125). Bacterial exotoxins are primary triggers of the septic

heart immune response (126). The pathogenesis of septic

cardiomyopathy (SCM) is complex and involves both myocardial

and peripheral vascular dysfunctions (124). Heart damage is

associated with the left ventricle, particularly reducing systolic

and diastolic function and ejection fraction (124, 125). Peripheral

vascular injury is associated with endothelial dysfunction, resulting

in leukocyte retention and ROS production (124).
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The molecular mechanisms responsible for SCM include

different pathways, most of which are related to inflammation.

PAMP and DAMPs can activate cardiomyocyte TLR, fostering a

septic inflammatory response (124, 125). TLRs play crucial roles in

the pathophysiology of myocardial sepsis. For instance, a study

using post-mortem myocardial cell lines found that TLR2, TLR4,

and TLR5 stimulation increased inflammatory cytokines, especially

IL-6 (127). In addition, an increased inflammatory response is

related to worse ventricular function in a cell model (127).

Furthermore, knockout of TLR4 results in decreased mortality

and expression of IL-6 and TNF-a, with better global ventricular

function in a sepsis animal model (128). Moreover, bacterial

toxins are responsible for direct endothelial damage, causing

microcirculation impairment (129, 130).

Once PAMPs prompt TLRs, they trigger intracellular signaling

resulting in the release of cytokines, including TNF-a and

interleukins, with a unique role in IL-1b and IL-18 (124, 125). A

significant association between elevated plasma levels of

interleukin-8 (IL-8) and cardiac dysfunction was observed in

individuals with sepsis-induced myocardial dysfunction (131).

TNF-a is also associated with depressed myocardial tissues (132).
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In addition, SFA can bind and activate TLR to promote tissue

inflammation (133, 134).

Nitric oxide (NO) is also associated with cardiac dysfunction in

sepsis. Initially, NO helps maintain hemostasis and hemodynamics.

However, increased concentrations contribute to the deterioration

of heart function, which may contribute to acute heart failure and

dysfunction in sepsis (135, 136). Higher levels of NO induce

decreased left ventricular contractility in animals treated with

exotoxins (137). In addition, a previous study suggested that

endothelial dysfunction could be responsible for leukocyte

retention in the coronary vasculature (138). This increased

leukocyte activity also increases inflammatory cytokine

production and contributes to LV dysfunction.

In SCM, myocardial metabolism is impaired. Under

physiological conditions, FFA is the preferential energy source of

the myocardium. FAO generates approximately 70% of the heart’s

adenosine triphosphate (ATP) (139), followed by carbohydrates

(140). Cells can also generate ATP from amino acids and ketone

bodies (140). However, the ability of heart cells to store high-energy

phosphate is poor. Thus, mitochondria play a fundamental role in

cellular and energy homeostasis (140).
FIGURE 1

Activation of the HPA axis in sepsis and its effects on lipid metabolism. The hypothalamic–pituitary–adrenal (HPA) axis is an endocrine system that
responds to stressful situations. Hormones produced by the HPA axis regulate cell metabolism and immune system functions. In sepsis, an
imbalanced immune response leads to an increase in the production and release of various proinflammatory molecules, including tumor necrosis
factor-a (TNF-a), interleukin-1b (IL-1b), and interleukin-6 (IL-6). These cytokines stimulate the HPA axis by activating the hypothalamus to secrete
corticotropin-releasing hormone (CRH), which in turn stimulates the anterior pituitary gland to produce adrenocorticotropic hormone (ACTH) and
arginine vasopressin (AVP). ACTH then promotes the production of glucocorticoids (GCs) in the zona fasciculata of the adrenal cortex. GCs are
released into the bloodstream, reaching various tissues, particularly the liver, muscles, and adipose tissues. When coupled with glucocorticoid
receptors (GRs), GCs induce transcription of GC-responsive genes. In sepsis, the expression of lipolysis-associated genes (Lpin1, Fabp4, Gpat4,
Angptl4, Dgat1, Dgat2, PNPLA2, and LIPE) is upregulated. This upregulation increases the breakdown of fatty acids, resulting in the accumulation of
free fatty acids (FFAs) in tissues and the bloodstream, indicating lipotoxicity during sepsis (Section 4). Genes associated with gluconeogenesis (Pck1,
Pck2, Pcx, Pfkfb3, Mpc1, Mpc2, and G6Pc) were also upregulated, along with the increased expression of PDK1–4. These changes contribute to
reduced glucose uptake and the hyperglycemia development. Hence, the HPA axis stress response system regulates the host response to internal
and external signals, such as the intense inflammatory state observed in patients with sepsis. Consequently, it has a decisive impact on sepsis
because hyperglycemia, accumulation of FFAs, and elevated GC levels are associated with poor patient outcomes.
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In sepsis, cardiac metabolism is more dependent on glycolysis

and lactate metabolism, and FFA and ketone bodies are reduced

(141, 142). Under healthy conditions, FAO is the primary energy

source for cardiomyocytes (142). However, a septic heart

downregulates FAO and relies on other energy sources (143). The

FAO is reduced for the following reasons as follows. FFA uptake by

CD36 is impaired because IL-1b downregulates the expression of

very-low-density proteins (VLDLs) receptors in cardiomyocytes

(142). In addition, TLR-mediated inflammation is responsible for

reducing the expression of FFA-binding proteins, acyl-CoA

reductase, and FAO-associated transcription factors (142).

Among the transcription factors, PPAR and its coactivator are the

most essential. In sepsis, reduced expression of PPAR-g in

cardiomyocytes and adipose tissue was associated with lower

levels of FAO and ATP production, as well as an increase in

triglyceride accumulation, contributing to a general impairment

in the heart’s metabolism (105, 139, 142, 144). Other molecular

factors associated with decreased intracellular FAO include

carnitine palmitoyl transferase-1 and acyl-CoA synthase (145).

Studies suggest that the oxygen supply to the heart is not

generally affected during sepsis (142). Hence, it is hypothesized

that metabolic changes, especially a reduction in FAO, are related to

the genetic background (145). In inflammation, lipoprotein lipase

(LpL) activity is markedly reduced, possibly due to the increased

expression of Angptl4 (146), an LpL inhibitor. The expression of

VLDL and CD36 receptors also decreases (142), compromising

lipid uptake by the heart. Even though this causes a negative

metabolic response, it is possible that the increased lipid clearance

acts as a defense response since bacterial capsules are mainly

composed of lipoproteins. The more these structures are removed

from the organism, the less toxic the effects they exert (145).

Reduced PPAR expression in sepsis is associated with worse

outcomes (147). A previous study by our group discussed the

relationship between PPARg and FAO (148). PPAR plays a

significant role in modulating the immune response by regulating

and controlling cytokine release (68). The higher the expression of

PPARg, the higher the immune response and its negative impacts.

This is true not only for the myocardium but also for other organs.

The effects of reduced FAO go further. Decreased oxidation leads

to increased levels of non-esterified fatty acids (NEFA), which are

also associated with a poorer prognosis in sepsis (105). In

addition, increased circulating NEFA levels are associated with

hypoalbuminemia and liver failure, which occurs during sepsis (134).

Metabolic changes in SCM also result from mitochondrial

dysfunction because the heart is highly dependent on oxygen

production (149). After endothelial injury, leukocytes are

chemoattracted, increasing ROS production and causing organelle

injury, including the mitochondria (150). Harmed mitochondria

activate cAMP/protein kinase A signaling and produce more ROS

by inhibiting the oxidative phosphorylation complex and lowering

oxygen consumption (149). Consequently, this pathway triggers

oxidative stress and apoptosis (124). In addition, mitochondrial DN

(mtDNA) is essential for regulating immune responses. Studies

have shown that individuals with an increased inflammatory

response may present with increased mtDNA in their cytoplasm,
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related to mtDNA release from the organelle (149). Cardiolipin is

one of the most critical targets of ROS damage in mitochondria.

Cardiolipin causes structural damage to the mitochondria and

impairs oxidative phosphorylation (151). Another possible target

of ROS damage is poly(ADP-ribose) polymerase (PARP) enzyme,

which is involved in DNA repair. This enzyme is upregulated in

sepsis and may be associated with mitochondrial structural

damage (151).

The Complement System is also linked to ROS damage in SCM,

specifically C5a pathway (152, 153). Complement C5a can be

activated early in sepsis and contributes to a robust inflammatory

response (154). An imbalance in calcium homeostasis, caused by

complement C5a and mediated by ROS, can harm cardiomyocytes

(155). The activation of MAPks and Akt, which contributes to heart

dysfunction in bacterial sepsis, has been linked to complement

C5a (153). In addition, the complement system affects coagulation

hemostasis, contributing to disseminated intravascular coagulation

(DIC) during sepsis (154, 156).

In addition to causing damage to the myocardial muscle, sepsis

affects the skeletal muscle, causing fiber wasting and sarcopenia. A

meta-analysis by Liu et al. (157) suggested that sarcopenia may

predict mortality risk in patients with sepsis. Muscle atrophy is a

consequence of increased degradation and decreased repair of

skeletal muscle. In addition, the increased secretion of cytokines

causes increased activation of proteolytic enzymes, resulting in

muscle loss.

The muscle structure and function are based on thinned-

regulated homeostasis. Sepsis disrupts skeletal fiber homeostasis.

Muscular homeostasis is a complex balance between muscle

inflammation, degeneration, fibrosis, repair, and regeneration (158).

However, literature suggests that muscle injury promoting

regeneration and growth involves a pathophysiological process

other than inflammatory wasting (158). Muscle injury and its

repair mechanisms are mainly mediated by neutrophils and

macrophages (158). After injury, neutrophils migrate to the tissue,

and there is an increase in the production of inflammatory cytokines,

including TNF-a, IL-1, and INF-g (159). Specifically, TNF-a
activates NF-kB, which causes muscle protein destruction (160).

Nitric oxide secretion mediates macrophage degradation (158).

One of the apoptopic mechanisms seen in septic muscle wasting

is related to the overwhelming endoplasmic reticulum (ER). In

skeletal fibers, the ER, also called the sarcoplasmic reticulum,

balances intracellular calcium according to the cell’s needs. ER is

also involved in a protein-folding regulation mechanism that

activates apoptosis-triggering pathways (161). Overstressed ER

accumulates excess folded proteins, which activate three key

molecules that participate in the unfolding process: protein kinase

R-like endoplasmic reticulum kinase (PERK), inositol requiring

protein 1a (IRE1a), and activating transcription factor 6 (ATF6)

(161). If this process fails or the cell remains under stress, apoptosis

pathways are activated (161). This process activates the ubiquitin–

proteasome system and autophagy–lysosomal pathway, triggering

cell death via proteases and caspases (161).

During muscle atrophy, contractile proteins are degraded by the

ubiquitin-proteasome system (UPS), autophagy–lysosomal
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pathway (ALP), and proteases such as calpains and caspases (149).

Studies suggest that muscle protein degradation follows a two-step

pathway in which calpains and caspases first disassemble skeletal

fibers, and then, proteases and other proteins from the ubiquitin

complex act on the degradation of actin fibers (162). UPS-mediated

protein degradation is regulated by a specific group of ubiquitin

ligases including atrogin-1 and MuRF1. These enzymes target

muscular proteins for ubiquitin-mediated degradation (162).

However, this process is controversial because it has not yet been

demonstrated in vivo (162).

Irisin is an essential protein related to muscle waste. Irisin was

first discovered in 2012, and studies have shown that the expression

of irisin and its precursors is related to muscular tissues (163). Irisin

levels may be depleted during sepsis because of a cytokine storm

(164). This is true because irisin modulation chemicals (TLRs,

MAPK, NF-kB) are increased in a pro-inflammatory response,

such as sepsis or COVID-19. This could explain the role of

muscle waste in inflammation-related diseases (164).

Overall, an increased inflammatory response, lower oxygen

supply, loss of tissue homeostasis, and cell destruction in the

muscle result in decreased FAO and an increase in FFA/NEFA

circulating levels.
6 Hepatic dysfunction during sepsis

The liver is central to human metabolism in health and disease

states. The liver is pivotal in orchestrating the acute phase response

(APR) in critical illness and systemic inflammation. It releases

proteins that participate in essential activities such as coagulation,

transport, and immunological functions. (165, 166). In clinical

practice, preventing bacterial translocation in the gut is crucial

because it can lead to bacteremia and sepsis (167). During

translocation, the bacteria enter the hepatic sinusoids through the

portal vein. The liver acts as the second line of defense, constituting

the gut–liver axis and promoting bacterial clearance (168, 169).
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Sepsis is a hypermetabolic state wherein the patient’s feeding is

often limited and does not supply daily energy requirements;

therefore, metabolism mimics a starvation state (170). Thus, the

liver promotes metabolic adaptations to sepsis, including alterations

in glucose and fatty acid metabolism (Figure 2).

Investigating the interplay between metabolic and inflammatory

alterations is crucial for understanding the inflammatory conditions

(171). The role of inflammation in insulin resistance has been widely

accepted in critically ill patients (172) (Figure 2). Cytokine signaling

may stimulate the inhibitory phosphorylation of insulin receptor

substrate 1 (IRS-1) by stress kinases such as JNK1 and IKKb (173).

Cytokines may also enhance hepatocyte ceramide production,

thereby increasing their production in sepsis (174, 175). Ceramide

biosynthesis appears to be involved in insulin resistance (Figure 2),

and TLR4 stimulation by SFA increase enzymes in this pathway

(176–178). Supported mainly by the insulin resistance response,

sympathetic stimulation, and limited oral starvation, the liver

increases glucose production through gluconeogenesis and

glycogenolysis during sepsis. However, glucocorticoid resistance

and iron‐driven oxidative inhibition of glucose‐6‐phosphatase may

hinder gluconeogenesis in the liver (179, 180). It usually leads to stress

hyperglycemia during the acute phase of sepsis and in other critically

ill patients, even in non-diabetic patients (181). Extremely high

glycemic levels in these patients are associated with poor outcomes

and an increased risk of developing type II diabetes (182, 183).

However, hyperglycemia may be an adaptive mechanism to sustain

immune cell activity because these cells shift their metabolism based

primarily on glycolysis with lactate formation, even in an aerobic

environment. This phenomenon is known as the Warburg effect, and

it was first described in cancer cells; however, it similarly occurs in

monocytes, dendritic cells, and T cells during their activation,

mediated by increased succinate release into the cytoplasm and

Akt-mTOR-HIF-1a (184–186). This metabolic shift may support

the elimination of ROS and development of trained immunity (187,

188). However, in tissue ischemia, this phenomenon leads to an

increased release of lactate. Lactate levels are correlated with adverse
FIGURE 2

Sepsis induces a hypermetabolic state that triggers a complex interplay between inflammatory and metabolic changes. The bidirectional relationship
between inflammation and metabolism plays a pivotal role in the development of sepsis. Inflammation triggers metabolic alterations and vice-versa.
Inflammatory mediators, such as free fatty acids, can trigger insulin resistance, which is crucial for subsequent metabolic alterations. Conversely,
hyperglycemia may elicit significant effects on immune cell activity, including the Warburg Effect. These multifaceted adaptations and dysfunctional
PPAR-a levels contribute to increased oxidative stress, lipotoxicity, and elevated lactate levels, ultimately contributing to progressive organ failure.
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outcomes in patients with sepsis. They can activate TLR4, promoting

the activation of the NF-kB pathway and release of inflammatory

mediators (189). In addition, the increased accumulation of succinate

may trigger inflammation via ROS generation mediated by succinate

dehydrogenase (190, 191).

In addition, adipose tissue provides energy storage in mammals,

releasing fatty acids that can be oxidized to produce ATP and

maintain cell activities. It has been reported that lipolysis is

upregulated during sepsis, increasing plasma levels of fatty acids

and triglycerides (192). LPS challenge induces the enzymatic

activation of hormone-sensitive lipase (HSL) by phosphorylation

at Ser650 and an increase in perilipin-1 phosphorylation by protein

kinase A (193). Insulin resistance in these patients also supports

lipolysis and an increase in catabolic hormones, such as adrenaline,

GH, and glucagon (194–196). Depressed lipoprotein lipase activity

has also been postulated to cause hypertriglyceridemia, occurring

not necessarily in sepsis but in endotoxemic and bacteremic states

(197). It is worth highlighting that the shift in lipid metabolism can

support even the conceptualization of new prognostic tools.

Modified hepatic levels of selected phospholipids have been

linked to impaired energy metabolism and the progression of

sepsis (198). A recent metabolomic study has suggested

differences in plasma lipid concentrations between survivors and

non-survivors, medium/short-chain hydroxy acyl-CoA

dehydrogenase (elevated in survivors), and crotonase (elevated in

non-survivors). Hence, there is a future perspective for monitoring

cellular energy beyond the currently established methods (199).

Unfavorable outcomes in sepsis are related to impaired metabolic

adaptation in the liver (200). PPAR-a (encoded by the NR1C1 gene)

is a crucial transcription factor that regulates gene transcription (e.g.,

CPT1A and FABP1) of proteins involved in b-oxidation (201, 202).

During sepsis and other inflammatory conditions, PPAR-a
expression is downregulated in the liver, thereby diminishing lipid

oxidation in this organ (20). Malnourishment, which is common in

patients with sepsis, is also associated with decreased PPAR-a levels

(203). In addition, the entry of fatty acids into mitochondria is

partially hindered by the increased concentration of malonyl-CoA

generated from glucose, especially in the heart, muscles, and liver

(204). In this context, if unable to capture and oxidize lipids, the liver

does not shift to a starvation response properly, resulting in adverse

outcomes for the patients. A recent transcriptomic study found that

PPAR-a-deficient mice presented more severe glycemic disturbances

and increased steatosis than control mice (205). Ketogenesis may also

be impaired, which can be fatal after LPS-induced endotoxemia (206).

Ketone bodies can protect against ROS and provide energy to

extrahepatic tissues (207). Ultimately, downregulation of PPAR-a-
dependent genes impairs liver metabolic adaptation in sepsis (205).

Conversely, PPAR-a agonists may benefit septic patients (20,

208, 209).

Potential therapeutic approaches for dysfunctional

lipid metabolism during sepsis, agonists of peroxisome

proliferator-activated receptors a and g, and omega-3 fatty acid

supplementation have shown promise (210, 211). Saroglitazar

(SAR), a dual PPAR-a/g agonist, has anti-inflammatory and

antioxidant effects that mitigate LPS-induced liver and kidney

injury during sepsis (212). PPAR-a activation counters
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lipogenesis, endotoxemia, and dysbiosis, ameliorating the

intestinal barrier structure and reducing TLR4 expression in the

livers of high-fructose-fed C57BL/6 mice (213). In addition, PPAR

activation by fenofibrate showed protective effects against cardiac

damage in septic mice by reducing troponin-T, ROS, and IL-6 TNF-

a (214). Rosiglitazone, another PPARg agonist, mitigated apoptosis,

and pro-inflammatory responses in LPS-stimulated myocardial

cells (215). PPAR agonists improve sepsis-related conditions

beyond the muscles and liver (216). A meta-analysis conducted in

2020 with 1,514 patients suggested that omega-3 fatty acid, a PPAR

agonist, might be associated with decreased mortality in individuals

with sepsis (217). Likewise, omega-3 fatty acids in severe COVID-

19 patients with sepsis showed potential benefits, including reduced

procalcitonin and IL-6 levels (218). Finally, intravenous omega-3

fatty acid lipid emulsion reduces systemic inflammation,

endotoxemia, and sepsis in patients with acute liver failure (219).

In addition, liver metabolic adaptation is hindered by

microcirculatory failure. Liver sinusoid endothelial capillaries

(LSECs) regulate the immune response and blood flow (220).

However, LSEC may be damaged during sepsis, contributing to

liver failure. The architecture of LSECs is susceptible to LPS

injection, leading to reduced flow velocity, increased

heterogeneity, and blood perfusion deficits (221). In mice, toxin

levels have been shown to alter the LSEC fenestrae diameter, and the

direct effects of LPS and TNF-a can induce hepatocyte damage

(222). Different substances have been linked to impaired liver

microcirculation, including endothelin-1, carbon monoxide, and

nitric oxide (223). In addition, hyperactivation of Kupffer cells

(liver-resident macrophages) during sepsis may play a role in

hepatic dysfunction and LSEC damage. Kupffer cells can intensely

release ROS, TNFa, and IL-1b, leading to oxidative stress and

damage to cellular structures, while recruiting other immune cells to

the liver (224). Additionally, Kupffer cells can stimulate coagulation,

forming microthrombi that further exacerbate LSEC damage (225).

A mouse model has revealed that Kupffer cells can contribute to the

onset of intrasinusoidal thrombosis, leading to acute liver failure

(226). Therefore, oxygen supply mismatch in hepatocytes can

impair aerobic energy production, leading to cell damage or death.

As described, sepsis patients present with increased lipid levels in

the plasma and tissues due to stimulated lipolysis, impaired beta-

oxidation, and hampered transport into the mitochondria. In

addition, LPS and cytokines such as IL-6 and TNF-a may induce de

novo synthesis of lipids, regulated by sterol regulatory element-binding

proteins (SREBP) (227). High levels of insulinemia seem to increase

SREBP expression in the hepatocytes. A recent transcriptomic

investigation found upregulation of ERLIN1 (gene regulating

SREBP) during sepsis (228, 229). In addition, LPS administration in

murine livers upregulates SREBP-1 (230). Because of the production

of toxic metabolites, mainly through lipid peroxidation, increased lipid

levels can harm patients, causing cell damage and apoptosis, a

phenomenon known as lipotoxicity (37). The double bonds of

polyunsaturated fatty acids are major substrates for oxidization by

free radicals. Sepsis induces the formation of many peroxidation

products such as malondialdehyde (MDA) and 4‐hydroxynonenal

(4‐HNE), which lead to toxicity by interacting with amino acids and

nucleosides (231, 232). Additionally, diacylglycerol, ceramide,
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palmitate, and other SFA can be upregulated in sepsis, resulting in

lipotoxic effects (233–236). SFA can promote inflammation mediated

by TLR-4, while TLR-4 knockout mice may not suffer from SFA

signaling (237). Possible therapeutic targets to prevent lipid

peroxidation and lipotoxic effects in patients have been investigated.

Administration of C75, a fatty acid synthase inhibitor, reduces

inflammation and organ injury in sepsis (238). In addition,

mitochondrial uncoupling proteins, such as UCP3, have been

postulated to function in the defense against lipid-induced oxidative

muscle damage (239, 240). Moreover, propofol, a common drug used

to manage critically ill ICU patients, may protect against hepatic lipid

peroxidation, oxidative stress, and inflammation (241–243).

In addition, albumin synthesis in the liver is decreased by sepsis-

related liver failure and general inflammation, making albumin a

negative acute-phase protein (244, 245). Serum albumin levels are

decreased in most patients with sepsis, although it remains unclear

whether this is due to suppressed albumin production or increased

albumin clearance (246). Albumin is a crucial fatty acid transporter in

systemic circulation. This decrease also favors increased plasma levels

of fatty acids (247, 248). In addition, NEFA can activate toll-like

receptors and inhibit Na+/K+-ATPase, causing lung injury and

edema (249, 250). Our group showed a relationship between the

oleic acid/albumin molar ratio and clinical outcomes in critically ill

patients, with a higher ratio indicating higher mortality in these

patients (251). Omega-9 treatment increases CPT1A mRNA in the

livers of septic mice, reduces plasma NEFA levels, and improves

survival and clinical status (105). CPT1A plays a crucial role in

importing fatty acids into the mitochondrion, delivering them to their

final destination oxidation, thus pointing out a possible therapeutic

target related to ß-oxidation.
7 Study limitations

Sepsis can originate from different microbes, with infections

originating in different organs. Here, we focused on bacterial

infections and multiple foci of infection. Sepsis severity can

influence lipid metabolism. Sex, age, metabolic status,

pathological background, and alimentary status may influence

lipid metabolism and sepsis outcomes. However, altered lipid

metabolism in patients with sepsis has been described, regardless

of different conditions. FFA will affect inflammatory and metabolic

conditions, which may lead to poor outcomes.
8 Concluding remarks

Sepsis is a complex syndrome with a high morbidity and

mortality rate. Sepsis pathogenesis disrupts metabolic and

inflammatory systems. Derangement of the inflammatory

response and metabolic alterations have been identified as targets

for the diagnosis and treatment of patients with sepsis. We suggest a

new protagonist in sepsis physiopathology, fatty acid oxidation,

because FAO in the tissues is reduced and fatty acid blood levels are

high. In addition, increased FFA levels are associated with poor

prognosis in patients with sepsis. Different mechanisms account for
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alterations in lipid metabolism during sepsis, such as increased

gluconeogenesis and lipolysis, lower oxygen supply to the tissues,

increased inflammation, and worsening lipid oxidation. Hence,

FAO and FFA can be potentially valuable markers for sepsis

diagnosis and prognosis because alterations in their circulating

levels and metabolism have a life-threatening impact on critically

ill patients.
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239. Nabben M, Hoeks J, Briedé JJ, Glatz JFC, Moonen-Kornips E, Hesselink MKC,
et al. The effect of UCP3 overexpression on mitochondrial ROS production in skeletal
muscle of young versus aged mice. FEBS Lett (2008) 582:4147–52. doi: 10.1016/
j.febslet.2008.11.016
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