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The eukaryotic translation initiation factor eIF4E can specifically bind to the cap

structure of an mRNA 5' end, mainly regulating translation initiation and

preferentially enhancing the translation of carcinogenesis related mRNAs. The

expression of eIF4E is closely related to a variety of malignant tumors. In tumor

cells, eIF4E activity is abnormally increased, which stimulates cell growth,

metastasis and translation of related proteins. The main factors affecting eIF4E

activity include intranuclear regulation, phosphorylation of 4EBPs, and

phosphorylation and sumoylation of eIF4E. In this review, we summarize the

biological functions and the research progress of eIF4E, the main influencing

factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the

hope of providing new insights for the treatment of multiple malignancies and

development of targeted drugs.
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1 Introduction

Translation initiation is the major regulatory stage of protein synthesis (1), which is an

important rate-limiting link in protein translation (2). The first step in eukaryotic translation

initiation that is dependent on the 5'-end cap structure of mRNAs is the assembly of the

translation initiation complex eIF4F on the cap structure (3), and this complex recruits the

ribosome to the 5'-end of the mRNAs (4). The eIF4F complex consists of the cap binding

protein eIF4E, the large scaffolding protein eIF4G and the DEAD-box protein eIF4A. EIF4E

can bind to the cap structure (5), recruiting eIF4G and eIF4A (2, 3, 6, 7).

EIF4E and eIF4G are oncogenes whose overexpression promotes cell transformation.

Studies reported that eIF4E, eIF4G and eIF4A genes showed increased amplification or

transcription in various human cancers (4). The overexpression of eIF4E precisely elevates

the translation of mRNAs associated with tumor growth and invasion (8), making it an

important target for tumor therapy. Xu et al. showed that reducing the levels of these

translation factors, which have long been considered housekeeping genes, does not interfere

with normal development or cell physiology, but is significantly associated with
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carcinogenesis, supporting the idea that eIF4E activity is critically

involved in cancer development (4). Recent studies have shown that

eIF4E can inhibit obesity and fatty liver caused by high-fat food.

Therefore, the relationship among obesity, canceration and eIF4E

may become a new direction for the study of eIF4E.

The action mechanism of eIF4E in promoting malignant

transformation of cells has triggered wide attention, and some

progress has been made so far. In this paper, the biological

functions, activity influencing factors, and the research status of

eIF4E in the treatment of tumors are reviewed.
2 Structures of eIF4E

The eIF4E gene, located on chromosome 4q21.25, encodes a

conserved protein with a molecular weight of 25 kDa that can bind

to the 5' end cap structure of mRNAs. In mammals, there are three

members in the eIF4E family, eIF4E1, eIF4E2 and eIF4E3, which

differ in structures, functions and expression patterns. EIF4E1 (eIF4E)

is present in all eukaryotes (Figures 1, 2), and orthologs of eIF4E2

appears to exist only in metazoans, while those of eIF4E3 are found

only in chordates. EIF4E2 is ubiquitously expressed, with the highest

levels in testis, whereas eIF4E3 is expressed only in skeletal muscle,

heart, spleen and lung. Compared with eIF4E1, eIF4E2 and eIF4E3

respectively have some functions of eIF4E1. EIF4E2 cannot combine

with eIF4G to initiate translation, and eIF4E3 cannot combine with

4EBPs (9). Three-dimensional structural analysis showed that there

are two main binding sites on the surface of eIF4E: cap binding site

and eIF4G (or 4EBPs) binding site. The concave face of eIF4E
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contains a concave hydrophobic pocket assembled by eight b-sheets
and three a-helices. The cap binding site is on the basal face of the

pocket, and the cap structure is stacked between two highly conserved

tryptophan residues. EIF4G or 4EBPs specifically bind to the backside

bulge of eIF4E, both of which share and competitively bind to this

region (10, 11).
3 Biological functions and associated
interacting proteins of eIF4E

EIF4E plays a key role in mRNAs translation. In this paper, we

associate eIF4E with the interacting protein 4E-IPs and focus on some

functions of eIF4E: improving the translation efficiency of some

mRNAs in the cytoplasm, mediating the nuclear export of mRNAs

containing specific elements, and playing a role in the cytoplasmic

foci. The activity and biological specificity of eIF4E depend on its

interaction with different 4E-IPs. Over the years, about 47 different

4E-IPs have been found (12), which play an auxiliary role in the

different functions of eIF4E (Figure 3).
3.1 EIF4E and nucleocytoplasmic transport

EIF4E is expressed in both nucleus and cytoplasm, with up to 68%

of eIF4E distributed in the nucleus (13). In the nucleus, eIF4E binds

the m7GpppN cap structure of transcripts and is solely responsible for

regulating the nuclear export of eIF4E–dependent mRNAs, a class of

mRNAs which mainly encode proteins related with proliferation and
FIGURE 1

Domain organization of eIF4E.
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survival, such as Cyclin D1 (13–16) (Table 1), thus increasing their

cytoplasmic concentration and protein production (14, 16, 25). The

3'UTR of this class of mRNAs have a structure of approximately 50

nucleotide units in length, which is termed the eIF4E sensitive

element (4ESE) (14, 15). These eIF4E-dependent mRNAs are

termed weak mRNAs after they are transported to the cytoplasm.

Overexpression of eIF4E can alter the composition of the nuclear pore

complex (NPC), increasing nuclear export of eIF4E-dependent

mRNAs (26).
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The transport mechanism of eIF4E-dependent mRNAs is

different from that of general mRNAs. mRNPs exported by eIF4E

differ from general mRNPs in the export pathway, as eIF4E and eIF4E

sensitive mRNAs(eIF4E-dependent mRNAs) are not associated with

general export factors such as TAP/NXF1 or REF/Aly (27, 28).

Cofactors involved in eIF4E export in mammalian nuclei include

LRPPRC proteins and the export receptor CRM1 (25). mRNPs

exported by eIF4E consist of eIF4E, mRNA containing the 4ESE

element, LRPPRC, and other components, but not REF/Aly (26).
FIGURE 2

Structures of eIF4E.
FIGURE 3

EIF4E and interacting proteins.
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CRM1 mediates the nuclear export of hundreds of different

functional proteins, including many tumor suppressors, cell cycle

regulators, and many mRNAs. Inhibition of CRM1 with Leptomycin

B may abrogate the export of eIF4E-dependent mRNAs, suggesting

that eIF4E may interact with CRM1 and eIF4E-dependent mRNAs

transport is mediated by CRM1 (25, 29). GST pull-down assay proved

that CRM1 could directly bind LRPPRC and act as an export receptor

to form LRPPRC-eIF4E-mRNA-CRM1 complex (25). LRPPRC could

immunoprecipitate eIF4E, and knockdown of LRPPRC reduced the

ability of eIF4E to immunoprecipitate with 4ESE RNA in the nucleus,

which directly suggested that eIF4E could interact with LRPPRC

(25, 27).
3.2 EIF4E and translation

3.2.1 The mechanism of eIF4E in translation
In eukaryotes, translation is initiated by decoding AUG in

mRNAs, which is executed by the 48S pre-initiation complex (PIC)

composed of the mRNAs, eIF2/GTP/Met-tRNAi ternary complex

(TC), the small subunit of the ribosome, and the eIF4F complex.

Then, 48S PIC combines with the large ribosomal subunit and

assembles into the initiation complex. Subsequently, translation

enters the elongation cycle (Figure 4).
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EIF1, eIF1A, eIF3 and eIF5 promote the recruitment of TC to the

small ribosomal subunit, and these factors then assemble to form 43S

PIC (30, 31). In eukaryotes, eIF4F binds cap structure to activate

mRNAs, which is crucial (30, 31). EIF4F promotes mRNAs to combine

with the preassembled 43S PIC, forming 48S PIC (30, 31). By binding

with the cap structure, eIF4E brings eIF4A to the 5' end of mRNAs, and

makes eIF4A exert helicase activity to open the secondary structure of

the 5' end of mRNAs. The interaction of eIF4Gwith eIF1, eIF3 and eIF5

plays an important role in facilitating the recognition of the 5' end of

mRNAs by 43S PIC. The helicase activity of eIF4A is increased by the

interaction of eIF4G with eIF4A (32). The eIF4E-eIF4G interaction is a

key step in mRNAs recruitment, and this node is regulated by 4EBPs

(33). After scanning from the 5' end to the 3' end of the mRNAs and

positioning the start codon AUG (6), the 48S PIC changes from an

“open” to a “closed” conformation to prevent scanning and binds to the

60S large subunit, which, with the release of initiation factors,

eventually generates the 80S initiation complex with translation

elongation capacity (34).

3.2.2 EIF4E improves translation efficiency
Due to the limited expression of eIF4E and its binding to

inhibitory 4EBPs, the active of eIF4F complexes is normally limited.

Therefore, intracellular mRNAs must compete for binding to eIF4F to

initiate translation (35).
TABLE 1 Proteins translated by weak mRNAs.

Name Function

Cyclin D1 It makes cells in G1 phase enter S phase by allosteric regulation (17).

c-Myc It promotes cell cycle progression, transforming cells in G1 phase into S phase, and regulates cell apoptosis (18).

FGF2 Exogenous FGF2 is activated by binding to tyrosine kinase receptors of FGFRs, which leads to cell proliferation or migration, and endogenous FGF2 can be anti-
apoptotic by binding to apoptosis inhibitor 5 (API5) (19).

VEGF It stimulates endothelial cell proliferation and new blood vessel formation (20).

ODS As a rate-limiting enzyme in polyamine synthesis, it regulates cell proliferation, apoptosis and senescence (21).

Bcl-2 Associated with chromosomal translocations, it can inhibit cell death (22).

Survivin It has no enzymatic activity and helps to align the chromosomes correctly during mitotic metaphase. As one of the human inhibitors of apoptosis (IAP), it
interacts with XIAP to inhibit apoptosis, and can also regulate mitochondrial dynamics and affect cell metabolism (23).

bFGF It preserves the viability of epithelial cells, endothelial cells, smooth muscle cells and nerve cells, and inhibits their apoptosis (24).
FIGURE 4

The mechanism of eIF4E in translation initiation.
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The “availability” of mRNAs in the cytoplasm varies considerably,

with the length and structure of its 5'UTR significantly affecting

translation efficiency (36). According to the “availability”, mRNAs can

be divided into strong mRNA and weak mRNA. The 5'UTR of weak

mRNAs are long and complex, with stable secondary structures, which

hinders the association between the 43S PIC and mRNAs, and also the

scanning for the 5'UTR. Weak mRNAs require RNA helicases (such as

eIF4A) to open the secondary structure, so the translation efficiency is

low (37). Proteins such as VEGF, FGF2, c-Myc, ODC, Cyclin D1, Bcl2

and Survivin are translated from weak mRNAs (35, 36, 38), and most of

them can promote the development of cancer. Weak mRNAs are more

susceptible to regulation by eIF4E than other mRNAs and are known as

eIF4E sensitive genes (13), and they are less translationally competent

when eIF4F complex formation is restricted (36). The 5'UTR of strong

mRNAs are short and simple, with low GC contents and less stable

secondary structures, which can be effectively scanned to initiate start

codon recognition. For example, b-actin and GAPDH encoded by strong

mRNAs (35, 36), are efficiently translated even when eIF4F is limiting.

EIF4E in the cytoplasm is a translation enhancer of weak mRNAs,

especially during cellular stress and proliferation (15, 16). When the

levels of eIF4E are limited, the effect on the translation of strong

mRNAs is minimal (36). When the levels of eIF4E are increased, the

translation of weak mRNAs is disproportionately increased, there is a

nonlinear relationship between the increase of eIF4E and the increase

rate of weak mRNAs translation. With the increase of eIF4E, the

increase rate of weak mRNAs translation is variable rather than

constant (35, 36). Numerous studies have shown that the elevation

of eIF4E levels preferentially enhances the translation of weak

mRNAs (35), leading to tumorigenesis and metastasis.
3.3 EIF4E and cytoplasmic foci

The processing, transportation, degradation and translation of

mRNAs are essential for gene expression regulation (39, 40), and these

processes are controlled by specific RNA-binding proteins (RBPs) (39,

40). Many RBPs bind to mRNAs and assemble into mRNPs (41). After

being exported from the nucleus, some mRNPs are transported to

specific regions of subcellular localization, cytoplasmic foci (40, 42).

Non-membrane-enclosed cytoplasmic foci, such as Stress Granules (SGs)

and processing bodies (P-Bodies, PBs), dynamically sequester

untranslatable mRNPs into compartments distinct from the

surrounding cytoplasm. Both cytoplasmic foci are associated with

translation events that affect cell survival (40). Representatives of the

various enzymes required for the breakdown of mRNAs into their

constituent parts including a deadenylase, a decapping enzyme, and an

exonuclease, are concentrated in the cytoplasmic foci (43).

PBs differ from SGs in composition and function (Figures 3, 5)

(44, 45), but share some components and attributes, including eIF4E,

mRNAs, and RBPs. Several components contained in PBs, such as

eIF4E-T, Lsm1 and Rck/p54, are required for eIF4E accumulation in

PBs. However, PBs lack SGs-associated eIF3, PABP, small ribosomal

subunits, and many signaling proteins, and eIF4G accumulates only

in SGs (40, 46, 47). Tryptophan residues needed for recognizing

mRNA cap structure are not essential for the recruitment of eIF4E to

PBs or SGs, and those required for protein-protein interactions are

critical for eIF4E accumulation in cytoplasmic foci (46).
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PBs are RNPs aggregates that contain a variety of proteins

associated with mRNAs degradation (46, 48). PBs are associated

with miRNA induced translation silence and siRNA induced mRNA

degradation (43, 46). PBs can also act as a “storage depot” for mRNAs,

where the stored mRNAs can be recycled under certain conditions

(48). Among the new studies, researchers have identified two

decapping activators, Dhh1p and Pat1p. Approximately only 10%

of cells with a deletion of both proteins can form PBs, rendering the

cells unable to normally inhibit the translation of some of the proteins

that should not be expressed. The human homologue of Dhh1p is

Rck/p54, which functions to inhibit translation in vitro (49).

However, eIF4E can contact with 4E-T and Rck/p54 molecules in

PBs in vivo, and this implies that the role played by eIF4E

in cytoplasmic foci is also relevant to translation. PBs are rich in

mRNAs degrading enzymes and contain eIF4E but not eIF4G,

suggesting that eIF4E may play an early role in the transition from

active translation to degradation of mRNAs. Moreover, due to the

protection of the cap structure by eIF4E, some mRNAs, although their

translation were repressed, may not be immediately targeted for

degradation in the 5' to 3' direction (47).

Under certain non-physiological conditions in higher eukaryotes,

such as heat or chemical stress, inactive mRNPs accumulate in the

cytoplasm and SGs appear. SGs contain most of the components of

48S PIC but lack eIF2, which are called “abnormal aggregates of 48S

PIC” (46, 47). SGs affect translation and stability of mRNAs and are

associated with apoptotic. Disrupting eIF4F complexes, such as

interfering with eIF4E activity, can lead to SGs formation.

The above studies suggest a novel role of eIF4E in mRNAs

translation in cytoplasmic foci.
3.4 EIF4E interacting proteins

3.4.1 LRPPRC and importin 8
LRPPRC is a leucine rich pentapeptide repeat protein implicated

in the nuclear export of eIF4E. LRPPRC acts as a specific factor to

recruit mRNAs containing 4ESE in the nucleus, and can directly bind

eIF4E and 4ESE-containing mRNA through the N and C termini

respectively, and binds CRM1 at the same time, thereby transporting

the complex to the cytoplasm through the nuclear pore. LRPPRC is a

central component of this mRNAs export pathway and is the first

factor to function in eIF4E-sensitive mRNAs selection (25, 27).

LRPPRC mediated nuclear output requires the integrity of its

binding site with eIF4E (27).

EIF4E nuclear import is directly mediated by importin 8 and is

competitively regulated by the m7G cap structure and importin 8 (50).

3.4.2 4EBPs and 4E-T
4EBPs, widely distributed in the nucleus and cytoplasm, are eIF4E

binding proteins and usually inhibit the role of eIF4E in translation.

4EBPs share and competitively bind to a common eIF4E binding site

with eIF4G (10, 11), preventing their assembly into eIF4F. 4EBP1 and

4EBP2 are expressed in most tissues, while 4EBP3 shows a more

limited expression pattern (51). Binding of 4EBPs to eIF4E is

regulated by their phosphorylation status. Non-phosphorylated

4EBPs (active) bind to eIF4E with high affinity and phosphorylated

4EBPs (inactive) can not bind to eIF4E (52–54), and the expression of
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phosphorylated 4EBPs is associated with malignant progression and

poor prognosis. Deletion mutations of 4EBPs genes are frequently

found in patients with pancreatic cancer and head and neck cancer,

suggesting a tumor-suppressive role of 4EBPs in some cancers (4).

4E transporter (4E-T), an eIF4E binding protein (4EBPs) present

in PBs, represses translation and promotes mRNAs degradation and

interacts with factors including DDX6, Lsm14 and the Lsm1-7-PAT1

complex (55, 56).

3.4.3 PRH
Proline-rich homeodomain proteins (PRH) are composed of a

proline-rich N-terminal domain, a central homeodomain that binds

to specific DNA sequences, and an acidic C-terminal domain. This

protein is encoded by a haematopoietically expressed homeobox

(HHEX) gene (57), and acts on eIF4E in the nucleus. PRH is a

regulator of transcription and translation, and plays an important role

in the control of cell proliferation and differentiation (58), early

embryonic patterning and hematopoietic processes (59), and is

essential for forebrain, liver, and thyroid development. PRH is

highly expressed in pluripotent erythromyeloid and B cell

progenitors and is downregulated during differentiation of most

hematopoietic lineages (60). In addition to hematopoietic cells,

PRH is expressed in a limited set of tissues in the adult, including

myeloid cells, lung, thyroid, and liver tissues, and has been localized as

a tissue-specific regulator of eIF4E. Proline-rich N-terminal domain is

essential for the inhibition of myeloid cell proliferation and cell

transformation (58). PRH can directly interact with eIF4E through

a conserved binding site and inhibit the transformation and growth

promotion function of eIF4E by inhibiting its mRNA transport

activity (61).

3.4.4 PML
The promyelocytic leukemiaprotein, PML, acts on eIF4E in the

nucleus. The integrity of PML nuclear body depends to some extent

on the integrity of eIF4E nuclear body, whereas the integrity of eIF4E

nuclear body is not related to PML (62, 63). PML contains three

cysteine-rich zinc-binding domains, called RING and B-box (B1 and
Frontiers in Oncology 06
B2), which are required for the transformation suppressive and pro-

apoptotic functions of PML (64). PML binds to the back of eIF4E,

including Trp73, using a region around the first zinc binding site of the

RING domain. The RING is essential for some physiological

functions of PML, including nuclear bodies formation, growth

inhibition and apoptosis (62, 65). Mechanism of PML binding to

eIF4E as detailed later in “intranuclear regulation of eIF4E”.

3.4.5 EIF4G and eIF4A
EIF4G is a large scaffold protein associated with DEAD-box

proteins, with domains that bind to mRNA, eIF4E, eIF4A, poly

(A)-binding protein (PABP), eIF3, eIF1, and eIF5 (2, 3, 5, 6).

EIF4A is a protein with a molecular weight of 44kDa and an ATP-

dependent helicase belonging to the DEAD-box protein family, which

is thought to unwind the secondary structure of mRNAs (4), facilitate

scanning and exposure of the start codon of mRNAs (30, 36, 66).
4 Regulation of eIF4E expression

EIF4E is often highly expressed in tumor cells, and few studies

have investigated how the levels and activity of eIF4E are elevated in

malignant cells.
4.1 Increased gene copy number

Sorrells and Haydon et al. investigated eIF4E gene copy number

by using western blot and PCR. Overexpression of eIF4E in breast

cancer samples was associated with increased gene copy number,

which was not detected in benign breast tissue (67). EIF4E gene copy

number is increased in invasive carcinomas compared to normal

tissues and benign tumors. The extent of eIF4E gene copy number

increase is variable within each tissue category, and progression of

malignant phenotype appears to be related to the extent of eIF4E gene

copy number increase, which may be one of the mechanisms of eIF4E

oncoprotein overexpression (68).
FIGURE 5

Comparison of components in PBs and SGs.
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4.2 Increased stability of eIF4E mRNA

The changes in the stability of eIF4EmRNA may be related to the

expression of eIF4E. EIF4E 3'UTR contains a unique AU-rich

elements (AREs), which is responsible for binding eIF4E

transcriptional stability regulators. HuR (69) and AUF1 p42

isoform are two factors that regulate transcriptional stability of

eIF4E and competitively bind to the mRNA 3'UTR of eIF4E. In

malignant tumor specimens with high expression of eIF4E, HuR is

up-regulated, and its deletion leads to a decrease in eIF4E levels. With

the increase of HuR level, the stability of eIF4E mRNA in cancer cells

is improved. HuR and eIF4E regulate common transcripts involved in

cell proliferation (Cyclin D1 and c-Myc) and neovascularization

(VEGF). The p42 isoform of AUF1 interacts with the 3'UTR of

eIF4E mRNA and decreases its stability (70).
4.3 Epigenetic modification

4.3.1 Methylation
Protein arginine methyltransferase 5 (PRMT5) expression is

significantly upregulated in a variety of cancer cells (71).

Knockdown of PRMT5 decreases the methylation levels of H3 and

H4 on promoter of eIF4E, thus reducing eIF4E expression (72–74). In

colorectal cancer (CRC) tissues, the expression of eIF4E is positively

correlated with PRMT5, silencing PRMT5 leads to decreased eIF4E

expression (75). This helps to gain a deeper understanding of the

overexpression of eIF4E in tumor cells.

4.3.2 MiRNAs regulation
MiRNAs expression is frequently dysregulated in many diseases

such as cancers and immune disorders, which is associated with the

development of many pathological conditions and diseases (76).

Down-regulation of miR-141 increases the expression of eIF4E,

VEGF and c-Myc in H1299 or H2009 cells (77, 78). MiRNA-455-

3p directly targets eIF4E and inhibits cap-dependent translation (79).

On the other hand, miRNAs can recruit eIF4E2 to compete with

eIF4E for binding to mRNAs, induce the dissociation of eIF4A from

target mRNAs, block the assembly of the translation initiation

complex, and thus inhibit mRNAs translation (80).
5 EIF4E and metabolic reprogramming

In 2011, Hanahan andWeinberg summarized immune evasion and

metabolic reprogramming as the main characteristics of tumor cells

(81). The overexpression of eIF4E plays an up-regulated role in both

lipid metabolism and glycolysis, which suggests that overexpression of

eIF4E can promote cancer by affecting metabolism.
5.1 EIF4E and glycolysis

Activation of mTORC1/eIF4E pathway promotes the translation

of HIF-1a and up-regulation of HIF-1a can increase the expression

levels of several glycolytic enzymes to drive glycolysis and produce

more ATP (82, 83).
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5.2 EIF4E and lipid metabolism

In 2012, about 3.9% (544300 cases) of cancers worldwide were related

to obesity. In 2016, the International Agency for Research on Cancer

concluded that there was a causal relationship between obesity and 13

cancers (84). Fang et al. reported that BMI is significantly positively

correlated with endometrial cancer, esophageal adenocarcinoma and

kidney cancer, while it is significantly negatively correlated with oral

cavity cancer, lung cancer, premenopausal breast cancer and localized

prostate cancer (85). Davide et al. showed that eIF4E single copy

knockout mice gained only half the weight of normal mice under the

same feeding conditions, suggesting that eIF4E is associated with obesity

and that reducing eIF4E expression levels can enhance lipid metabolism

and suppress obesity (86). Specifically, mRNAs involved in lipid storage

pathways are translated in an eIF4E-dependent manner. Knockdown of

eIF4E, which renders these mRNAs unable to be upregulated, leads to

increased fatty acid oxidation and energy expenditure. Inhibition of eIF4E

phosphorylation can suppress weight gain after intake of a high-fat diet.

In conclusion, the translation control of eIF4E may be the driving factor

of weight gain induced by high-fat diet and eIF4E can be used as a

pharmacological target for obesity treatment (86).
6 Main factors affecting eIF4E activity

6.1 Intranuclear regulation of eIF4E

Both cytoplasmic and nuclear functions of eIF4E depend on its

ability to bind to mRNA. Intranuclear regulation of eIF4E activity is

mainly achieved by two proteins: PRH and PML, which are negative

regulators of eIF4E-dependent mRNAs export (13, 87, 88).

PRH directly interacts with eIF4E through a conservative binding

site, and inhibits the growth-promoting function of eIF4E by

inhibiting its mRNAs transport function (61), and this is similar to

that observed in the proline rich N-terminal region of eIF4G and

4EBP1 (62). PRH plays a major role in myelopoiesis, acting as both a

tumor suppressor and an oncogene (60, 87). Alterations in the

expression and intracellular localization of PRH are associated with

breast, liver, thyroid cancers and certain leukemia subtypes. PRH is

up-regulated in certain types of lymphoid leukemia (60), while it is

down-regulated and eIF4E is up-regulated in some types of myeloid

leukemia (AML, CML) (60, 87). In addition, PRH is a tissue-specific

inhibitor of eIF4E-dependent Cyclin D1 mRNA transport (61). The

level of Cyclin D1 is increased in leukemic specimens (87). Multiple

PRH target genes including the genes encoding VEGF and VEGF

receptors, are known to be important in the control of cell

proliferation and cell survival (57). These findings suggest that the

transport disorder of eIF4E mediated by PRH may be related to

hematological malignancies.

PML is a potent inhibitor of eIF4E-dependent mRNAs export (62,

89), and is the first factor reported to modulate nuclear eIF4E

functions (64). PML was shown to co-localize and co-

immunoprecipitate with nuclear eIF4E (13). The RING domain of

PML regulates the activity of eIF4E by directly interacting with the

backside of eIF4E to drastically reduce (over 100 fold) the affinity of

eIF4E for the 5' end cap structure of mRNAs (64, 88, 90–92). The back

side of eIF4E is also the binding region for eIF4G and 4EBPs,
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suggesting that this region contributes to the positive and negative

regulations of eIF4E activity (65). Overexpression of PML can inhibit

AKT activity, leading to decreased phosphorylation levels of 4EBP1,

which in turn affects cell survival, so PML may regulate eIF4E by

inhibiting AKT activation (90).

Unlike the limited expression of PRH, PML is expressed in all

mammalian cells and almost exclusively distributed in the nucleus,

whereas eIF4E and PRH have a punctate distribution in the nucleus

and the cytoplasm (61), but transport of eIF4E-dependent mRNAs is

only inhibited by the nuclear part of PRH (87).
6.2 Phosphorylation of 4EBPs

The PI3K-AKT-mTOR signal transduction system significantly

affects mRNAs translation by regulating the phosphorylation of its

downstream targets. Growth factors, mitogens, and hormones can

activate the PI3K-AKT-mTOR signaling pathway (93). Activated

mTOR promotes the phosphorylation of 4EBPs (94). mTOR can

form two distinct complexes, mTORC1 and mTORC2, which differ

in their compositions, downstream targets, and sensitivity to rapamycin

(95). The mTORC1 signaling pathway controls many cellular biological

processes including mRNAs translation, cell growth and proliferation,

and its downstream substrates mainly include 4EBPs and S6K (96).

4EBPs can regulate cell proliferation and S6K can regulate cell growth

(97). mTORC1 sequentially phosphorylates 4EBP1 at T70 and S65,

enabling the release of eIF4E to allow eIF4F assembly (54). Activated

S6K can affect multiple factors involved in eIF4F assembly, promoting

the recruitment of eIF4B to the pre-translational initiation complex for

binding to eIF4A (98). mTORC2 controls cell survival by regulating the

activity of AGC kinases, such as AKT, SGK1, and regulates the stability

of nascent peptide chains. Studies have shown that more than 70% of

cancer patients have excessive activation of mTOR (96).

A variety of factors can affect the phosphorylation of 4EBPs, such as

endotoxin (LPS), insulin-like growth factor-1 protein (IGF-1) and

branched-chain amino acids (99). LPS can transiently decrease

phosphorylated 4EBP1 and increase the binding of 4EBP1 to eIF4E,

leading to downregulation of IGF-1 expression (100), and 4EBP1 is

inactivated by hyperphosphorylation in response to IGF-1 stimulation

(101). In addition, O-glucoylation of 4EBP1 may regulate interaction

between eIF4E and eIF4G, for example, when the level of O-

glucoylation increases the binding of eIF4E to eIF4G decreases (102).
6.3 Phosphorylation and sumoylation
of eIF4E

6.3.1 Phosphorylation of eIF4E
The only kinases that phosphorylate eIF4E are mitogen-activated

protein kinase interaction kinases MNK1 and MNK2 (103). The

phosphorylation of eIF4E can stimulate the translation of tumor-

promotingmRNAs, thus enhancing its carcinogenic characteristics (104).

RAS-RAF-MEK-ERK-MNK and ASK1-MKK3/6-p38-MNK cascade

reactions activate transcription factors and regulate gene expression. The

cascade involves three upstream kinases, namely mitogen-activated protein

kinase (MAPK), MAPK kinase (MAPKKs/MEK/MKK) and MAPKK

kinase (MAPKKKs). The three kinases integrate upstream signals and
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transmit them to a series of downstream effectors.MAPK pathway has four

main branches, namely extracellular signal-regulated protein kinase (ERK),

p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal

kinase (JNK) and extracellular signal-regulated protein kinase 5 (ERK5)

(105). MEK1 andMEK2 are activators of ERK1/2, MEK5 is an activator of

ERK5,MKK4 andMKK7 are activators of JNK, andMKK3 andMKK6 are

activators of p38 MAPK.

6.3.1.1 RAS-RAF-MEK-ERK-MNK pathway

The process of phosphorylation of eIF4E by RAS-RAF-MEK-ERK-

MNK pathway can be divided into five stages (Figure 6). In the first stage,

RAS protein recruits and activates protein kinase RAF. RAS protein is

related to many physiological processes such as cell metabolism, cell

proliferation and apoptosis (106). RAS is often activated in a variety of

human cancers (106). About 19% of cancer patients have RAS mutations

(107). The RASmutation that causes the constitutive activation ofMAPK

pathway is the most common mutation in human cancers (108). In the

second stage, RAF, as MAPKKK, starts the activity of MEK by

phosphorylating the activated fragment of MEK. In the third stage,

MEK transmits signals by phosphorylating the activated fragment of

ERK1/2. ERK1 and ERK2 belong to the mitogen activated protein kinase

family. MAPK/ERK pathway is related to cell proliferation,

differentiation, migration, aging and apoptosis (105). In the fourth

stage, activated ERK1/2 is transferred to the nucleus to phosphorylate a

variety of substrates including transcription factors (108–110). In the fifth

stage, MNK1 andMNK2 phosphorylate the conserved site S209 of eIF4E

after they were activated by ERK and p38 (103, 111). When eIF4E is

combined with the N-terminal of eIF4G, MNK1/MNK2 is combined

with the C-terminal of eIF4G. In other words, MNK phosphorylates S209

of eIF4E with eIF4G as the docking site (112, 113).

6.3.1.2 ASK1-MKK3/6-p38-MNK pathway

The process of phosphorylation of eIF4E by ASK1-MKK3/6-p38-

MNK pathway can be divided into four stages (Figure 6). In the first

stage, apoptosis signal regulated kinase 1 (ASK1) is theMAPKKK of JNK

and p38 MAPK pathways. ASK1 is preferentially activated by various

cytotoxic stressors and plays a key role in various cellular responses (114).

In the second stage, ASK1 activates two different subgroups of MAPKK,

SEK1 (or MKK4) and MKK3/MKK6. In the third stage, MKK3/MKK6

activates the p38 subgroup of MAPK (115, 116). In the fourth stage, p38

MAPK activates MNK to phosphorylate eIF4E.

6.3.2 Sumoylation of eIF4E
Many targets related to sumoylation are linked to transcription,

DNA repair and nucleocytoplasmic transport. Sumoylation of eIF4E

can enhance its translation activity (117) and promote the formation of

active eIF4F, and its destruction can inhibit the translation of eIF4E-

dependent mRNAs. More than 20% of eIF4E combined with cap

structure of mRNAs are sumoylated, which indicates that

sumoylation may be crucial to the functions of eIF4E at the initiation

of translation. Sumoylation does not directly affect the cap binding

activity of eIF4E, but promotes the dissociation of eIF4E with 4EBP1.

At the molecular level, sumoylation may regulate the function of

proteins by changing their conformations. The conformational

change of eIF4E may increase its affinity with proteins that have a

certain conformation (such as eIF4G), and decrease its affinity with

4EBP1 and other proteins. Phosphorylation of S209 is necessary for
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eIF4E sumoylation (117, 118), while phosphorylation of eIF4E does not

require its sumoylation. Histone deacetylases (HDACs) induce the

formation of active eIF4F complexes by stimulating eIF4E

sumoylation (119).
7 EIF4E and tumorigenesis

EIF4E plays a crucial role in the malignant transformation,

progression and drug resistance of many human solid tumors (120).

When tissue cells are stimulated by growth factors, mitogens, et al.,

multiple pathways work together to increase the expression and activity

of eIF4E. Overexpression of eIF4E can selectively enhance the translation

of weak mRNA that is not expressed or weakly expressed in normal cells,

resulting in the abnormal expression of these genes related to cell cycle,

vascular growth and cell survival. Then the translation of multiple

essential proteins in the process of tumor occurrence and development

is increased, promoting cell proliferation and malignant transformation,

increasing the malignant degree of tumor tissues, facilitating the

formation of tumor blood vessels and thus providing more nutrition

for tumor tissues, which is conducive to the growth, invasion and

metastasis of tumor cells. There is a common mechanism for eIF4E in

different cancers: eIF4E mediates normal cell proliferation, but induces

tumorigenesis when it is dysregulated and over expressed (121). The

expression of eIF4E in tumor tissue is significantly higher than that in

normal tissue. With the progress of cancer, the expression of eIF4E is

increasing. In addition, overexpression of eIF4E will increase the

probability of cancer recurrence. Therefore, eIF4E is a marker of tumor

progression, malignant transformation, metastasis, and poor prognosis. It

is also a sensitive molecular marker in tumor detection (Table 2).
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7.1 Expression of eIF4E in
laryngeal carcinoma

Franklin et al. showed that eIF4E in the tumor area of patients was

over expressed, and the expression of FGF2 and VEGF was increased.

The overexpression of eIF4E at the incisal edge would increase the

probability of tumor recurrence (129). Liang et al. found that eIF4E was

over expressed in laryngeal squamous cell carcinoma samples, but not in

vocal cord polyps samples. Overexpression of eIF4E led to up regulation

of bFGF. EIF4E and bFGF played a synergistic role in the genesis,

development, invasion and metastasis of laryngeal squamous cell

carcinoma (130). Yi et al. detected tumor markers such as Cyclin D1,

p53 and eIF4E at the surgical margin, and the results showed that eIF4E

was the most sensitive molecular indicator among these molecules (131).
7.2 Expression of eIF4E in lung cancer

Chan et al. found that the overexpression of 4EBP1 led to the

decrease of eIF4E, and the expression of FGF2 and VEGF was

inhibited, which could inhibit the proliferation of K-RASLA1 mouse

lung cancer cells (132). According to Dong et al., the expression of

eIF4E in the serum of NSCLC patients was significantly higher than

that in healthy individuals, and eIF4E was an independent prognostic

factor for shortening overall survival and progression free survival

(133). According to Qi et al., eIF4E was highly expressed in multiple

lung cancer cell lines, and siRNA-eIF4E could significantly inhibit

lung cancer cell proliferation (134). Yoshizawa et al. showed that the

overexpression rate of p-eIF4E in 300 NSCLC tissues was 39.9%,

suggesting that the activity of eIF4E in NSCLC was increased (135).
FIGURE 6

Regulation mechanism of eIF4E activity.
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7.3 Expression of eIF4E in breast cancer

Kerekatte et al. showed that eIF4E was overexpressed in breast

carcinomas, but not in normal breast tissue and benign breast lesions

(hyperplasia or inflammation) (136). Derek et al. believed that the

expression level of eIF4E was related to tumor recurrence, and eIF4E

might increase the risk of recurrence of breast cancer (137). Avdulov

et al. found that the level of p-4EBP1 in breast cancer cells was

increased, and the assembly ability of eIF4F was enhanced (53). Yang

et al. showed that the overexpression of eIF4E was related to the

formation of various human malignant tumors, including breast

cancer (138). RNA interference system driven by the Survivin

promoter efficiently and specifically downregulated eIF4E

expression in human breast cancer cells but not in normal human

breast epithelial cells. Therefore, RNAi driven by Survivin promoter

targeting eIF4E could be used as an adjuvant therapy tool for human

breast cancer, with tumor specificity and efficiency (120).
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7.4 Expression of eIF4E in head and neck
squamous cell carcinoma

Haydon et al. found that the amplification and overexpression of

eIF4E gene gradually increased from normal head and neck tissues to

benign tumors, and ultimately to invasive cancer cells in the head and

neck. This expression characteristic of eIF4E makes it a potential

tumor detection indicator (68). Patients with head and neck

squamous cell carcinoma (HNSCC) have a high risk of metastasis

and recurrence, and aberrant activation of PI3K/AKT/mTOR

signaling occurs in approximately 80% of HNSCC, which has been

suggested as a prognostic biomarker for patients with recurrence or

metastasis (139). The expression of eIF4E was elevated in HNSCC,

and its overexpression made VEGF and FGF2 preferentially up-

regulated. Inhibition of eIF4E expression by antisense RNA could

reduce the tumorigenicity and angiogenesis of cells. Antisense RNA

therapy of eIF4E might be used as an adjuvant treatment for head and
TABLE 2 The hazard ratio of eIF4E in various cancers.

Cancer Disease progression Positive rate

Laryngeal carcinoma (122) 10mm incision margin of supraglottic carcinoma 22.20%

5mm incision margin of supraglottic carcinoma 50.90%

Supraglottic carcinoma 91.30%

10mm incision margin of hypopharyngeal carcinoma 58.82%

5mm incision margin of hypopharyngeal carcinoma 82.35%

Hypopharyngeal carcinoma 86.70%

Squamous cell carcinoma of lung (123) Normal lung tissue 30.00%

Paracancerous tissue 50.00%

Squamous cell carcinoma of lung 75.00%

Breast cancer (124) Paracancerous tissue 10.00%

Breast cancer 87.50%

Cervical carcinoma (125) Chronic cervicitis 9.50%

Cervical intraepithelial neoplasia I 40.00%

Cervical intraepithelial neoplasia II-III 61.30%

Invasive carcinoma 90.50%

Nasopharyngeal carcinoma (126) Chronic inflammatory tissue of nasopharyngeal mucosa 10.00%

Advanced nasopharyngeal carcinoma tissue 66.67%

Gastric cancer (127) Chronic non-atrophic gastritis 0

Chronic atrophic gastritis 16.70%

Low grade intraepithelial neoplasia 20.00%

High grade intraepithelial neoplasia 59.30%

Gastric cancer 91.80%

Renal clear cell carcinoma (128) Paracancerous tissue 27.50%

Renal clear cell carcinoma 77.50%
Positive means eIF4E is over expressed, negative means eIF4E is not over expressed.
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neck cancer, especially when eIF4E was found to be elevated at the

surgical margin (140). The expression of eIF4E and Cyclin D1

increases in HNSCC, both of which could stimulate cell cycle

progression and transform squamous epithelial cells (141). In

HNSCC, eIF4E seems to be a more significant prognostic indicator

than p53 (142). The expression of eIF4E relative to 4EBP1 is a more

precise predictor of HNSCC and its progression (143).
7.5 EIF4E and colorectal carcinoma

Niu et al. showed that eIF4E was an indicator of tumor

progression and poor prognosis in colon cancer patients (144). Gao

et al. found that eIF4E was up-regulated in CRC, and its expression

frequency (EF) in cancer tissues was higher than that in normal

adjacent tissues (145). Ruan et al. showed that eIF4E could

significantly affect CRC organoid growth (146).
7.6 EIF4E and leukemia

The elevation of eIF4E level will lead to the imbalance of eIF4E-

dependent mRNAs transport, which will hinder the differentiation of

granulocytes and monocytes, especially in myeloid leukemia and may

contribute to the occurrence of leukemia. This abnormality of eIF4E is

caused by the imbalance of PRH (87).

In acute myeloid leukemia (AML), the increased expression and

phosphorylation of eIF4E are associated with poor prognosis, and

phosphorylated eIF4E can be used as a prognostic indicator and

potential anti-cancer target for biological therapy of AML (147, 148).

In chronic myeloid leukemia (CML), the expression and

phosphorylation level of eIF4E are up-regulated, and the activity of

eIF4E in patients with advanced CML is significantly increased. In

addition, abnormal activation of eIF4E in leukemic stem cells of CML

in blast phase significantly increases the synthesis of b-Catenin (149).

Changes of many signal pathways have been found in acute

lymphoblastic leukemia (ALL), including RAS-RAF-MEK-ERK and

PI3K-AKT-mTOR pathways (150). Inhibition of eIF4E may be a new

method to treat pre-B cell leukemia while preserving the development

and function of normal B cells (7).
8 Targeted therapy of eIF4E

EIF4E specific antisense oligonucleotide (4EASO) is a new drug that

can reduce the level of eIF4E and the formation of eIF4F complex (151,

152). 4EASO can effectively down-regulate the expression of eIF4E

protein in breast and prostate tumor xenografts (153), significantly

inhibits tumor growth by binding to eIF4E mRNA, triggering RNA

degradation mediated by RNA enzyme H (153). The early generation of

ASO lacks nuclease resistance and tissue stability, resulting in a relatively

short half-life and significantly reduced efficacy. In contrast, the efficacy,

nuclease resistance and tissue half-life of the second generation ASOwere
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significantly improved (154). LY2275796 is a second-generation

antisense anticancer drug (Figure 7 and Table 3).

Rapamycin is an FDA approved antibiotic and immunosuppressant

against mTOR, which can inhibit the kinase activity of mTOR1. Unlike

rapamycin analogues, ATP competitive mTOR inhibitors target ATP

binding sites (179), weakening the activity of mTORC1 and mTORC2

(179, 180). At present, many clinical trials of ATP competitive mTOR

inhibitors for malignant tumors are under way (179).

Trametinib is a clinically approved anti MEK drug, but its

efficiency is low, which may be due to the rapid development of

drug-resistant diseases. Trametinib’s transience is attributed to

negative feedback loop inhibition, which reactivates MAPK

pathway through various compensatory mechanisms (181). For

some xenografts, the combined treatment of trametinib and

pazopanib resulted in a continuous reduction of tumor volume by

50% or more (182).

The anti-cancer drug eFT508 (tomivosertib) developed by Davide

et al. selectively blocked the phosphorylation of eIF4E by targeting

inhibition of MNK1/2, thus inhibiting the weight gain after eating a

high-fat diet. Studies showed that eFT508 alone can enhance anti-

tumor immunity. This also supports the statement that there is a

connection between eIF4E, obesity and cancer development (86, 183).

Ribavirin competitively inhibits the binding of eIF4E to the 5' end cap

of mRNAs, as well as has an anti-proliferation effect. It can down regulate

the phosphorylation levels of AKT, mTOR, 4EBP1 and eIF4E proteins in

the mTOR-eIF4E signal pathway, as well as the phosphorylation levels of

MEK, ERK, MNK1 and eIF4E proteins in the ERK-MNK1-eIF4E signal

pathway. Ribavirin significantly increased the binding of eIF4E to 4EBP1,

and decreased the binding of eIF4E to eIF4G. Ribavirin effectively targets

eIF4E of leukemia patients with poor prognosis, leading to significant

clinical reactions including complete remission and partial remission

(148). The combination of ribavirin and imatinib can enhance the anti-

leukemia effect (184).

EIF4E and b-Catenin are key regulators of the growth and survival of
lung cancer cells, and their pharmacological inhibition may have

therapeutic effects on lung cancer (185). Phosphorylation of eIF4E

S209 can activate b-Catenin (186). Rifabutin inhibits eIF4E

phosphorylation, leading to the decreased phosphorylation of b-
Catenin and its subsequent transcriptional activity. The absence of

eIF4E eliminates the effect of rifabutin on the inhibition of b-Catenin
activity, which further confirms that rifabutin plays a role in lung cancer

cells by targeting eIF4E and b-Catenin. The overexpression of b-Catenin
reverses the inhibition of rifabutin on cell growth and survival.

EIF4E regulates gene translation and has been proved to play an

important role in the progression of lung cancer. BET protein can

regulate gene transcription. BET inhibitors JQ1 and I-BET151 inhibit

the growth of NSCLC and down regulate the expression of eIF4E.

When BRD4, a member of the BET family, was knocked out by

siRNA, the growth of NSCLC was inhibited and the level of eIF4E

protein was reduced. In addition, overexpression of eIF4E partially

eliminated the growth inhibition function of JQ1, while knockout of

eIF4E enhanced the growth inhibition function of JQ1. This indicates

that JQ1 and I-BET151 inhibit the growth of NSCLC by inhibiting
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BET to reduce the transcription and subsequent protein expression of

eIF4E (176, 177).

4EGI-1, a small molecular compound targeting to inhibit eIF4E-

eIF4G binding, can reduce the expression of c-Myc without affecting

the expression of b-actin (173) and has been proved to play an anti-

cancer role in human cancer cells (187) without obvious toxicity (175).

EGPI-1 is a small molecule compound that can induce the down-

regulation of eIF4E downstream proteins such as c-Myc. Further

studies showed that EGPI-1 could significantly inhibit the

proliferation of various lung cancer cells, such as A549, NCIL-

H460, NCI-H1650 and 95D, but did not affect the proliferation of

HUVEC cel l s (134) . EGPI-1 showed good safe ty and

pharmacokinetics characteristics in vivo. These results indicate that

EGPI-1 can be used as an excellent lead compound to develop new
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anti-cancer drugs targeting eIF4E-eIF4G interface, and also as a

chemical genetic probe to study the mechanism of eIF4E in

biological processes and human diseases (188).
9 Outlook

This review mainly introduces eIF4E from its structure, biological

function, main factors affecting its activity, and targeted drugs.

However, there is still a lot of content not covered in this paper.

EIF4E mediates the proliferation of normal cells, but induces

tumorigenesis when over expressed. Maintaining the level of eIF4E

below its cancer promoting threshold is an important anti-cancer

measure for normal cells (189). First of all, for future clinical trials, we
frontiersin.or
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Chemical structures of inhibitors. Chemical structures are sourced from the DrugBank database (https://go.drugbank.com/).
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TABLE 3 Inhibitors of eIF4E activation pathway.

Drugs Targets Mechanisms Related diseases Clinical
trials

LY2275796 eIF4E Complementing with eIF4E mRNA, it promotes RNA degradation mediated by
RNA enzyme H and blocks the translation of eIF4E mRNA.

Cancer/tumor (unspecified) and solid tumor Phase I

Rapamycin mTOR It plays an immunosuppressive role by inhibiting the activation and
proliferation of T cells. It combines with FKBP12 to form rapamycin-FKBP12
complex, which can inhibit the activity of mTOR.

Hysteromyoma Phase IV

Squamous cell skin cancer Phase II

Solid tumor Phase I

Temsirolimus
(155)

mTORC1 It specifically binds to the C-terminal FRB region of mTOR, prevents mTOR
from modifying downstream target proteins, and inhibits the proliferation and
growth of tumor cells by participating in the regulation of various substances
metabolism.

Non Hodgkin’s lymphoma Phase IV

Hepatoblastoma, malignant lymphoma,
mantle cell lymphoma, tumor, renal cell
carcinoma, bladder cancer

Phase III

Breast cancer, myeloma, non-small cell lung
cancer

Phase II

Salirasib RAS It is a FTS simulator, which simulates the carboxyl terminal FTS related
structure shared by all RAS proteins, and removes the active RAS proteins from
the cell membrane (156, 157)

Pancreatic cancer, non-small cell lung cancer
(158)

Phase II

Sorafenib RAF It has the activity of inhibiting RAF kinase and several receptor tyrosine
kinases, inhibits VEGF, and downregulates the anti-apoptotic protein Mcl-1 in
a MEK/ERK independent manner (159–161)

Hepatocellular carcinoma, renal cell
carcinoma (159–161)

Phase IV

Acute myeloid leukemia, granulocytic
sarcoma, skin leukemia, bone marrow tumor,
fibromatosis desmoidosis, breast cancer, non-
small cell lung cancer, melanoma

Phase III

Differentiated thyroid carcinoma,
gastrointestinal stromal tumor

Phase II

Pazopanib Targeting VEGFR1, VEGFR2, VEGFR3, PDGFRa, PDGFRb And c-kit as a
vascular endothelial growth factor receptor inhibitor, it can act directly on
tumor cells as a RAF inhibitor (162, 163)

Metastatic clear cell renal cell carcinoma,
adult soft tissue sarcoma

Phase IV

Renal cell carcinoma, ovarian carcinoma,
sarcoma

Phase III

Vemurafenib As a competitive inhibitor of BRAF mutants, it is particularly effective for
BRAF V600E mutation (164, 165). Vemurafenib blocks the downstream process
to inhibit tumor growth and ultimately trigger apoptosis.

Malignant melanoma (164, 165) Phase IV

Biliary duct cancer/bladder cancer, cancer/
tumor/salivary cancer/solid tumor

Phase II

Encorafenib It plays a role in regulating MAP kinase/ERK signaling pathway, thus affecting
cell division, differentiation and secretion.

Solid tumor Phase IV

Melanoma (166, 167), biliary tract tumor,
metastatic colorectal cancer

Phase III

Regorafenib It is a small molecule inhibitor of various membrane binding and intracellular
kinases and participates in normal cell functions and pathological processes.

Metastatic colorectal cancer and
gastrointestinal stromal tumor (168)

Phase IV

Gastroesophageal cancer, liver cancer Phase III

Lifirafenib Lifirafenib effectively inhibits RAF kinase family and EGFR activity. Adult solid tumor (169, 170) Phase II

Trametinib MEK1/2 It is a reversible allosteric inhibitor, which can reverse the activation of MEK1
and MEK2 and the activity of MEK1 and MEK2 kinase.

Melanoma (171), high grade glioma, non-
small cell lung cancer, rare cancer, solid
tumor

Phase IV

Soft tissue sarcoma, differentiated thyroid
carcinoma

Phase III

Selumetinib Regulate the level of MEK. Metastatic/uveal melanoma, low-grade
glioma, neurofibromatosis type 1, glioma of
visual pathway, differentiated thyroid cancer

Phase III

Adenocarcinoma, non-small cell lung cancer,
squamous cell carcinoma,
cholangiocarcinoma, gallbladder carcinoma

Phase II

Tomivosertib
(eFT508)

By selectively inhibiting MNK1/2, it plays a role in multiple nodes of the cancer
immune cycle, selectively inhibiting eIF4E phosphorylation, thus promoting fat
burning (86).

Lymphoma, solid tumor, non-small cell lung
cancer, hepatocellular carcinoma, triple
negative breast cancer, advanced solid tumor

Phase II

(Continued)
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should focus on setting up prospective randomized controlled studies to

analyze the levels of patients' eIF4E and 4EBPs as indicators of disease

detection, so as to formulate effective treatments at the early stage of the

disease. In addition, the exact mechanism of tumor occurrence,

development, and metastasis mediated by eIF4E is still poorly

understood, and the relationship between eIF4E and tumors should be

paid attention to and further studied. The sensitivities of different tumors

to the same drug are also different, and the reasons for this difference

deserve further in-depth study in order to achieve efficient treatment and

reduce side effects. Finally, using eIF4E as a molecular target for tumor
Frontiers in Oncology 14
therapy, establishing models that multiple anti-tumor drugs are used in

combination may provide new ideas for improving the efficacy and

reducing side effects. For example, trametinib and pazopanib, umbilisib

and carfilzomab, as well as patamine A and silvestrol can be used in

combination to achieve anti-tumor effects.

To sum up, eIF4E will become an important target for the

treatment of tumors in the future, and as a highly sensitive

biomarker in tumor detection, it will be used for early diagnosis

and evaluation of prognosis, opening up broad prospects for the

treatment of malignant tumors.
TABLE 3 Continued

Drugs Targets Mechanisms Related diseases Clinical
trials

and recurrent or refractory microsatellite
stable colorectal cancer

Ribavirin
(155)

eIF4E It directly binds to eIF4E and competitively inhibits the binding of eIF4E to the
5' end cap of mRNAs, thereby inhibiting mRNAs output and translation
function of eIF4E.

Hematologic malignancies, liver cancer Phase IV

Acute myeloid leukemia (172), breast cancer,
oropharyngeal cancer, prostate cancer and
other solid tumors

Phase II

Rifabutin eIF4E, b
protein

Rifabutin plays a role in lung cancer cells by targeting eIF4E and b-Catenin. Lung cancer ——

4EGI-1 eIF4E It has high affinity for eIF4E and can inhibit the interaction between eIF4E and
eIF4G as well as protein and protein (173, 174), leading to the blocking of
eIF4E binding to eIF4G.

Leukemia (173), lung cancer, multiple
myeloma, breast cancer (175)

——

EGPI-1 RAS,
eIF4E,
4EBP1

The expression of RAS, p-MNK, p-ERK and p-eIF4E were significantly
inhibited by EGPI-1. It interferes with the interaction between eIF4E and
eIF4G, inhibits 4EBP1 phosphorylation, destroys mitochondrial function
through mTOR/4EBP1 signal pathway, and induces autophagy, apoptosis and
reactive oxygen species generation (134).

Lung cancer ——

JQ1 eIF4E JQ1 and I-BET151 reduce eIF4E transcription and subsequent mRNAs and
proteins expression by inhibiting BET (176, 177).

Lung cancer (176, 177) ——

I-BET151

Umbralisib
(155)

4EBP1 Umbralisib and carfilzomib synergistically inhibit the phosphorylation of
4EBP1 and the translation of c-myc.

Recurrent diffuse large B-cell lymphoma,
follicular lymphoma, mantle cell lymphoma

Phase II

Recurrent and refractory marginal cell
lymphoma and follicular lymphoma in adults

Phase I

Carfilzomib
(155)

Recurrent or refractory multiple myeloma Phase IV

Multiple myeloma, plasma cell myeloma Phase III

Mantle cell lymphoma Phase II

Patamine A
(155, 178)

eIF4A Patamine A and silvestrol promote the RNA binding ability, ATPase and
helicase activity of eIF4A, leading to the removal of eIF4A from eIF4F complex
through RNA mediated eIF4A isolation.

Melanoma, non-small cell lung cancer and
colon cancer

——

Silvestrol
(155, 178)

Silvestrol induces autophagy and Caspase mediated apoptosis. Melanoma, breast cancer and prostate cancer,
chronic/acute lymphoblastic leukemia, acute
myeloid leukemia, hepatocellular carcinoma,
brain cancer (meningioma)

——

Guanabenz
(178)

eIF2a It is a type of selective agonist for a-2 adrenoceptor, often used as
antihypertensive drug, inhibiting dephosphorylation of eIF2a induced by stress.

Hypertension and parasitic disease ——

Selinexor
(155)

XPO1 It blocks the nuclear output of tumor suppressors (p53, p21 and BRCA1/2)
mediated by XPO1.

Multiple myeloma, endometrial carcinoma Phase III

Acute myeloid leukemia, breast cancer Phase II
fro
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