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TheCOVID-19 pandemic highlighted two critical barriers hindering rapid response

to novel pathogens. These include ine�cient use of existing biological knowledge

about treatments, compounds, gene interactions, proteins, etc. to fight new

diseases, and the lack of assimilation and analysis of the fast-growing knowledge

about new diseases to quickly develop new treatments, vaccines, and compounds.

Overcoming these critical challenges has the potential to revolutionize global

preparedness for future pandemics. Accordingly, this article introduces a novel

knowledge graph application that functions as both a repository of life science

knowledge and an analytics platform capable of extracting time-sensitive insights

to uncover evolving disease dynamics and, importantly, researchers’ evolving

understanding. Specifically, we demonstrate how to extract time-bounded key

concepts, also leveraging existing ontologies, from evolving scholarly articles

to create a single temporal connected source of truth specifically related to

COVID-19. By doing so, current knowledge can be promptly accessed by both

humans and machines, from which further understanding of disease outbreaks

can be derived. We present key findings from the temporal analysis, applied to

a subset of the resulting knowledge graph known as the temporal keywords

knowledge graph, and delve into the detailed capabilities provided by this

innovative approach.
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1. Introduction

The COVID-19 pandemic revealed the critical need for rapidly understanding the

nature of any infectious disease before its outbreak reaches a critical state of community

spread. Studies of previous infectious outbreaks show that public adherence to public health

guidelines is greater when the scientific knowledge base surrounding the disease is stronger

(Bults et al., 2011; Lin et al., 2011). The ability of global scientific leadership to communicate

to the public with certainty surrounding risks, symptoms, and prevention is critical.
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For example, with respect to the U.S. population in response

to COVID-19, research shows that knowledge levels within the

public are related to the likelihood of an individual engaging in

preventative measures and complying with public health guidelines

(Clements, 2020). While there has been some research focused

on the dissemination of information to the public via social

media (Chan et al., 2020), there has been far less focus on

enhancing the rate at which scientific information surrounding

COVID-19 is aggregated and mined to advance the knowledge

base. Such knowledge is critical for coherent and consistent

information sharing.

Currently, science surrounding new diseases moves at the pace

of scientists’ current knowledge and their ability to read, digest,

and synthesize information across multiple scholarly articles, and

then utilizing this knowledge and expertise to find points of

integration across the concepts and results. The potential for

natural language processing (NLP), in which automated techniques

can mine scholarly content, as a means of achieving these same

outcomes has been previously outlined (Hirschberg and Manning,

2015), even in the context of knowledge graphs construction (Luan

et al., 2018). Nevertheless, little has been done to pair NLP with

network science and temporal analysis to connect key findings

and concepts and synthesize their evolving nature over time. In

simpler terms, it is crucial to merge new discoveries with well-

established practices into a unified temporal knowledge repository.

This integrated source serves as a reliable foundation from which

relevant knowledge can be distilled, results can be validated, trends

can be identified, and new findings can be continually shared in an

iterative process. As such, this article moves from this idea covering

three important aspects:

1. Gathering and organizing fast-growing and heterogenous

knowledge in a single connected source of truth that is easy to

access for humans and machines, specifically considering the

temporal aspects in the graph modeling;

2. Identifying automated techniques to perform meaningful

temporal analysis of the resulting knowledge base; and

3. Tracing the evolution of knowledge in a formal way,

identifying patterns, and recognizing early-stage trends.

Achieving these three outcomes can improve the handling of

similar infectious diseases by the identification of common static

and dynamic patterns, providing just-in-time information, and

accelerating the search and the navigation of an enormous amount

of information. As such, the key element of this effort is the

presentation of a novel application of knowledge graphs for disease

understanding, which both aggregates current evolving science

with pre-existing knowledge bases and allows temporal exploration

of this information.

While many sources are used by professionals to find

treatments, approaches, and the latest discoveries, these are

dispersed, heterogenous, difficult to search, or disconnected. As

a result, discoveries around COVID-19 cannot be analyzed in

a proper way, and already adopted therapies cannot be easily

discovered. In the early stages of the COVID-19 outbreak, many

researchers (Michel et al., 2020; Chen et al., 2021) focused

on the gathering of knowledge from literature and organize

it in the form of knowledge graph, mostly in the Resource

Description Framework format, making it available to downstream

applications. This approach showed the value of the knowledge

graph in gathering information from multiple sources, prompting

others to explore similar approaches for various purposes. For

example, to enhance search capabilities over the expanding

literature, Wise et al. (2020) built a COVID-19 knowledge graph

to extract complex relationships between related scientific articles.

Their goal was to implement an advanced search engine to assist

researchers and policymakers in extracting timely information to

address key scientific questions about COVID-19 from a corpus

of scientific articles. Similarly, Wang Q. et al. (2020) constructed a

knowledge graph to aid clinicians in analyzing COVID-19-related

information and tackling complex tasks like drug repurposing.

Leveraging existing knowledge bases, Cernile et al. (2021) also

built a knowledge graph from scientific publications related to

COVID-19, using CORD-19 (Wang L. et al., 2020) as a data

source. Their work demonstrated how knowledge graphs enable

rapid navigation and exploration of inter-relationships among

entities, improving the understanding of diseases such as COVID-

19.

In a similar vein, our approach centers on utilizing a knowledge

graph to consolidate the literature related to COVID-19. However,

our primary focus diverges from previous studies as we emphasize

exploring the temporal evolution of our understanding of COVID-

19. Specifically, our key objective is to develop a framework that

effectively captures the evolving nature of knowledge over time.

This unique objective introduces certain peculiarities into the graph

model, ultimately enabling distinctive analyses. To achieve this, we

build upon existing methodologies of knowledge graph creation.

For example, our pipeline to develop a temporal knowledge graph

follows an iterative and incremental lifecycle, based on an existing

Linked Data lifecycle model that has been already applied in

real-world scenarios (Hyland and Wood, 2011; Villazón-Terrazas

et al., 2011), and incorporate existing techniques such as time

slicing (Choudhury et al., 2020). By leveraging these established

methods, we ensure the meaningful utilization of prior scientific

advancements to ultimately convert multiple and heterogeneous

data sources, some of which are unstructured, into a single

connected source of truth related to the COVID-19. Leveraging

temporal information, we slice the graph into multiple time-

bounded sub-knowledge graphs. As a result, our approach presents

a novel use case for knowledge graphs, particularly in mapping

the changes in specific topics and their relevance as the COVID-

19 disease progresses. Through this innovative approach, we shed

light on the dynamic nature of knowledge within the context of

COVID-19. It is worth noting that the analyses performed on our

graph showcase different algorithms for information aggregation

and extraction, which can be applied to other diseases as well.

2. Methodology

Knowledge graphs (KGs) have emerged as a core abstraction

for incorporating knowledge into intelligent systems (Hogan et al.,

2021). KGs can be generally described as an “evolving graph

data structure, composed by a set of typed entities, their attribute
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and meaningful named relationships among them, built for a

specific domain with the intent to craft knowledge for humans and

machines” (Negro et al., 2023). Thus, a KG represents a specific

domain of knowledge by means of entities and relationships in a

graph structure. KGs are easily accessible for both humans and

machines to augment their capabilities and are flexible to enable

a continuous manipulation and ingestion of various data from

different data sources. Moreover, the materialization, storage, and

access to the information included in a KG efficiently supports

offline analysis and online visualization and processing. Given

these capabilities, KGs are a powerful tool for modeling the

relations between entities in various fields, from biotechnology to e-

commerce, intelligence, law enforcement, and financial technology

(Szekely et al., 2015; Liu et al., 2019; Li et al., 2020, 2022; Xu

et al., 2020; Feng et al., 2022), among diverse language and

text-based applications, including search engines, chatbots, and

recommendation systems (Liu et al., 2020; Zhou et al., 2020).

There is at least a two-fold perspective that characterizes

KGs. The first perspective focuses on knowledge representation,

in which the graph is encoded as a collection of statements

formalized using the Resource Description Framework (RDF)

data model (Govindapillai et al., 2021). Its goal is to standardize

data publication and sharing on the Web, ensuring semantic

interoperability. In the RDF domain, the core of intelligent systems

is based on the reasoning performed on the semantic layer of

the available statements. The second perspective focuses on the

structure (properties and relationships) of the graph. This vision

is implemented in the so-called Labeled Property Graph (LPG)

(Purohit et al., 2021). It emphasizes the features of the graph data,

enabling new opportunities in terms of data analysis, visualization,

and development of graph-powered machine learning systems

to infer further information. Leveraging these advances, KGs

can help researchers tackle many biomedical problems, such as

finding new treatments for existing drugs (Himmelstein et al.,

2017), aiding efforts to diagnose patients (Choi et al., 2017), and

identifying associations between diseases and biomolecules (Shen

et al., 2017).

2.1. Knowledge graph construction with
the linked data lifecycle

KGs are generally constructed using the Linked Data lifecycle.

This lifecycle includes specification, modeling, data lifting, data

publication, and data curation for “publishing and connecting

structured data on theWeb” (Ngomo et al., 2014). The specification

consists of the identification of main goals, requirements, and

constraints that drive the features and shape of the final model,

along with the data that will be integrated within the KG. Modeling

involves identifying key entity classes and the relationships among

them, along with the vocabulary that specifies the set of allowed

instances of interest. Data lifting, or data ingestion, refers to

the ingestion of data, leading to the final KG. This involves

transforming both structured and unstructured data from the

original schema to the target schema and linking entities from

multiple sources together. In some cases, the schema requires two

entities coming from different sources to bemerged in a single node

of the graph. Data publication makes the KG accessible, such as

through a standard API, a generic frontend, or a graph visualization

tool. Finally, data curation cleans, maintains, and preserves data for

reuse over time.

2.2. Data sources, modeling, and the
schema

The effectiveness of any analysis heavily relies on the quality

of the input data. Therefore, prior to delving into the temporal

exploration of COVID-19, our initial focus was on constructing a

robust KG that would serve as a solid foundation for our analysis.

Thus, we gathered several sources of information concerning

SARS-CoV-2 and COVID-19, along with pre-existing relevant data,

to conduct a comprehensive analysis of the evolving understanding

and critical aspects of a novel disease outbreak. By ensuring the

completeness and accuracy of our KG, we established a reliable

basis for subsequent analyses.

Since the early stages of the spread of this disease, diverse

information sources have been publicly available (e.g., Wahltinez

et al., 2022; Centers for Disease Control and Prevention, n.d.) with

the specific intent to accelerate the knowledge distribution and

learning curve around the disease. In addition, other knowledge

sources were already available to professionals in digital format

to feed different autonomous intelligent systems. Thus, the data

sources used in this project are completely publicly available. They

include the following:

• Hetionet (Himmelstein et al., 2017) is a network of biomedical

knowledge assembled from 29 different databases of genes,

compounds, diseases, and more.

• Uniprot (Bateman et al., 2022) is a freely accessible resource of

protein sequence and functional information.

• CORD-19 (Wang L. et al., 2020) is a resource with over

200,000 scholarly articles on COVID-19, SARS-CoV-2, and

related coronaviruses.

• Drug Repurposing Knowledge Graph (DRKG) (Ioannidis

et al., 2020) is a comprehensive biological KG relating genes,

compounds, diseases, biological processes, side effects, and

symptoms. It includes information from six existing databases

including DrugBank, Hetionet, GNBR, String, IntAct,

and DGIdb, and data collected from recent publications

particularly related to COVID-19.

• Gene Ontology (GO) (Gene Ontology Consortium, 2004) is

the world’s largest source of information on the functions of

genes. This knowledge is both human-readable and machine-

readable and is a foundation for computational analysis of

large-scale molecular biology and genetics experiments in

biomedical research.

• Medical Subject Headings (MeSH) (Lipscomb, 2000) is

the National Library of Medicine’s controlled vocabulary

thesaurus used for indexing articles for PubMed.

When working with structured data, importing it into a KG

is relatively straightforward. For instance, the Hetionet database

is already structured as a graph of nodes and relationships,

conveniently provided in two .csv files—one containing all the

nodes and the other containing all the relationships. On the other
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hand, unstructured free text lacks explicit structure, which makes

it challenging to search for and analyze the information contained

within (Grishman, 2015). Extracting and processing such structures

are main tasks in NLP. Specifically, information extraction (IE)

is a key step in making a text’s semantic structure explicit, and

thus, useful. More precisely, IE is the process of analyzing text

to identify semantically defined entities and relationships. Further,

recognizing relevant entities and the relationships among them

are critically relevant intermediate steps. In the case of this study,

these entities include genes, proteins, symptoms, compounds and

so on, and their relationships. The task of named entity recognition

(NER) involves finding each mention of a named entity in the

text and labeling its type (Grishman and Sundheim, 1996). Note

that an entity can also be composed of multiple tokens extracted;

the same would happen for our domain, where severe acute

respiratory syndrome (SARS) must be considered as a single entity.

Moreover, the recognized entities are connected on one side to the

source paper containing them and on the other to the reference

knowledge bases (e.g., Hetionet, Uniport, etc.). In Figure 1, the class

NamedEntity in the schema results from the IE process.

In addition, due to COVID-19 being a novel disease

with new relationships to existing genes, proteins, and other

relevant elements, determining the most likely diagnosis based on

symptoms requires not only the identification of specific entities

but also the understanding of the connections between them. These

relationships are expressed within the text data through specific

sentences in which researchers mention them. Therefore, it is

essential to enrich the information in the reference knowledge

bases with new relationships inferred from the text using Entity

Relationship Extraction (ERE) techniques. This process allows us

to extract relevant relationships from the text and incorporate

them into the KG, thereby enhancing its completeness and

capturing the evolving understanding of COVID-19. One common

algorithm used for relation extraction is based on lexico-syntactic

patterns (Negro, 2021). This algorithm involves mapping syntactic

relationships among tokens or specific sequences of tags to a set

of relevant relations between key named entities. By applying a

series of semantic analysis rules, each designed to map a subgraph

of the syntactic graph (a portion of the graph containing syntactic

relationships that connect key entities), anchored by mentions

of certain entities, we can associate them with corresponding

relations in the database. This approach provides a rough yet

effective approximation. ERE plays a significant role in improving

the quality of a KG in terms of the insights extracted and the

available access patterns. By applying ERE techniques, connections

are created between the NamedEntity entries extracted from the

text, enabling seamless navigation and exploration of the graph.

This facilitates the production of a meaningful and informative

graph that captures the evolving understanding of COVID-19 and

enhances the insights that can be derived from it. In Figure 1,

these relationships are represented by self-connections on the

NamedEntity class.

After several iterations of the LinkedData lifecycle, a reasonable

schema for exploration and analysis was derived using the data

sources listed above. The full schema is complex; a subset is

provided in Figure 1. This schema captures data about genes,

diseases, compounds, and side effects, along with their interactions,

e.g., how a disease is connected to a specific gene, how it

can be treated by a specific compound, and the side effects of

such compound, from structured and unstructured data sources.

Research manuscripts are also connected from one author to

another author by institution, and relevant relationships between

manuscript sections are retained. The full import process of data is

accomplished using GraphAware Hume Orchestra—the workflow

engine available in GraphAware Hume. Specifically, GraphAware

Hume7 was used as the main tool for data gathering, merging

and transformation as well as analytics and graph visualization.

It provides facilities for data orchestration, including support for

unstructured data, and many different algorithms for analysis and

graph visualization for knowledge exploration.

2.3. Extending knowledge graphs for
temporal analysis

The KG presented in Section 2.2 encompasses a wide range of

information, making it suitable for effective representation within a

temporal framework. Our approach primarily focuses on research

papers, authors, and keywords as the basis of analysis within

the KG. Each paper in the KG includes temporal information

derived from its publication date. By leveraging this temporal

dimension, we can map it onto a specific portion of the graph and

incorporate time as attributes within relationships. This enables the

creation of a dynamic co-occurrence graph of keywords, providing

valuable insights into the evolving landscape of COVID-19 research

over time.

To evaluate our approach, we chose to use keywords

as they offer a concise expression of authors’ understanding,

thematic context, and research summaries. Moreover, keywords are

commonly used for indexing purposes in digital libraries, making

them powerful tools for knowledge discovery (Song et al., 2013).

The resulting time-reach co-occurrence graph, which we refer

to as the “TagGraph” for simplicity, is isolated and utilized for

temporal analysis. Here, the term “tag” is preferred over “keywords”

as it represents a more generic term, allowing for the potential

application of our analysis to any textual element that can be

attached to or automatically extracted from text.

Consequently, a key objective of our work is to facilitate the

improved identification of research progress, common patterns,

trends, and emerging anomalies. Once our approach is validated

and consolidated, it may be possible to generalize it to other areas

of the graph that exhibit temporal dynamics. Furthermore, in the

future, our methodology could be applied to studying unknown

diseases as they emerge.

2.3.1. Approach
The temporal analysis of a TagGraph focuses on the evolution

of the co-occurrence of author keywords, or tags, provided directly

by a paper’s authors to categorize the major contributions of their

article. These author-selected tags are carriers of knowledge units,

or knowledge entities (Su and Lee, 2010). The co-appearance of

two author-selected tags in an article defines a certain relationship
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FIGURE 1

A portion of the knowledge graph schema. This schema captures data about genes, diseases, compounds, and side e�ects, along with their

interactions, e.g., how a disease is connected to a specific gene, how it can be treated by a specific compound, and the side e�ects of such

compound. Research manuscripts are connected from one author to another author by institution, and relevant relationships between manuscript

sections are retained.

between two topics. Multiple such instances denote the strength

of their relationships (Yang et al., 2011). The assumption is that

two tags appearing in the same article imply that the concepts

represented by these tags are correlated. The more authors that use

the same pair of tags, the more related they are. In this section, we

describe our approach for generating a TagGraph, an application

of a generic KG, which leverages relationships between tags for

extracting evolving knowledge about COVID-19.

Connections among paper topics are not static. Scientific

knowledge creation is dynamic; different avenues of research

converge, and new connections emerge among disjointed and

existing areas of science (Pan et al., 2012). This knowledge is

generally incremental besides a few revolutionary and fundamental

changes. New hypotheses are being postulated by encompassing

existing scientific concepts from multiple domains. Canals (2005)

pointed out that the diffusion of scientific knowledge can be

mapped into a network structure where knowledge propagates via

interactions among networked agents, in our case, the authors.

Thus, a TagGraph is a temporal-bounded co-occurrence graph

where nodes are tags, or keywords, and edges represent their causal

relationships over the time. In addition to causal relationships,

statistically significant and non-trivial co-occurrence patterns of

tags also represent their semantic affinity (Montemurro and

Zanette, 2013) and relatedness (Schulz et al., 2014).

A TagGraph’s analysis is dynamic by the creation of multiple

“temporal snapshots” of a TagGraph by month. That is, a temporal

snapshot is a network Gt = (Vt , Et) for the time t = 1, 2, . . .T,

where Vt is the set of tags appearing in papers dated at time t and

Et is the set of relationships based on those papers. The vertices

and the edges at time t can be new or recurring. The dynamicity

of tag co-occurrences denotes that new research topics, hypotheses,

or directions emerge over time through co-appearances of existing

tags. In terms of modeling, this has been translated in a temporal

relationship, OCCURS_WITH, where the temporal information is

an added property. An example is depicted in Figure 2.

After the creation of the TagGraph temporal snapshots, the

analysis leverages Role-Dynamics (Rossi et al., 2012), which further

leverages ReFeX (Henderson et al., 2011) and RolX (Henderson

et al., 2012) algorithms. ReFeX characterizes each node by

structural graph features, while RolX performs matrix factorization

over the nodes features matrix to identify “roles” of nodes in

the graph, or nodes that have similar structural features. The

target of the Role-Dynamics approach is to analyze how such

roles evolve over time, which we evaluated from March 2020
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FIGURE 2

A portion of the projected graph, where the OCCURS_WITH relationship connects keys that have been mentioned in the same paper. The

highlighted relationship shows that the keys “SARSCoV-2” and “serology” appear often together, although with varying frequencies over the period

under consideration. As a result, each relationship is associated with a weight that is a function of time.

to March 2022. As shown in Figure 3, the general workflow for

analyzing temporal changes consisted of extracting the temporal

co-occurrence graphs; running ReFex on all the nodes for all

snapshots to extract the most relevant structural features for each;

normalizing the ReFeX features between 0 and 1 to improve the

results of the next phase; and running RolX over the full time-series.

The output of this process is the definition of a small set of roles

that effectively describe the node behaviors in a time-consistent

way and the characterization of each node as a temporal mixture

of such roles.

2.3.2. Graph projection and temporal
discretization

Due to the arbitrariness with which authors choose their

tags, including misspelling, mixing acronyms, etc., the overlap

of tags for the same concept is heavily reduced. This affects

the quality and structure of the temporal snapshots and the

consequent results of the entire process. To mitigate this issue,

tags are associated using a combination of sentence embedding

(to vectorize the tags in a latent space) and a clustering

algorithm to create groups of tags with the same meaning.

The SPECTER Bert model (Cohan et al., 2020) is used for

the embeddings and DBSCAN (Ester et al., 1996) for the

clustering. The approach of combining those techniques for

merging and cleaning the tags represents another novelty of this

work and it improves the quality and stability of the results. The

TagGraph is then computed at the cluster level with the same

approach described in Section 2.3.1, computing it in monthly

snapshots. Thus, hereafter, a “tag” that represents this cluster

of tags.

As previously stated, the snapshots are computed

by month to have appropriate granularity and reveal

early patterns. There are different techniques for

measuring the strength of this association. We used the

formula of the association strength (Eck and Waltman,

2009):

SA(cij, si, sj) =
cij

sisj

where cij represents how many articles have both tags, while si and

sj represent the frequency of tags i and j, respectively. Based on

this formula, we consider the relationship undirected since both

directions have the same weight.

Frontiers in ResearchMetrics andAnalytics 06 frontiersin.org

https://doi.org/10.3389/frma.2023.1204801
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org


Negro et al. 10.3389/frma.2023.1204801

FIGURE 3

Flowchart for the temporal graph analysis. From the heterogeneous graph that represents the initial knowledge graph, monthly snapshots are

extracted, describing the co-occurrence of keywords in papers published each month. The REFEX feature extraction algorithm is applied to each

snapshot, associating each keyword with a di�erent feature vector in each snapshot. The features are then aggregated and processed using the RolX

algorithm, which assigns a role to each keyword for each month.

2.3.3. Feature and role extraction
The ReFeX algorithm is run over the monthly TagGraph

snapshots. ReFeX is a structural graph feature that extracts

base features at the node level to describe the statistics of

each node neighborhood, aggregating these statistics recursively.

Node level features include node degree, ego-net degree, page

rank, eigenvector centrality, etc. The aggregation includes sums

and means. The feature vector associated to each node is then

composed by base features like degree which is a node scale

property, and degree(sum), which represents the sum of the degree

property of the neighborhood for this node. The recursivity of

the aggregation process makes it possible to compute features like

degree(sum)(mean)(mean)(sum), which aggregates information at a

regional scale (Figure 4). The algorithm prunes irrelevant features

at each iteration to avoid the exponential growth of the feature

vector size.

The output of the ReFeX algorithm is a tabular representation

of the behavioral features of the TagGraph through time, which

captures the complexity of the behaviors hidden in the topology of

the relationships between nodes. The RolX algorithm introduces
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FIGURE 4

Conversion of each node into a vector representing the node’s topological feature at di�erent scales using ReFeX (Henderson et al., 2011).

FIGURE 5

Compression of ReFeX feature vectors into smaller role vectors using RolX.

the idea that there exists a set of roles that the nodes can play,

and such roles are able to explain the complexity of the observed

structural features. The algorithm computes the optimal number of

roles and how each role is connected to the set of available features.

RolX then generates a model able to convert a ReFeX feature vector

associated to each node at each time step to a much smaller vector

representing the role mixture for that node at that time-step. The

RolX assumption is that, while behaviors are complex to describe,

the absolute numbers of such behaviors are comparatively low. If

true, it should be possible to achieve a significative dimensionality

reduction for the feature space without compromising the richness

of the ReFeX results, as shown in Figure 5.

3. Results

Our understanding of infections, transmissions,

treatments, and testing has evolved significantly over

the course of the COVID-19 pandemic. Roles and

role transitions captured in the dynamics of the

TagGraph provide an autonomous mechanism to reveal

understandable patterns in knowledge evolution to

facilitate navigation of a huge number of related papers.

Such a mechanism can help model the evolution of

science more broadly, for instance, in for the next

disease outbreak.
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3.1. Role interpretations

An initial goal of our approach is the interpretation of the

meanings of roles.While roles are extracted via matrix factorization

applied to the feature matrix produced by ReFeX, they are

difficult to interpret due to ReFeX’s automatic extraction which

uses an optimization objective function. Nevertheless, to certain

extent, it is possible to map them to some well-known graph

and node structure information, like the well-known and easy-to-

understand node measures of PageRank, betweenness centrality,

closeness centrality, degree, and the local cluster coefficient. The

PageRank algorithm measures the importance of each node within

the graph based on the number of incoming relationships and

the importance of the corresponding source nodes. Betweenness

centrality detects the amount of influence a node has over the

flow of information in a graph. Closeness centrality detects

nodes that can spread information very efficiently through a

graph. The degree centrality algorithm finds popular nodes

within a graph as it measures the number of incoming or

outgoing (or both) relationships from a node, depending on the

orientation of a relationship projection. Last, the local clustering

coefficient of a node describes the likelihood that its neighbors are

also connected.

These well-known measures are computed for each node in

each snapshot. We used these results to build five matrixes, one

for each role, where every row represents a node-snapshot pair.

On the columns of these matrixes, we put the node relevance,

i.e., the contribution of the matrix’s role for the node and the

snapshot of the row, and all the measures mentioned above. We

used these matrixes to compute the pairwise correlation between

the node relevance and every measure over all the node-snapshot

rows. The results are presented in Table 1, with correlation values

ranging between −1 and 1, where 1 means that the measure and

the role relevance are directly correlated, −1 means that there

is an inverse correlation, and 0 means no statistical correlation

exists between the measure and the role relevance. Note that

while we focused on these set of measures, it may be possible

to extract additional measures that might help better define

the roles.

From Table 1, we can interpret some of the roles based on

the correlation value. For example, Role 0 and Role 2 are directly

related to all the measures we extracted, indicating that roles 0 and

2 identify nodes that are central in the network (related to the high

value of betweenness and closeness centrality) and they are densely

connected to other important nodes (related to the high correlation

with PageRank and degree). Hence, these represent very important

tags in that specific period. On the other hand, role 1 appears to be

unrelated to any of the measures we computed.When analyzing the

results of these tags, we noticed that they reflect noisy tags, i.e., tags

that randomly appear in the network with no specific relevance of

any type. The matrix factorization collected them under the same

role 1. It is possible that uncomputed minor measures may better

define this role. Role 3 is indirectly connected to PageRank, which

means that the nodes having a high value of role 3 are not connected

to any relevant node, and the indirect correlation with degree and

closeness means that they are barely connected to anything. Thus,

role 3 represents nodes that are on the edge of the co-occurrence

TABLE 1 Roles-graph measures and correlations.

Role Graph Measure Correlation

Role 0 PageRank 0.843

Betweenness 0.616

Closeness 0.861

Local Clustering −0.410

Degree 0.866

Role 1 PageRank 0.245

Betweenness 0.061

Centrality −0.117

Local Clustering 0.168

Degree 0.286

Role 2 PageRank 0.691

Betweenness 0.340

Closeness 0.637

Local Clustering −0.823

Degree 0.808

Role 3 PageRank −0.607

Betweenness 0.057

Closeness −0.323

Local Clustering 0.350

Degree −0.694

Role 4 PageRank −0.089

Betweenness −0.054

Closeness −0.389

Local Clustering −0.297

Degree −0.072

network, and, in many cases, completely disconnected from it. Role

4 is similar to role 3, but since it is not as indirectly connected

to degree value and PageRank as role 3, these nodes are not as

isolated and are slightly connected to the rest of the network. These

connections are not necessarily small, so these nodes could be

connected to many of the nodes and somemay be important. These

relationships are depicted in Figure 6.

3.2. Story telling from temporal analysis of
TagGraphs

The initial analysis of the RolX results consisted of analyzing

role evolutions through various snapshots for each of the tags since

role interpretation is fundamental for understanding the dynamic

graph evolution embodied in TagGraphs. The purpose of this

inspection is to reveal patterns (similar behaviors in the transitions)

and signals (clearly readable spikes or strong transitions among two

or more snapshots) in the role’s relevance bar chart. This analysis

aims not only at identifying individual spikes or falls but also at
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FIGURE 6

An example of a graph containing nodes with di�erent role distribution. Role 0 and Role 1 nodes are strongly connected and central, Role 3 nodes

are almost disconnected from the central nodes, and Role 4 nodes are structured such that they are peripheral but connected.

revealing the speed of changes and similar types of patterns as

shown in Figure 7. That is, we can clearly identify that “machine

learning” has a steady progression in role 2 and role 0 over time

as represented by the blue line. Another interesting tag, revealed

by the analysis of roles evolution, is “hydroxychloroquine,” a drug

used to treat certain autoimmune diseases that were shown to have

antiviral activity against SARS-CoV-2 in specific cell lines although

clinical trials showed no antiviral effect of hydroxychloroquine in

people. Hence, after the initial enthusiasm, this drug has not been

used as a SARS-CoV-2 antiviral. The related behavior is evident

also in the role bar chart; the initial spike in roles 0 and 2 grows

and then degrades over time. Despite some fluctuation, roles 0 and

2 end lower while role 3 increases, locating these studies at the

margin of clinical research. This type of analysis focuses on single

tags and, thus, could be used to identify patterns that can be then

used to search for commonalities in other tags. While this approach

is powerful since it can be easily automated once the signals have

been identified, it suffers in the definition of a “story” around the

data that is easier to understand and more stable across different

data sources.

The second type of analysis facilitated by the TagGraph

structure combines neighborhood exploration with the roles

extracted by RolX. Assisted by the role interpretations described

above, we can generate more human-readable results. The analysis

starts from a few tags that represent the center, i.e., the most

relevant nodes in the co-occurrence network. By utilizing signal

analysis, certain tags exhibit a clear and strong signal for role

0 and role 2, which remains consistent throughout the entire

history sampling, including “SARS-CoV-2”, “COVID-19”, and

“Coronavirus”. Their roles transition bar charts are represented in

Figure 8. These tags are clearly key terms that represent the focus

of the research articles we processed. Notably, the RolX transitions

inspection reveals them autonomously, validating, once more, the

hypothesis that the adopted approach can reveal such patterns.

In our case, “SARS-CoV-2” represents a cluster of tags related

to the virus, “COVID-19” contains the disease-related tags, and

“Coronavirus” encapsulates the terms connected to the family of

viruses related to SARS-CoV-2. The neighborhood analysis revolves

around starting from the most significant tags for our target

analysis, namely the three tags mentioned above, and identifying

the most relevant tags connected to them. This search is performed

for each snapshot, and the results are compared to extrapolate how

understanding has evolved over time. Defining the most relevant

tags poses a primary challenge. In this stage of analysis, we focused

on examining each role in isolation and considered only the directly

connected nodes, postponing the analysis of the egonet to a future
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FIGURE 7

Role evolution comparison: the “machine learning” keyword quickly transitions from a marginal role to a relatively central one between May and

June 2020, with a consistently positive trend that makes it a highly relevant keyword. On the other hand, the “Hydroxychloroquine” keyword displays

fluctuating patterns that reflect the scientific community’s interest in this molecule, with periods of higher and lower interest.

iteration of our work. Specifically, node relevance is computed

using the following formula:

node_relevance(start_node, end_node, role_name, t)

= relationship_weight(start_node, end_node,

t)∗role_relevance(end_node, role_name, t)

where:

• start_node is the center of the analysis, i.e., “SARS-CoV-2”,

“COVID-19”, or “Coronavirus”.

• end_node is on the nodes belonging to neighbour(start_node,

t), or all tags connected in the co-occurrent network of the

time frame t.

• relationship_weight is the weight of the relationship

connecting start_node and end_node in the co-occurrent

network at time frame, t. This value is computed using the

association strength formula described in Section 2.4.2.

• role_relevance is the value of the relevance for the specified

role_name at time frame, t.

This formula takes into account not only the role relevance,

which remains consistent regardless of the starting node, but also

the relationship that nodes have with the central term used for

the analysis. We computed the node relevance for all neighbors,

considering each role and time frame. The resulting relevancies

were then ranked in descending order, selecting the top 20

nodes. For example, Table 2 shows the results for “SARS-CoV-2”

across 3 months. In role 0, the same key terms appear at the top
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FIGURE 8

Temporal trend of central keys characterized by high values associated with Role 0 and Role 2.

almost in all the time frames. Role 2 may also reveal relevant

aspects related to the virus. Role 2 shows great stability, which

means that the terms here are constantly relevant during the

evolution of researchers understanding. The top 20 list includes

frequently occurring terms such as ACE2, serology (once again),

MERS-CoV, spike protein, and transmission. ACE2, for instance,

functions as the cellular receptor for SARS-CoV-2, while spike

protein serves as the viral attachment protein. The analysis

of tags in role 2 sheds light on the primary topics associated

with infection and transmission mechanisms, testing, and

treatments. These results, extracted without human refinement,

are highly relevant and provide valuable insights into the

research domain.

Role 4, another significant role in capturing relevant patterns,

exhibits characteristics that are almost diametrically opposite to

those of role 2. It can be described as a peninsula within the

network structure, consisting of nodes located at the edges of the

network (with low betweenness centrality) and connected to less

relevant nodes (due to lower page rank values). In the list of

the 20 most frequent elements, we find terms such as TMPRSS2,

viral load, RT-PCR, nucleocapsid protein, and ORF8. For instance,

nucleocapsid protein has been a target for serologic testing and

has been considered at various stages in the development of a

vaccine. It transitions across roles 0, 2, and 4, indicating changes

in its relevance and the corresponding research focus over time,

depending on experimental results and priorities. While nodes

representing tags on these significant peninsulas are interesting,

the true value lies in terms that consistently transition from

role 4 to role 2, or even better, role 0. In an ideal scenario,

we would observe terms that transition from consistently being

in role 4, on the periphery of research, to consistently being

in role 2, indicating their increased importance. This pattern

signifies that certain approaches or techniques have proven their

value and become dominant in the field. Conversely, when a tag

transitions from roles 0 and 2 to role 4, or worse, to roles 1

or 3, it suggests that the associated research has been discarded

or deprioritized. To conduct this analysis in a straightforward

manner, we considered terms that consistently appear in role 4

(with a frequency higher than 2) and in at least one other role,

specifically role 0 or 2. Table 3 presents some of these terms along
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TABLE 2 Top 20 SARS-CoV-2 neighbors’ tags for each role in di�erent

snapshots.

Role 0

2020-04 2020-05 2020-06 2020-07

COVID-19 COVID-19 COVID-19 COVID-19

Coronavirus Coronavirus Coronavirus Coronavirus

RNA-

dependent

RNA

polymerase

ACE2 Pandemic Zoonoses

Pandemic Viruses Serology Respiratory

infections

2019-nCoV Hydroxychloroquine Inflammation Viruses

One Health Pandemic ACE2 Pandemic

Ebola Remdesivir Public health Inflammation

Epidemiology Favipiravir Screening Pneumonia

Remdesivir Tocilizumab Epidemiology Serology

Pneumonia MERS-CoV Spain Temperature

Public health Respiratory

infections

Respiratory

infections

Spike protein

Antivirals Pneumonia Children Transmission

Viruses Convalescent

plasma

2019-nCoV Dysgeusia

Respiratory

infections

Baricitinib Viruses Hyposmia

Molecular

docking

Lopinavir MERS-CoV Humidity

Outbreak Interferon Spike protein Olfaction

Infectious

disease

Epidemiology Vaccine Olfactory

dysfunction

Ebola virus

(EBOV)

ARDS Hydroxychloroquine ELISA

Infection Public health Transmission PPE

MERS-CoV Angiotensin-

converting enzyme

2

Basic reproduction

number

Anosmia

Role 2

2020-04 2020-05 2020-06 2020-07

2019-nCoV ACE2 MERS-CoV ACE2

Ebola 2019-nCoV Serology Zoonoses

ACE2 MERS-CoV 2019-nCoV 2019-nCoV

Remdesivir RAAS ACE2 MERS-CoV

MERS-CoV TMPRSS2 Screening PCR

Bats Lopinavir Transmission Evolution

Homology

modeling

Spike protein Epidemiology Obesity

Antiviral Favipiravir Inflammation Inflammation

One Health Serology Pneumonia Transmission

Drug

repurposing

Zoonoses Children Viruses

Screening Baricitinib Remdesivir Gene expression

(Continued)

TABLE 2 (Continued)

Role 0

2020-04 2020-05 2020-06 2020-07

Diagnosis Hydroxychloroquine Vaccine Pneumonia

Molecular

docking

Remdesivir Treatment Screening

Pathogenesis Nucleocapsid

protein

Fever Serology

Serology Children Animal models Data sharing

Spike

protein

Clinical trials TMPRSS2 Innate

immunity

Wuhan China CRISPR Respiratory

infections

Pneumonia Inflammation Anosmia Angiotensin-

converting

enzyme 2

Hydroxy

chloroquine

Infection Case fatality rate China

Treatment Wuhan drug repurposing Outbreak

Role 4

2020-04 2020-05 2020-06 2020-07

Viral load IgG Drug repurposing Metabolomics

Tocilizumab Viral load Saliva Saliva

Remdesivir Morbidity TMPRSS2 Antigen

ACE2

receptor

Receptor binding

domain

Liver injury Molecular

dynamics

Molecular

dynamics

TMPRSS2 Animal models Nanomedicine

ACE2 Pathogenesis School Immuno

informatics

RT-PCR Codon usage Aspergillosis TMPRSS2

ARB High-flow nasal

cannula

Newborn Immunity

Molecular

docking

Nucleocapsid

protein

Viral load qRT-PCR

Antibodies COVID-19 nasopharyngeal

swab

molecular

docking

Pathogenesis RT-PCR Transmission

potential

Swab

Homology

modeling

Neurosurgery Co-infection Main protease

Antiviral Baricitinib Anosmia Homology

modeling

Therapeutics Decontamination Dengue Viral load

Myocardial

injury

Coagulopathy Occupational health Transplantation

Ground-

glass

opacities

Spike protein Case fatality rate Challenges

Anti-

inflammatory

Hepatitis C virus Main protease Greece

Healthcare

workers

ICU Smell Cardiac

involvement

(Continued)
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TABLE 2 (Continued)

Role 0

2020-04 2020-05 2020-06 2020-07

CT scan MERS-CoV ORF8 Pulmonary

embolism (pe)

IL-6 N95 respirator Survival Vertical

transmission

TABLE 3 Some tags that consistently appear in role 4 and later in role 0 or

role 2, indicating a change in relevancy of the tag over time.

Tag Comment

Immunity Non-specific immunity to fight infection. First line

of defense against pathogens.

Main protease Viral protease (3CLpro) required for processing viral

proteins involved in virus replication.

MERS-CoV Middle East Respiratory Syndrome CoV.

Sarbecovirus related to SARS CoV-1 and SARS

CoV-2.

Molecular docking Process of computationally inserting small

molecules into known structures of proteins.

Nucleocapsid protein Viral protein that coats the viral genome to protect

the nucleic acid.

RBD Receptor binding domain.∼400 amino acid

segment of SARS CoV-2 Spike responsible for

binding to ACE2.

Remdesivir Direct-acting antiviral originally developed for

Ebola virus that targets the RdRp.

RNA-dependent RNA

polymerase (RdRp)

RNA-dependent RNA polymerase. Viral RNA

polymerase essential for viral transcription and

genome replication. Druggable target.

RT-PCR Method of amplifying DNA used for detection of

viral genomes. RT denotes use of reverse

transcriptase to convert viral RNA to DNA.

Seroprevalence Prevalence of people positive for SARS CoV-2

serology.

with a brief explanation of their role in the research surrounding

the virus.

Finally, it is intriguing to observe that conducting the same

analysis on other tags provides a similar narrative but from different

perspectives. Table 4 presents the most frequent tags resulting

from the neighborhood analysis for COVID-19, which specifically

represents the disease resulting from the infection of the SARS-

CoV-2 virus. Role 0 and 2 shed light on aspects such as public and

mental health, lockdownmeasures, and healthcare workers. On the

other hand, role 4 reveals tags related to computed tomography

(CT) scans, pneumothorax, and autopsy. Since the analysis is

now centered on COVID-19, which represents the disease rather

than the virus itself, the focus shifts toward treatments and their

impact on individuals and public health, including mental health.

Therefore, our TagGraph approach can support multiple narratives

depending on the focal point of the analysis. Interestingly, these

results align with most of the topics and questions that emerged

from our survey of medical professionals, which will be discussed

in the subsequent section.

3.3. Establishing the critical need for KGs in
pandemic response: a qualitative analysis
of clinicians’ resources and knowledge
gathering of COVID-19

To shed light on the critical needs that our approach

aims to address, we conducted a qualitative study involving

clinicians and researchers. The objective of this study was

to gain a deeper understanding of the key information that

could have guided and improved their early comprehension

of COVID-19. Through this survey, we identified significant

scientific “landmarks” that served as the foundation for building,

testing, and validating our algorithms. By comprehending the

cognitive models employed by the broader scientific community,

we were better equipped to translate them into computational

models using publicly available data. This, in turn, provides

a platform for the rapid identification of coherent patterns

within the scientific literature, thereby enhancing our ability

to detect and respond to future pandemics and infectious

outbreaks effectively.

Twenty-six clinicians (self-identifying as a physician, nurse,

or other health professional) and research scientists (Ph.D. level)

consented to participate in our survey (USF IRB Study #01211).

Participants were recruited through e-mail, online message boards,

and the web. Most survey respondents currently practice or

work in the United States (73%), with others in Thailand

(8%), Bangladesh (8%), the United Kingdom of Great Britain

and Northern Ireland (4%), and locations undisclosed (7%).

Participants were informed at the beginning of the survey that

they could close their browser to discontinue or withdraw without

penalty at any time. They were provided details about the survey,

including its purpose to gather their perspectives on pieces of

information that would have been helpful in combating the virus

if known earlier, sources of information utilized by the scientific

community, cognitive maps used by scientists to connect pieces

of information, unresolved questions surrounding COVID-19, and

seminal research findings on COVID-19. Our survey asked five

open-response questions, including:

1. What do you know now that you wish you knew when

COVID-19 first became a pandemic four months ago? For

example, risk factors, spreading paths?

2. What sources of knowledge do you usually go to get your

information on COVID-19? For example, clinicians, news,

PUBMED, etc.?

3. How would you connect the different pieces of information

together, or what components of the data would you have

liked to have connected but wasn’t connected before (even

from multiple datasets)? For example, drug to molecular

target, risk factors to symptom severity, geographic location

to symptomology?

4. What do you consider to be the most critical unknown

in COVID-19 that remains unresolved given the

current research?

5. Which piece of research (please provide citation or PMID)

do you consider to be seminal or “game changing” in shaping

our current understanding of the virus? Please also provide
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TABLE 4 Frequency of the top 10 COVID-19 neighbors’ tags across all the snapshots.

Role 0 Role 2 Role 4

Tag Frequency Tag Frequency Tag Frequency

SARS-CoV-2 21 Mortality 19 CT scan 5

Coronavirus 20 Social distancing 17 Response 4

Pandemic 20 Healthcare workers 17 PTSD 3

Public health 20 Lockdown 17 Pneumothorax 3

Inflammation 19 Anxiety 16 CT 3

Respiratory infections 15 Psychological distress 15 Practice 3

epidemiology 14 Mental health 14 Autopsy 3

Mental health 14 Pneumonia 13 Hematology (incl blood

transfusion)

3

Viruses 13 ACE2 13 Anosmia 3

Telemedicine 12 Stress 12 Radiotherapy 2

the conceptual/empirical outcome that makes this research

critical, for example, treatments, vaccines, pathways.

Three researchers from the project team coded the participant

responses for questions 1−4 to identify prominent, recurring

themes (Table 5). This process, which is a part of thematic analysis

in qualitative research, represents the thorough evaluation of

each participant’s response to provide a word or phrase, called a

code, that succinctly captures the core insight or meaning of that

response. To consolidate the results of the survey, we performed

an analysis on the concordance of the coding of responses by the

three raters. The raters had a bi-rater agreement of 0.72, showing

that two out of three raters agreed 72% of the time with the codes

individually assigned across all participant responses. However, the

consensus score across the three raters was poor at 32%. This

lower level of agreement can be attributed to the larger number

of codes available for selection (70) and the ability of the raters to

assign a single response with up to six codes, creating more room

for disagreement.

High-level insights from our survey show that modes of

transmission, particularly the infectivity of asymptomatic persons,

were particularly concerning. Over half (67%) of respondents

referred to the spread of the virus to some degree as information

they wish they knew at the onset of the pandemic. One participant

stated “The role of asymptomatic transmission, the full role of

respiratory transmission” as information they wish knew. Similarly,

participant 18 stated “Risk factors, transmission of virus by people

in different age groups, importance of wearing masks to reduce

transmission” as desired information at the onset of the virus.

Others expressed concern regarding governmental responses to this

and prior pandemics (e.g., its impact on job opportunities and

the robustness of national policies), in addition to health-related

vulnerabilities due to age.

Over half (54%) of respondents indicated PubMed, news

sources (e.g., New York Times), unspecified peer-reviewed

academic journals, other clinicians, Infectious Diseases Society

of America (IDSA), and the United States Centers for Disease

Control and Prevention (CDC) as major sources of information

on COVID-19. Fewer mentioned sources included virtual seminars

and meetings, sites which report local COVID-19 statistics, The

New England Journal of Medicine (NEJM), and The Journal of the

American Medical Association (JAMA). We note that this survey

was conducted prior to the KG generation and analysis to both

guide and verify the outcomes of these analyses; as such, PubMed

from CORD-19 was used in the KG generation. At the time of the

survey, most respondents had yet to connect information found

at these sources, relying on publicly available data to correlate

geographical location with virus spread, vulnerable populations,

symptomology, and symptom severity. Many were curious about

the connections between “risk factors for symptom severity and

levels of public adherence to personal protective equipment use

protocols,” and patient characteristics with positive or negative

responses to treatments. Others noted a desire for improved

coordination between countries, zip codes, and clinical trials,

and felt public health interventions and preventative measures

(e.g., vaccines), long-term immunity, data on prior infections,

symptom onset and severity, and long-term complications as

critical unknowns.

Nearly a third (30%) of respondents had yet to find what

they would consider a seminal source of data that could shape

our understanding of the virus. We refer the reader to sources

that were provided at the following references: Sheahan et al.

(2017), Andersen et al. (2020), Baum et al. (2020), Davies et al.

(2020), The RECOVERY Collaborative Group (2020), He et al.

(2020), Mehta et al. (2020), Nishiura et al. (2020), Shang et al.

(2020), Wrapp et al. (2020), and Zost et al. (2020). We note that

no sources were duplicated among responses. In summary, these

results, such as a heavy reliance on news for data gathering and

the lack of a seminal reference source that could have propelled

scientific discovery regarding COVID-19, highlight a critical need

for two important resources—an automated methodology for

identifying emerging trends and knowledge concerning rapidly

developing global diseases, and expedited consolidation and release

of information in an easily digestible format.
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TABLE 5 Codes associated with survey questions one through four with their total frequency (in percentage) across all responses per question

according to three raters.

Q1: What do you know
now that you wish you
knew when COVID-19 first
became a pandemic 4
months ago?

Q2: What sources of
knowledge do you
usually go to get
your information on
COVID-19?

Q3: How would you connect
di�erent pieces of information
together, or what components
of the data would you have
liked to have connected?

Q4: What do you consider to
be the most critical unknown
in COVID-19 that remains
unresolved given the current
research?

Transmission (20.4) News (14.9) Risk factors-severity (19.3) Immunity (22.2)

Asymptomatic spread (15.7) PUBMED (12.0) Geography-infections (8.4) Prevention (12.2)

PPE (13.9) Broad (8.0) Self (the participant would connect

information on their own, using their own

expertise) (7.2)

Successful treatments (8.9)

Risk factors (11.1) CDC (6.9) Geography-symptoms (6.0) Reinfection severity (6.7)

Pandemic response (8.3) Clinicians (6.9) Clinical-virological (4.8) Symptom effects (6.7)

Treatments (6.5) NEJM (6.3) Patient history-treatment response (4.8) Long-term effects (6.7)

Viral dynamics (5.6) State DOH (6.3) Transmission-mortality (4.8) Detailed pathophysiology (6.7)

Pre-symptomatic spread (4.6) Colleagues (5.7) Risk factors-demographics (3.6) Infectious period (5.6)

Social distancing (4.6) IDSA (5.1) Social status-severity (3.6) Government strategy (5.6)

Coagulopathy (3.7) Google (5.1) Hospitalizations-cases (3.6) Infection rate (4.4)

Environmental susceptibility (3.7) Universities (4.6) Tests-positivity (3.6) Symptom onset (3.3)

Antiviral susceptibility (1.9) JAMA Network (3.4) Behaviors-transmission (3.6) Official transmission (3.3)

SHEA (3.4) Transmission-illness (3.6) Testing accuracy (3.3)

Lancet (2.9) Viral structure-transmission (3.6) Asymptomatic infections (2.2)

WHO (1.7) Various data sources (3.6) cause of infection severity (2.2)

No pre-prints (1.7) Geography-mortality (2.4)

MMWR (1.1) Social status-morality (2.4)

Social media (1.1) Environment-transmission (2.4)

MedScape (1.1) Research data sharing (2.4)

Promed (1.1) Clinical data sharing (2.4)

Pre-prints (0.6) Primary data access (2.4)

Countermeasures -transmission (1.2)

4. Discussion

This article presents our temporal analysis conducted on the

TagGraph, a knowledge graph generated by incorporating author-

provided tags or keywords from scholarly articles. The purpose

of this analysis is to facilitate temporal graph analysis for the

exploration and comprehension of textual documents related to

diseases. It is important to note that the TagGraph represents only a

small portion of a larger knowledge graph that we have constructed

for future investigations.

Our study highlights the significance of dynamic graph analysis,

which provides roles and relevancies, and neighborhood analysis,

which involves considerations of frequency and intersections.

These analytical approaches enable the identification of patterns

that can be easily described and understood. The primary

achievement of our efforts lies in the ability to combine multiple

complex analyses on a temporal knowledge graph and provide

evidence and patterns that can be articulated in natural language,

making them accessible to a wider audience. Furthermore, since the

results can be generated without human intervention, the proposed

approach can be automated and applied to various research topics

and different disease outbreaks.

While our initial results are promising, there are numerous

potential research avenues to explore. From an analysis perspective,

there is room for enhancing the tags cleanup and merging

process by testing alternative clustering algorithms and integrating

ontologies, taxonomies, and dictionaries. These techniques, when

combined, can result in a more refined set of initial tags, merging

synonyms appropriately, and removing noisy and irrelevant tags.

Furthermore, the proposed approach can be extended to other

areas of the knowledge graph we have constructed, such as

named entities that are automatically recognized. By applying the

same methodology to these entities, we can uncover additional

insights and patterns. Additionally, there are opportunities to

explore alternative techniques for determining the number of

roles and for factorization. By employing different approaches,

we can better isolate interconnected patterns that would facilitate

a clearer understanding of each role within the context of the
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tag knowledge graph, enhancing the communicative power of the

results. Moreover, it would be worthwhile to investigate a deep

learning-based approach to temporal graph analysis, as suggested

by Rossi et al. (2020). Leveraging the capabilities of deep learning

models could provide further advancements in understanding

temporal dynamics and patterns within the knowledge graph.

From a data source point of view, there is an entire set

of unexplored sources related to filed patents describing, for

example, vaccines or procedures, that are not captured in our

results. Other relevant sources are user-generated content in

social networks or blog posts (Twitter, Facebook, Tumblr, etc.),

news, country regulations and guidelines, public WHO, and other

healthcare-related communication. These sources can provide

other perspectives on the disease outbreak; patents can reveal

the most valuable research results, public communication and

country regulations can provide information about treatments best

practices, or behavior, and social networks can provide people

sentiment and general understanding. These research directions

have the potential to enhance the effectiveness and interpretability

of our approach, expanding its applicability to a broader range of

domains and further improving the communication of valuable

insights derived from temporal graph analysis.
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