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Diabetic nephropathy (DN) and diabetic retinopathy (DR) are the most serious

and common diabetes-associated complications. DN and DR are all highly

prevalent and dangerous global diseases, but the underlying mechanism

remains to be elucidated. Ferroptosis, a relatively recently described type of

cell death, has been confirmed to be involved in the occurrence and

development of various diabetic complications. The disturbance of cellular

iron metabolism directly triggers ferroptosis, and abnormal iron metabolism is

closely related to diabetes. However, the molecular mechanism underlying the

role of ferroptosis in DN and DR is still unclear, and needs further study. In this

review article, we summarize and evaluate the mechanism of ferroptosis and its

role and progress in DN and DR, it provides new ideas for the diagnosis and

treatment of DN and DR.

KEYWORDS
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1 Introduction

Diabetes is the most common metabolic disorder in the world, and its incidence rate

has risen sharply. The International Diabetes Federation estimates that 537 million people

worldwide had diabetesin 2021, a number that is expected to rise to 783 million by 2045 (1).

Diabetic vascular complications are one of the main causes of death and disability (2). The

microvascular damage due to hyperglycemia can lead to diabetic microvascular

complications, including diabetic nephropathy (DN) and diabetic retinopathy (DR). DN

is the leading cause of chronic kidney failure and end-stage kidney disease. Oxidative stress
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induced by chronic hyperglycemia is considered a key mechanistic

factor in the development of DN. DN is characterized by persistent

albuminuria, elevated arterial blood pressure, and decreased

glomerular filtration rate (3). Renal function in patients with

diabetes frequently worsens in severity over time, and eventually

to renal failure. The pathological changes are similar since both DN

and DR have microvascular changes. Hyperglycaemia induces

retinal oxidative stress, which plays an important role in DR (4).

DR is a leading cause of progressive vision loss and blindness (5).

The current research hotspots mainly focus on the exploration of

the pathological mechanism of DN and DR.

Ferroptosis, an iron-dependent lipid peroxidation-driven new

form of regulated cell death, is different from other types of cell death

such as apoptosis, necrosis, autophagy, and pyroptosis (Table 1) (6,

7). Iron deposition leads to the formation of reactive oxygen species

(ROS) and oxidative stress through the Fenton reaction, further

promoting lipid peroxidation, a key factor in ferroptosis (8).

Emerging evidence suggests a strong link between diabetic

complications and ferroptosis. Hyperglycemia leads to the

overproduction of ROS and induces oxidative stress in various

organs of diabetic patients (9). High glucose could cause an

overload of iron, and iron dysregulation induces the production of

ROS and promotes oxidative stress, which leads to ferroptosis finally

(10). Studies have shown that high ROS induces oxidative stress in

kidney and retinal cells resulting in cell death (11, 12). This means

that targeting ferroptosis may be an effective strategy to treat related

DN and DR. This review summarized the mechanisms of ferroptosis

and discussed the role of ferroptosis in DN and DR. In addition, we

elaborated recent data about the novel actors of some “conventional”

drugs or natural compounds as ferroptosis inducers or inhibitors to

find common molecular mechanisms and therapeutic targets in DN

and DR. It is of great significance to clarify the pathological

mechanism of diabetic microvascular complications.
Frontiers in Endocrinology 02
2 Mechanisms of ferroptosis

Ferroptosis is a newly described type of iron-dependent

programmed cell death. The basic principle is that divalent iron

or ester oxygenase catalyzes lipid peroxidation of highly expressed

unsaturated fatty acids on the cell membrane, which induces cell

death (13). In addition to increased levels of peroxidation, it also

reduces the decrease of glutathione peroxidase 4 (GPX4), the core

enzyme regulating the antioxidant system (glutathione system, GSH

system) (14). Ferroptosis is regulated by multiple signaling

pathways (Figure 1) by the following mechanisms.
2.1 GPX4-dependent ferroptosis
defense pathway

Currently, the known upstream pathways of ferroptosis

ultimately point directly or indirectly to glutathione peroxides

(GPXs), and therefore, affect the activity of GPXs by regulating

GPX4, which is one of the most important ferroptosis defense

pathways available (15). Among them, the GSH/GPX4 pathway is

the main regulatory mechanism of ferroptosis, such as in the

regulation of GPX4, inhibition of the cystine/glutamate reverse

transporter system (System Xc-), glutamine metabolic pathway,

and p53 regulatory axis (16).

GPX4 is an inhibitor of lipid peroxidation that degrades small

molecule peroxides and relatively complex lipid peroxides (17).

There are many members of the GPXs, including GPX1-GPX8, of

which GPX4 plays an important role in ferroptosis. Yang et al.

found that a decrease in GSH led to a decrease in GPX activity (18).

GPX catalyzes hydrogen peroxide and degradation of hydrogen

peroxide and inhibits the production of lipid reactive oxygen

species, for which glutathione is an essential cofactor. The
TABLE 1 Comparison of several common types of cell death.

Cell death Ferroptosis Apoptosis Autophagy Necroptosis Pyroptosis

Inducing
factor

Accumulation of iron ions. Gene regulation under
normal physiological
regulation.

Nutrient deficiency or hormonal
induction.

Pathological factors or
injuries are passively
triggered.

Inflammation-
induced
activation of
promoter and
proteolytic
activation of
GSDMD.

Morphological
features

Small mitochondria, cristae
reduction, membrane density
increase, mitochondrial
membrane rupture, but normal
nucleus.

Nuclear rupture, plasma
membrane blebbing,
cell shrinkage,
formation of apoptotic
bodies, and
phagocytosis of
neighboring cells.

Accumulation of autophagic
vacuoles, vacuolization of the
cytoplasm, and absence of
chromatin condensation.

Loss of plasma membrane
integrity and release of
cytoplasmic contents,
swelling of cytoplasm and
organelles, and
condensation of
chromosomes.

Plasma
membrane
disruption and
release of cellular
contents and
proinflammatory
cytokines.

Detection
mode

Cell viability assay: CCK-8,
intracellular iron level, reactive
oxygen species (ROS) level, and
changes in death-related factors
such as COX-2, ACSL4, PTGS2,
NOX1, GPX4 and FTH1.

Mitochondrial
membrane potential
detection, Annexin V/
PI, TUNEL assay,
apoptosis-related
pathways, and
apoptosis-related
proteins.

The levels of autophagy-related
proteins such as Atg5, Atg7,
BeclinI, LC3, and P62 were
detected, and autophagosome
fluorescent single/double labeling
method and lysosomal function
were detected.

Transmission electron
microscope or scanning
electron microscope
observation, Annexin V/
PI.

Gasdermin D,
Caspase-1,
Caspase-4 IL-1b,
IL-18 and other
indicators
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classical ferroptosis control axis requires cystine reduction to

cysteine, GSH and/or thioredoxin reductase 1(TXNRD1)-

dependent reduction of cystine to cysteine, GSH biosynthesis, and

GPX4-mediated reduction of phospholipid hydroperoxide (PL-

OOH) to its corresponding alcohol phospholipid hydroxide (PL-

OH) using electrons provided by NADPH/H+, oxidized glutathione

(GSSG) is recovered by glutathione disulfide reductase (GSR), GSH

synthesis is inseparable from glutamine (Gln) and intracellular

glutamine uptake is mainly dependent on the involvement of

SLC1A5/SLC38A1 (19).

System Xc- is a heterodimer composed of SLC7A11 and

SLC3A2, of which SLC7A11 is the main subunit that exerts its

function (20). Downregulation of SLC7A11 can indirectly inhibit

GPX4 activity by inhibiting the cysteine metabolic pathway, leading

to reduced intracellular cystine levels and depletion of GSH

biosynthesis, which in turn leads to lipid peroxide accumulation

and ultimately induces cell ferroptosis (21). In addition, Erastin, a

classical ferroptosis promoter, can target and inhibit SLC7A11 to

induce ferroptosis (22). Related studies have shown that the

ferroptosis process induced by sulfasalazine is also associated with

inhibition of SLC7A11 (23). In addition, SLC7A11 is also associated

with the p53 gene: p53 downregulates SLC7A11 expression and

inhibits Systemic Xc- uptake of cysteine, leading to decreased

cysteine-dependent glutathione peroxidase activity, reduced
Frontiers in Endocrinology 03
cellular antioxidant capacity, and increased lipid reactive oxygen

species, resulting in cellular iron sagging (16). Inhibition of

Systemic Xc- would lead to compensatory transcriptional

upregulation of SLC7A11, preventing cystine uptake and thus

leading to ferroptosis (24).

Cystine is an indispensable component necessary for the

biosynthesis of GSH, a process catalyzed by glutamate-cysteine

ligase and glutathione synthase, and a decrease in cellular

antioxidant capacity (25). Glutathione is an essential cofactor for

the function of GPXs, which results in a decrease in GPX activity.

During glutamate-induced excitotoxic cell death, glutamate can

initiate two pathways, one for calcium influx and the other for

inhibition of Systemic Xc–dependent cysteine uptake pathway (24).

Calcium chelators have no inhibitory effect on Erastin-induced

ferroptosis, whereas excessive glutamate levels impede the function

of Systemic Xc- and induce ferroptosis. Reduction of Systemic Xc-

activity decreases cystine uptake; therefore, reduced cystine uptake

leads to reduced GSH and eventually GPX4 activity, decreased

cellular resistance to peroxidation, accumulation of lipid reactive

oxygen species, and oxidative cell death (26).

p53 is an important tumor suppressor gene that mediates cell

cycle inhibition, senescence, and apoptosis and plays an important

role in tumorigenesis and progression (27). Recently, it has been

shown that activated p53 can bind to the promoter region of the
FIGURE 1

Occurrence and protective factors of Ferroptosis. Cystine and Glu are retroactively transported via the SLC7A11/SLC3A2 complex (p53, Erastin,
Sulfasalazine, etc., can inhibit the complex). The cystine that enters the cell is transformed into cysteine by GSH biosynthesis using the electrons
supplied by NADPH/H+, and oxidized glutathione (GSSG) is reduced by glutathione disulfide reductase (GSR). They finally enhance the activity of
glutathione peroxidase 4 (GPX4). DHODH and FSP1 inhibit the occurrence of ferroptosis through CoQ/CoQH2, and Ac-CoA generates CoQ through
a series of biosynthesis reactions. NADPH, as a hydrogen donor, assists FSP1 in reducing CoQ to CoQH2, while DHODH performs this process via
FMNH2. CoQH2, in a reduced state, inhibits ferroptosis. Ac-CoA in mitochondria is catalyzed by ACC to produce PUFA, and PUFA is further
catalyzed by ACSL4 to form PUFA-CoA, which is then activated by LPCAT3 as PUFA-PL, affecting the transmembrane properties of polyunsaturated
fatty acids and thus promoting ferroptosis. Ferric ions are obtained by cells mainly through Tf/TfR1 protein transport and are acidified by endocytic
spheroids and released from FPN into the cytoplasm as ferric ions. Excess iron further produces ROS through the Fenton reaction, resulting in an
iron drop.
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SLC7A11 gene, which inhibits the transcriptional activity of the

SLC7A11 gene and affects the synthesis of GSH, which can induce

the occurrence of ferroptosis (28). Jiang et al. also found that the

messenger RNA and protein expression of SLC7A11 decreased

significantly after upregulation of p53 gene expression, which

confirmed that SLC7A11 is a new target of the p53 gene (29). p53

inhibits Systemic Xc- uptake of cystine by downregulating the

expression of System Xc–component SLC7A11, leading to a

decrease in cystine-dependent glutathione peroxidase activity, a

decrease in cellular antioxidant capacity, and an increase in lipid

reactive oxygen species, resulting in cellular ferroptosis (16).

In addition to the above-mentioned indirect action of acting on

GSH that activates the GPX4 enzyme, it is also possible to eliminate

GPX4 directly, such as Diphenyleneiodonium chloride-7(DPI-7),

Diphenyleneiodonium chloride-10 (DPI-10), GPX4 inhibitors,

squalene synthase, HMG-CoA reductase, etc (30). In summary,

whether by direct or indirect means, the ultimate goal is to regulate

the core enzyme GPX4, which can inhibit ferroptosis by eliminating

lipid peroxides using reduced GSH.
2.2 GPX4-independent ferroptosis
defense pathway

Recent studies have identified ferroptosis suppressor protein 1

(FSP1) and the mitochondrial enzyme dihydroorotate dehydrogenase

(DHODH) as GPX4-independent ferroptosis defense pathways, both of

which inhibit ferroptosis by using the reduced state of coenzyme Q10

(CoQ10) to prevent cell membrane lipid peroxidation and thus inhibit

the occurrence of ferroptosis (31).

FSP1, formerly also known as apoptosis-inducing factor

mitochondria-associated (AIFM2), was renamed FSP1 to avoid

confusion due to the recent discovery of its role in inhibiting cellular

ferroptosis (32). The inhibition of ferroptosis by FSP1 is mediated by

CoQ10, which reduces ubiquinone (CoQ) to dihydro ubiquinone

(CoQH2) in the cell membrane, and CoQH2 acts as an antioxidant

blocking lipid peroxidation inhibiting ferroptosis from occurring (33).

Mitochondria are organelles wrapped by two membranes, the inner

and outer membrane, and are the main site of aerobic respiration, with

large amounts of ROS generated by the electron transfer process in the

inner membrane (34). In addition to the synthesis of pyrimidine

nucleotides, DHODH was found to inhibit ferroptosis in

mitochondria by generating CoQH2 in the inner mitochondrial

membrane, because CoQH2 can act as a radical trapping antioxidant

to prevent lipid peroxidation and thus inhibit ferroptosis (35).
2.3 Iron metabolism and lipid peroxidation

Acety l coact ivators in mitochondria produce the

polyunsaturated fatty acids (PUFA) catalyzed by acetyl-CoA

carboxylase (ACC) (36). However, the presence of PUFA does

not directly lead to ferroptosis. This requires further catalysis by

members of the long-chain acyl-coenzyme A synthases (ACSL)

family, especially ACSL4, to form PUFA-CoA, which is then

activated by LPCAT3 to PUFA-PL, affecting the transmembrane
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properties of polyunsaturated fatty acids and thus promoting

ferroptosis (37). Activation of AMP-activated protein kinas

(AMPK) by energy stress directly inhibits ACC, which limits

PUFA synthesis and thus inhibits iron phagocytosis (38).

Cellular uptake of iron is mainly through the Tf/TfR1 protein

transport pathway to obtain trivalent iron ions, but these trivalent

irons still need to be released from FPN as divalent iron by

acidification of endocytic cells (39). The divalent iron then enters

the cytoplasm through the endosomes. Excess iron further

generates ROS through the Fenton reaction, which leads to

ferroptosis (40).
3 Ferroptosis and diabetic
microangiopathy

3.1 Ferroptosis and diabetic nephropathy

DN is the most common complication of diabetes mellitus and

the leading cause of end-stage renal disease, which is a “global

medical disaster” because of the difficulty of diagnosis and

management (41, 42). However, the pathogenesis and

pathophysiology of DN are complex. Therefore, further studies

on its molecular mechanisms are needed to develop new

therapeutic approaches.

Ferroptosis is a newly discovered form of regulated cell death

that is different from apoptosis, necrosis, autophagy, and other

forms and depends on iron and ROS. It is regulated by a variety of

cellular metabolic pathways and various signaling pathways related

to diseases (19). Ferroptosis can produce a large amount of ROS,

and the kidney is sensitive to oxidative stress due to its rich

mitochondrial structure, suggesting that ferroptosis may be

related to DN. The persistent hyperglycemic environment

promotes ROS production and increases basal levels of several

renal cell types, including mesangial cells, podocytes, and tubular

epithelial cells (43). The identification of related genes also reveals

the involvement of ferroptosis in the pathogenesis of DN (44).

Recently, it was shown that inhibition of ferroptosis may slow the

progression of DN in a variety of cellular and animal models.

Mesangial cells are a special type of smooth muscle cells

distributed between the capillary rings of glomerular capillaries,

and their damage is the basic pathological change of DN (45).

Sustained hyperglycemia induces hyperplasia of the glomerular

mesangium, leading to thickening of the basement membrane,

sclerosis of the glomerular capillary wall, and ultimately

proteinuria (46). High mobility group box 1 (HMGB1) is known

to act as a pro-inflammatory cytokine that is involved in many

diabetic complications (47). Related experiments have shown that

high glucose (HG)-induced ferroptosis of mesangial cells can be

prevented by inhibiting HMGB1 (48). Ferroptosis is also associated

with podocyte injury in diabetic patients. Podocytes are an

important component of the glomerular filtration barrier (GFB),

and recently, it was revealed that podocytes regulate the GFB

through endocytosis, and podocyte injury is considered one of the

main mechanisms leading to GFB damage (49, 50). GPX4 and

SLC7A11 are considered key proteins in the prevention of
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ferroptosis, and the loss or inhibition of GPX4/SLC7A11 can induce

ferroptosis (51). In vitro studies demonstrate that Sp1-mediated

upregulation of Prdx6 expression inhibits iron accumulation and

increases the expression of SLC7A11 and GPX4, preventing

podocyte injury in DN (52). Another study also revealed that

Ginkgolide B may improve DN by protecting the kidney from

ferroptosis and oxidative stress damage by inhibiting the

ubiquitination of GPX4 (53).

Renal tubular damage is the key factor of DN. The formation of

advanced glycation end products (AGEs) associated with

hyperglycemia plays a central role in the pathogenesis of diabetic

nephropathy. High glucose induces oxidative stress by increasing

the production of ROS, excessive iron in cells damages cell function

by producing ROS, and renal tubular cells are more sensitive to

oxidative stress and lipid peroxidation (54, 55). Wang et al. (56)

establish a DN model using streptozotocin (STZ) and db/db mice

and found that the expression levels of ferroptosis-related markers,

ACSL4 and GPX4, were increased in kidney tissue, especially in the

renal tubules. Rosiglitazone, an ACSL4 inhibitor, has a protective

effect on DN mice by attenuating ferroptosis, which provides a

possibility for the treatment of DN with ferroptosis. In addition,

some drugs for diabetes, such as dapagliflozin, improve renal

tubular injury by inhibiting ferroptosis (51). Recently, some

researchers have found that empagliflozin prevents the

progression of ferroptosis by promoting AMPK-mediated (the

transcription factor nuclear factor red line related factor 2) Nrf2

activation pathway in vivo and vitro (57). Chinese medicine’s active

ingredients, such as licorice flavone, calycosin, and 7-

hydroxycoumarin, also inhibit ferroptosis and reduce renal

tubular damage induced by diabetes to achieve the effect of DN

treatment (58–60). These results suggest that ferroptosis mediates

renal tubular injury in DN, and inhibiting ferroptosis in renal

tubular cells may play a role in the treatment of DN.

Recent studies have shown that ferroptosis is involved in renal

fibrosis of DN, which is the terminal pathological change of DN (56).

Heme oxygenase-1 (HO-1) plays an important role in anti-oxidative

stress injury, and hypoxia-inducible factor-1 (HIF-1) is a key

molecule involved in alleviating hypoxia-induced injury. Excessive

HO-1 degradation of oxidized heme leads to iron overload, which

results in oxidative stress and lipid peroxidation (61). Feng et al. (62)

demonstrated that diabetes enhanced renal tubular damage

accelerated tubular iron overload, and aggravated the accumulation

of ROS in mouse kidneys through the HIF-1a/HO-1 pathway. In

contrast, the ferroptosis inhibitor, Ferrostatin-1, inhibited renal

tubular iron overload, renal oxidative stress, and lipid peroxidation

in diabetic mice. Renal tubular damage in diabetes may be considered

a major cause of renal fibrosis. A large number of studies have shown

that the TGF-b/Smad signaling pathway plays a crucial role in renal

fibrosis (63). Transforming growth factor-b1 (TGF-b1) is an

important factor leading to renal fibrosis, and relevant studies have

reported that TGF-b1-induced renal tubular cell death is related to

DN (64). Nrf2 is an important regulator of the antioxidant system

and realizes redox reactions with multiple downstream targets.

Salusin-b participates in HG-induced ferroptosis in HK-2 cells in

an Nrf2-dependent manner (65). Fenofibrate inhibits ferroptosis and
Frontiers in Endocrinology 05
delays the progression of diabetic nephropathy by up-regulating Nrf2

and 7-hydroxycoumarin by activating the Nrf-2/HO-1 pathway (60,

66). Notoginsenoside R1 (NGR1) is a novel saponin derived from

Panax notoginseng. NGR1 promotes Nrf2-mediated HO-1

expression to prevent DN, eliminates ROS that induces apoptosis

and TGF-b signaling, and plays a renoprotective role in DN by

inhibiting oxidative stress-induced apoptosis and renal fibrosis (67).

In addition, several researchers reviewed the latest findings and

emerging trends in ferroptosis research and highlighted that the

tumor suppressor p53 has a dual role in ferroptosis. On the one

hand, p53 enhances ferroptosis by inhibiting SLC7A11 expression

or promoting SAT1 and GLS2 expression. On the other hand, p53

inhibits ferroptosis by inhibiting DPP4 activity or inducing

CDKN1A/p21 expression (68). Our previous studies also

confirmed that hyperglycemia regulates pathogenic processes in

DN through a miR-23b/G3BP2 feedback circuit involving

p38MAPK and p53 (69). This suggests that p53 may be an

attractive therapeutic target for regulating ferroptosis against DN.

Some researchers have analyzed the mechanisms, pathways, and

genes related to ferroptosis in DN through bioinformatics, revealing

Hub genes related to ferroptosis in DN that mainly include FPR3,

C3AR1, CD14, ITGB2, RAC2, and ITGAM. Moreover, there are

non-coding genes that interact with the Hub genes and these mainly

include has-miR-572, has-miR-29a-3p, has-miR-29b-3p, has-miR-

208a-3p, has-miR-153-3p, has-miR-29c-3p, etc. The transcription

factors related to DN mainly include HIF1a, KLF4, KLF5, RUNX1,
SP1, VDR, and WT1. A KEGG pathway enrichment analysis

showed that the MAPK signaling pathway was significantly

enriched (70–72). These observations also serve as a starting

point for future mechanistic studies. In conclusion, ferroptosis

plays a crucial role in the development of DN, and ferroptosis

may be the future direction of DN treatment.
3.2 Ferroptosis and diabetic retinopathy

DR is a common and specific microvascular complication of

diabetes mellitus. Blindness caused by DR has a great impact on the

life of patients (73). The disease is negatively affected by diabetesmellitus,

which alters normal cellular interactions, leading to severe vascular

abnormalities, the loss of the blood-retinal barrier, and impaired

neuronal function. Conventional therapies have not responded well to

recent treatments, and a new treatment is needed (74). With evidence

supporting the interaction between iron metabolism and diabetes, the

molecular mechanism of ferroptosis in the pathogenesis of DR has also

attracted attention, which provides a new therapeutic target for the

treatment of DR (75).

Retinal pericyte loss is one of the earliest changes associated with

DR. Although the pathophysiological mechanisms of DR are complex,

vascular endothelial damage, increased vascular permeability, and

neovascularization are the most common phenomena (76). Vascular

endothelial growth factor (VEGF) plays a leading role in the occurrence

and progression of DR, and berberine inhibits insulin-induced retinal

endothelial cell activation through the Akt/mTOR/HIF-1a/VEGF
pathway to improve insulin-induced DR progression (77). Increased
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vascular permeability in the early stage of DR leads to macular edema in

the later stage, which is related to the release of proinflammatory

cytokines (74). TRIM46 promotes HG-induced ferroptosis in human

retinal capillary endothelial cells (HRCECs) by regulating the

ubiquitination and degradation of GPX4 (76). A recent study showed

that TRIM46 aggravates HG-induced hyperpermeability and

inflammatory response of HRCECs by promoting IkBa
ubiquitination (78). In addition, ferroptosis is characterized by the

accumulation of lipid ROS, particularly the loss of the activity of lipid

hydroperoxides and the lipid repair enzyme GPX4 (54). Fan et al. (79)

found that BMS309403, an inhibitor of FABP4, promoted peroxisome

proliferator-activated receptor g (PPARg), thereby regulating PPARg-
mediated ferroptosis to alleviate lipid peroxidation and oxidative stress

in DR.

Studies on non-coding RNAs and related signaling pathways

demonstrate a link between DR and ferroptosis. Previous research by

our group showed that miR-200b was closely associated with diabetes

and its complications (80–82), andmiR-200b regulated VEGF-mediated

alterations in DR (80). Zhu et al. (83) found that the knockdown of circ-

PSEN1 reduced ferroptosis in ARPE19 cells induced by high glucose

through the miR-200b-3p/CFL2 axis. Zhou et al. (84) also found that

HG-induced ferroptosis in retinal epithelial cells could be inhibited by

blocking the miR-338-3p/SLC1A5 axis. In addition, Astragaloside-IV

may inhibit DR by reducing miR-138-5p expression and subsequently

increasing Sirt1/Nrf2 activity and cellular antioxidant capacity to

alleviate ferroptosis, resulting in reduced cell death (85). In addition,

Liu et al. (86) expanded the understanding of the relationship between

autophagy and ferroptosis. They found that the GMFB antibody,

lysosomal activator NKH477, CMA activator QX77, and ferroptosis

inhibitor lipstatin-1 effectively prevented early DR, which had a strong

clinical application value. In summary, ferroptosis plays a crucial role in

the development of DR and may provide a new therapeutic strategy for

the treatment of DR.
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4 Conclusion and perspectives

This article reviews the role and potential mechanisms of

ferroptosis in DN and DR. Although diabetes has been

investigated for decades, the effective prevention and treatment of

diabetic complications is a challenging clinical issue. Long-term

hyperglycemia and genetic susceptibility increase the risk of

microvascular complications in patients with diabetes (87, 88).

The microvascular complications of diabetes are related to the

long-term damage and dysfunction of various organs and

systems, including the kidney and retina, which may lead to end-

stage renal disease and blindness, leading to a significant increase in

incidence rate and mortality (89, 90). DN and DR are interrelated

through a common pathophysiological mechanism. The main

biological mechanism of DN and DR can be linked through the

excessive production of ROS, downstream intracellular signal

pathways their regulators, which can be used as therapeutic

targets for the treatment of diabetes complications (91, 92).

Ferroptosis is a new form of cell death characterized by iron-

dependent accumulation of lipid peroxides to lethal levels (93). Iron is

an essential trace metal element involved in many physiological

processes of the human body. However, excess iron can generate

oxidative stress and cause tissue damage (94). Given the association

between diabetes and ferroptosis, starting from the key target of

ferroptosis may improve diabetes. In recent years, there has been

increasing research on ferroptosis in DN and DR. The

pathophysiology of DN and DR is complex, which involves many

types of cells. Multiple signaling pathways are involved in the ferroptosis

process of DN and DR, including Nrf2, HIF-1, TGF-b1, VEGF, etc
(Figure 2). Some ferroptosis inhibitors and iron chelators have shown

good regulatory effects in animal and cellular experiments related to DN

and DR. Many antiferroptotic natural products and drugs also provide

new ideas and targets for the treatment of DN and DR (Table 2).
FIGURE 2

The related signaling pathways on ferroptosis of diabetic nephropathy and diabetic retinopathy. Created by Biorender.com. High-risk factors for
diabetes (increasing age, overweight or obesity, etc.) are closely related to the occurrence of diabetes. Hyperglycemia is one of the main clinical
manifestations of diabetes, and also one of the high-risk factors leading to diabetes complications. Molecules (Nrf2, HIF-1, TGF-b1, VEGF, etc.)
regulate ferroptosis through multiple signaling pathways (TGF-b/Smad pathway, Akt/mTOR pathway, HO-1 pathway, etc.) and play a role in
pathological progression of diabetic nephropathy and diabetic retinopathy.
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Although selective inhibition of ferroptosis has been proven to

substantially improve kidney function and play a retinal protected role

in various animal models and cell models, clinical trials have not yet

been performed with ferroptosis-specific inhibitors to treat DN and DR.

The exact mechanism of ferroptosis needs to be explored through

further study. Monitoring and controlling ferroptosis related factors

may be a promising measure for early diagnosis and treatment of
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diabetes. However, there have been no established specific markers to

demonstrate the presence of ferroptosis in vivo. Identifying key

biomarkers of ferroptosis will also facilitate our understanding of its

role and progress in diabetic complications. To sum up, although its

biological function andmolecular mechanism have not been thoroughly

elucidated, ferroptosis has become a hot spot in diabetic

complications research.
TABLE 2 Drugs or targets against ferroptosis in diabetic nephropathy and retinopathy.

Disease Compound/target Cell type/
animal model

Effect Mechanism Ref.

Diabetic
nephropathy

HMGB1 SV40-MES 13
cells

Inhibition HMGB1 regulates ferroptosis through the Nrf2 pathway by preventing ROS
and LDH generation, decreasing ACSL4, PTGS2, and NOX1, and increasing
GPX4 levels in mesangial cells in mesangial cells.

(48)

Prdx6 MPC5 cells Inhibition Sp1-mediated upregulation of Prdx6 expression decreases HG-induced
ferroptosis by increasing ACSL4 expression levels in podocytes.

(52)

Rosiglitazone STZ &db/db mice Inhibition Rosiglitazone decreases the expression levels of ACSL4 and increases the
expression levels of GPX4 to alleviate ferroptosis and reduce IL-6, TNF-a, and
Ptgs2.

(56)

Dapagliflozin HK-2 cells/
HFD&STZ-
induced C57BL/6
mice

Inhibition Dapagliflozin ameliorates ferroptosis in HK-2 cells by SLC40A1 stabilization. (51)

Empagliflozin Erastin or HG-
induced HK-2
cells/T2DM mice

Inhibition Empagliflozin attenuates renal tubular ferroptosis through the AMPK/NRF2
pathway.

(57)

Calycosin HK-2 cells/db/db
mice

Inhibition Calycosin relieves the induction of ferroptosis by reducing lipid ROS, LDH, and
NCOA4 levels.

(17)

Umbelliferone HK-2 cells/
C57BLKS/J db/db
mice

Inhibition Umbelliferone attenuates the level of high glucose-induced ferroptosis by
activating the Nrf2/HO-1 pathway.

(60)

Salusin-b HK-2 cells Induction Salusin-b serves as an inducer of oxidative stress in HK-2 cells by increasing
ROS levels and decreasing GSH activities.

(65)

Fenofibrate HK-2 cells/STZ-
induced DBA/2J
diabetic mice

Inhibition Fenofibrate up-regulates Nrf2 to inhibit diabetes-related ferroptosis. (66)

P53 HCT116/SW48
cells/Tumour-
bearing mice

Induction P53 enhances ferroptosis by inhibiting the expression of SLC7A11, SAT1, and
GLS2.

(68)

Inhibition P53 suppresses ferroptosis through the direct inhibition of DPP4 activity or by
the induction of CDKN1A/p21 expression.

Diabetic
retinopathy

TRIM46 HRCECs Induction TRIM46 facilitates GPX4 ubiquitination and contributes to high glucose-
induced ferroptosis and cell growth inhibition in human retinal capillary
endothelial cells.

(76)

FABP4 ARPE-19 cells/
STZ into C57BL/6
male mice

Induction Inhibiting FBP4 alleviates lipid peroxidation and oxidative stress in DR by
regulating PPARg-mediated ferroptosis.

(79)

Circ-PSEN1 ARPE19 cells Induction Knockdown of circ-PSEN1 mitigates ferroptosis of ARPE19 cells induced by
HG via the miR-200b-3p/CFL2 axis.

(83)

MiR-338-3p/SLC1A5 axis
reprograms retinal
pigment epithelium

RPE cells Inhibition MiR-338-3p/SLC1A5 axis blocks high glucose-induced ferroptosis in RPE cells. (84)

Astragaloside-IV RPE cells Inhibition AS-IV inhibits the miR-138-5p expression and increases Sirt1/Nrf2 activity to
alleviate ferroptosis.

(85)

Glia maturation factor-b RPE cells Induction Glia maturation factor-b induces ferroptosis by impairing chaperone-mediated
autophagic degradation of ACSL4 in early diabetic retinopathy.

(86)
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