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Rudiyanto Gunawan 1,6

1Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Zurich, 8093, Switzerland 
2Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, 
F69364, France 
3Équipe Dracula, Inria Center Lyon, Villeurbanne, F69100, France 
4St-Antoine Research Center, Ecole Pratique des Hautes Etudes PSL, Paris, F-75012, France 
5CNRS, Inria, IECL, Université de Lorraine, Nancy, F-54000, France 
6Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA 

First published: 20 Apr 2023, 12:426  
https://doi.org/10.12688/f1000research.131861.1
Latest published: 20 Jul 2023, 12:426  
https://doi.org/10.12688/f1000research.131861.2

v2

 
Abstract 
Background: Single-cell studies have demonstrated the presence of 
significant cell-to-cell heterogeneity in gene expression. Whether such 
heterogeneity is only a bystander or has a functional role in the cell 
differentiation process is still hotly debated. 
Methods: In this study, we quantified and followed single-cell 
transcriptional uncertainty – a measure of gene transcriptional 
stochasticity in single cells – in 10 cell differentiation systems of 
varying cell lineage progressions, from single to multi-branching 
trajectories, using the stochastic two-state gene transcription model. 
Results: By visualizing the transcriptional uncertainty as a landscape 
over a two-dimensional representation of the single-cell gene 
expression data, we observed universal features in the cell 
differentiation trajectories that include: (i) a peak in single-cell 
uncertainty during transition states, and in systems with bifurcating 
differentiation trajectories, each branching point represents a state of 
high transcriptional uncertainty; (ii) a positive correlation of 
transcriptional uncertainty with transcriptional burst size and 
frequency; (iii) an increase in RNA velocity preceding the increase in 
the cell transcriptional uncertainty. 
Conclusions: Our findings suggest a possible universal mechanism 
during the cell differentiation process, in which stem cells engage 
stochastic exploratory dynamics of gene expression at the start of the 
cell differentiation by increasing gene transcriptional bursts, and 
disengage such dynamics once cells have decided on a particular 
terminal cell identity. Notably, the peak of single-cell transcriptional 
uncertainty signifies the decision-making point in the cell 
differentiation process.

Open Peer Review

Approval Status   

1 2

version 2

(revision)
20 Jul 2023

view

version 1
20 Apr 2023 view view

Alessandro Giuliani , Istituto Superiore di 

Sanità, Rome, Italy

1. 

Geneviève Dupont, Universite Libre de 

Bruxelles, Brussels, Belgium

2. 

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 1 of 22

F1000Research 2023, 12:426 Last updated: 05 AUG 2023

https://f1000research.com/articles/12-426/v2
https://f1000research.com/articles/12-426/v2
https://orcid.org/0000-0002-6097-5331
https://orcid.org/0000-0002-3676-6513
https://orcid.org/0000-0002-0972-385X
https://orcid.org/0000-0002-6480-7976
https://doi.org/10.12688/f1000research.131861.1
https://doi.org/10.12688/f1000research.131861.2
https://f1000research.com/articles/12-426/v2
https://f1000research.com/articles/12-426/v2#referee-response-188744
https://f1000research.com/articles/12-426/v1
https://f1000research.com/articles/12-426/v2#referee-response-170465
https://f1000research.com/articles/12-426/v2#referee-response-170464
https://orcid.org/0000-0002-4640-804X
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.131861.2&domain=pdf&date_stamp=2023-07-20


Corresponding author: Rudiyanto Gunawan (RGUNAWAN@BUFFALO.EDU)
Author roles: Gao NP: Conceptualization, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation, Writing – 
Review & Editing; Gandrillon O: Conceptualization, Funding Acquisition, Investigation, Supervision, Writing – Original Draft Preparation, 
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Introduction
Cell differentiation is the process through which unspecialized stem cells become more specialized. Because of
its important roles in development, cellular repair, and organismal homeostasis, the molecular mechanisms of cell
differentiation has been the subject of intense scrutiny. Since roughly 50 years ago – along with the promulgation of the
central dogma ofmolecular biology by Francis Crick and the characterization of the lactose operon by François Jacob and
Jacques Monod – the existence of a genetic program has become a prevailing explanation for the cell differentiation
process. Although the details were originally not defined, at least not formally, such a genetic program purports a
constellation of master genes (i.e., transcription factors) that orchestrate the transcription of downstream target genes in a
precise spatiotemporal fashion, resulting in long-lasting alterations in the gene expression patterns (Herskowitz, 1989;
Lewis, 1992; Ohno et al., 1979). A notable experimental evidence substantiating this view is the overexpression of myoD
inducing amyogenic phenotype in seemingly naive cells (Davis et al., 1987). Over the past few decades, the repertoire of
such master genes across numerous stem cell systems, such as Nanog, Oct4, Sox2, BATF and MyoD, has begun to
coalesce (Papili Gao et al., 2017; Sartorelli & Puri, 2018; Whyte et al., 2013).

Recent advances in single-cell technologies has revealed new aspects of the cell differentiation that are incompatible with
the idea of ordered and programmed (i.e., deterministic) gene expression. More specifically, single-cell data paint a
stochastic differentiation process that increases cell-to-cell variability of gene expression. Such an observation has been
made for a wide variety of cell differentiation systems, including chicken erythroid progenitors (Richard et al., 2016),
erythroid myeloid lymphoid (EML) cells (Mojtahedi et al., 2016), mouse embryonic stem cells (mESCs) (Semrau et al.,
2017; Stumpf et al., 2017), and human CD34+ cells (Moussy et al., 2017). Interestingly, a similar increase of gene
expression variation was also observed during the de-differentiation of somatic cells into iPSCs (Buganim et al., 2012).
Stochastic gene expression also appears to have a functional role beyond cell differentiation systems. For example, an
increase in cell-to-cell variability of gene expression has been reported during a forced adaptation of budding yeast cells to
unforeseen challenges (Braun, 2015).

In 1957, ConradWaddington proposed the presently well-known epigenetic landscape that likens the cell differentiation
process to a ball rolling on a downward sloping surface, starting from a state of high cell potency and ending at one of
possibly several states of low cell potency. The landscape itself is shaped by the action of the genes and gene network –
depicted in the less-frequently-shown part B of Waddington’s original figure as a network of ropes that are tied to the
surface, creating valleys and hills. Although the epigenetic landscape was originally proposed only as a metaphor of how
gene regulation governs the cell differentiation process, this landscape has been formalized within the framework of
dynamical systems theory (Huang, 2009; Saez et al., 2022). The valleys in the Waddington’s epigenetic landscape are
equated to stable states of a dynamical system, called attractors, while the hills are often interpreted as energetic barriers.

A number of recent studies provided a graphical representation of the differentiation process based on single-cell
transcriptomic data that conforms with the Waddington’s epigenetic landscape (Fard et al., 2016; Guo & Zheng, 2017;
Shi et al., 2018; Zhang & Zhou, 2018; Zwiessele & Lawrence, 2017). More specifically, these studies reconstructed the
epigenetic landscape from single-cell gene expression data using probabilistic and quasi-potential methods, for example
by applying Hopfield neural networks (Fard et al., 2016; Guo & Zheng, 2017), a cell-density based strategy (Zhang &
Zhou, 2018), network entropymeasurements (Shi et al., 2018) or more recently Large Deviation Theory (Lv et al., 2014).
However, with the exception of Fard et al. (2016) and Lv et al. (2014), the aforementioned studies produced monotonic
descent passages during cell differentiation, mimicking closely theWaddington’s epigenetic landscapemetaphor (see for
example (Bhattacharya et al., 2011; Shi et al., 2018)). Also, none of the above studies consider directly the cellular
mechanism that generates stochastic gene transcriptional bursts.

In the present work, we aimed to shed light on the gene transcriptional mechanism behind the rise-then-fall trajectory of
cell-to-cell variability in gene expression observed during the cellular differentiation process (Richard et al., 2016). To
this end, we analyzed a collection of published single-cell transcriptomic datasets from various cell differentiation
systems, comprising both single-cell RT-qPCR (scRT-qPCR) (Bargaje et al., 2017; Guo et al., 2010; Moignard et al.,
2013; Moussy et al., 2017; Richard et al., 2016; Stumpf et al., 2017) and single-cell RNA-sequencing (scRNA-seq)
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(Nestorowa et al., 2016; Treutlein et al., 2016). We employed a likelihood-based analysis using a recent method
CALISTA (Clustering And Lineage Inference in Single-cell Transcriptomics Analysis) (Papili Gao et al., 2020). The
analysis relied on amechanistic model of the stochastic gene transcriptional bursts to describe single-cell gene expression
distribution. Specifically, we introduced a new concept of transcriptional uncertainty at single cell level, and by applying
CALISTA, we reconstructed the transcriptional uncertainty landscapes for the aforementioned cell differentiation
systems. Further, by leveraging the stochastic gene transcriptional model behind CALISTA, we were able identify
possible mechanisms behind the overt trajectories of cell differentiation on the transcriptional uncertainty landscapes
(Coulon et al., 2010). For two additional single-cell datasets, we also evaluated the single-cell RNA-velocity using the
recently published Velocyto method (La Manno et al., 2018). The two-state model parameter analysis, combined with
RNA-velocities, provided insights into the mechanism regulating cell fate decisions, specifically on the role of stochastic
gene transcriptions in the differentiation processes and on the possible mechanism generating this stochasticity.

Methods
Main steps of CALISTA workflow
Herein, we briefly describe the main steps involved in the calculation of single-cell transcriptional uncertainty using
CALISTA (Papili Gao et al., 2020).

Pre-processing.Given anN�G single-cell expressionmatrixM, whereN denotes the number of cells andG the number
of genes, the pre-processing in CALISTA involves two steps: a normalization of the expression datamn,g – i.e. the number
of transcripts of gene g in the n-th cell, and a selection of the most variable genes (Papili Gao et al., 2020).

Cell clustering.CALISTA clustering follows a two-step procedure. The first step involves a greedy optimization strategy
to find cell clustering that maximizes the total cell likelihood, i.e. the sum of the likelihood value for all cells. The single-
cell likelihood value is computed as the joint probability of the cell’s gene expression data, which is set equal to the
product of the probabilities of themRNAcounts for the selected genes based on themRNAdistribution from the two-state
stochastic gene transcription model. To avoid issues with numerical overflow, we use the logarithm of the cell likelihood.
By performing the greedy optimizationmultiple times, a consensusmatrix containing the number of times two cells in the
dataset are put in the same cluster, is generated. In the second and final step, CALISTA generates the cell cluster
assignments by using k-medoids clustering based on the consensusmatrix. The final outcome of CALISTA’s clustering is
the assignment of cells into K clusters and the optimal model parameters for the two-state gene transcription model:
θ g,kð Þ¼ θon,θoff ,θt

� �k

g
: for each gene g in cluster k (Papili Gao et al., 2020). In this case, θon is the normalized rate of the

promoter activation, θoff is the normalized rate of the promoter inactivation, and θt is the normalized rate of mRNA
production when the promoter is active. These parameters are normalized by the rate constant of mRNA degradation θd ,
so that θd ¼ 1.

Lineage progression inference. In CALISTA, cell lineage progression is inferred based on cluster distances – ameasure
of dissimilarity between two clusters. The cluster distance of two cell clusters is defined as the average decrease in the cell
likelihood value if the cells from these two clusters are grouped as one cluster, as opposed to the original clustering. The
lineage progression graph is built by adding transition edges between pairs of clusters in increasing magnitude of cluster
distance until all clusters are connected to at least one other cluster, or based on user-specified criteria.

Single-cell transcriptional uncertainty. The last step in our analysis is to compute the final single-cell likelihood.
Briefly, for each cell, we consider all edges in the lineage progression graph that are adjacent to the cell’s respective
cluster, i.e. edges that eminate from or pointing to the cluster to which the cell belongs. The likelihood of a cell along an
edge is evaluated by interpolating the likelihood values of the cell’s gene expression using the mRNA distributions from
the two adjacent clusters. Each cell is then assigned to the edge alongwhich its interpolated likelihood value is maximum,
and the final cell likelihood is set to this maximum value. The single-cell transcriptional uncertainty is evaluated as the
negative logarithm of the cell likelihood value (NLL). Following the way single-cell likelihood is computed (see Cell
Clustering section above and Papili Gao et al., 2020), the NLL for each cell n, denoted by NLLn, is the sum of the NLL
from every gene g for that cell, i.e. NLLn ¼PNg

g¼1NLL
n
g where Ng denotes the number of genes.

Pseudotimes calculation. We can evaluate the pseudotimes for the cells according to the following procedure. First,
a pseudotime is given to each cluster with a value between 0 (initial cell state) and 1 (final cell fate). Subsequently,
we determine the linear fractional position of each cell along its respective edge at which its interpolated likelihood value
ismaximum (see Single-cell transcriptional uncertainty). The pseudotime of a cell is computed by a linear interpolation of
the pseudotimes of the two clusters adjacent to its assigned edge according to the cell’s linear fractional position on
this edge.
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Epigenetic landscape reconstruction. To visualize the 3D transcriptional uncertainty landscape, we apply dimensional
reduction techniques such as principal component analysis (PCA) or t-SNE on the z-scored expression data, to project the
gene expression of each individual cell on two dimensional axis, which gives the x-y axis of the landscape plot. For the z
axis, we plot the NLL values. The transcriptional uncertainty landscape surface is reconstructed by estimating local
approximation of individual cell 3D coordinates on a regular 30�30 grid by using a publicly available Matlab (R2020a)
surface fitting package called gridfit.

Pre-processing and analysis of single-cell expression datasets
Bargaje et al. scRT-qPCR dataset. The dataset includes the expression profiles of 96 genes from 1896 single cells at eight
different time points (day 0, 1, 1.5, 2, 2.5, 3, 4, 5) during the differentiation of human pluripotent stem cells (iPSCs) into
either mesodermal (M) or endodermal (En) fate (Bargaje et al., 2017). By employing CALISTA, we obtained five cell
clusters and detected a bifurcation event, which gives rise to the two final cell fates. After lineage inference, we
pseudotemporally ordered cells along the inferred differentiation paths (for more details, see (Papili Gao et al., 2020)).

Treutlein et al. scRNA-sequencing dataset. The dataset includes the gene expression profiles of 405 cells during
reprogramming of mouse embryonic fibroblast (MEF) into a desired induced neural (iN) and an alternative myogenic
(M) cell fate (Treutlein et al., 2016).We pre-processed the data usingCALISTA to select the 40most variable genes (10%
of the number of cells) for the transcriptional uncertainty analysis. CALISTA identified four different subpopulations and
successfully recovered the bifurcation event (for more details, see (Papili Gao et al., 2020)).

Richard et al. scRT-qPCR dataset. The dataset contains the expression profile of 91 genes measured from 389 cells at six
distinct time points (0, 8, 24, 33, 48, 72 h) during the differentiation of primary chicken erythrocytic progenitor cells
(T2EC) (Richard et al., 2016). Following the CALISTA pre-processing step, we removed cells in which less than 75% of
the genes are expressed. Then, we selected the subset of genes with at least one non-zero expression values. A total of
354 cells and 88 genes were considered in the transcriptional uncertainty analysis. Based on eigengap heuristics (Papili
Gao et al., 2020; vonLuxburg, 2007), we grouped cells into six optimal clusters and ordered cells along the inferred linear
trajectory (see the Extended data S8 Figure (Gao et al., 2023)).

Stumpf et al. scRT-qPCR dataset. The dataset comprises the single-cell expression of 97 genes at seven time points (0, 24,
48, 72, 96, 120, 168 h) during neural differentiation ofmouse embryonic stem cells (E14 cell line) (Stumpf et al., 2017). In
the data pre-processing, we excluded cells in which less than 70% of genes are expressed. Then, we selected genes with at
least one non-zero expression values. A total of 276 cells and 93 genes were considered for for the transcriptional
uncertainty analysis. Based on eigengap heuristics (Papili Gao et al., 2020), we grouped cells into five optimal clusters
and ordered cells along the inferred linear trajectory (Extended data S9 Figure (Gao et al., 2023)).

Moussy et al. scRT-qPCR dataset. The single-cell expression dataset includes normalized Ct values for 91 genes in
435 cells captured at five distinct time points (0, 24, 48, 72, 96 h) during human cord blood-derived CD34+ differentiation
(Moussy et al., 2017). We employed CALISTA to group cells into seven clusters, reconstruct the developmental
trajectory and calculate pseudotimes (Extended data, S10 Figure (Gao et al., 2023)).

Guo et al. scRT-qPCR dataset. The dataset comprises the single-cell expression values of 48 genes from 387 individual
cells isolated at four distinct developmental cell stages, from 8-cell stage mouse embryos to 64-blastocyst (Guo et al.,
2010). By applying CALISTA, we identified seven different subpopulations along the differentiation process, and the
inferred lineage hierarchy pinpointed two bifurcations events at 32- and 64-cell stage (Extended data, S11 Figure (Gao
et al., 2023)). The timing of the lineage bifurcations coincides with twowell-known branching points: one at 32-cell stage
when totipotent cells differentiate into trophectoderm (TE) and inner cell mass (ICM), and another at 64-cell stage when
ICM cells differentiate into primitive endoderm (PE) and epiblast (E).

Nestorowa et al. scRNA-sequencing dataset. The dataset comprises single-cell gene expression of 1656 cells frommouse
hematopoietic stem cell differentiation (Nestorowa et al., 2016).We pre-processed the data by removing genes with non-
zero values in less than 10% of the cells. Then, we selected 433most variable genes, which is 10% of the number of genes
after the previous pre-processing step, for the transcriptional uncertainty analysis (Papili Gao et al., 2020). We set the
optimal number of clusters based on the original study (Nestorowa et al., 2016), which reported six different sub-
populations and two bifurcation events: the first one producing common myeloid progenitor (CMP) from lymphoid-
primed multipotent progenitors (LMPP), and the second one generating granulocyte–monocyte progenitors (GMP) from
megakaryocyte-erythroid progenitors (MEP) (Extended data, S12 Figure (Gao et al., 2023)).

Page 5 of 22

F1000Research 2023, 12:426 Last updated: 05 AUG 2023

https://uk.mathworks.com/products/matlab.html
https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit


Moignard et al. scRT-qPCR dataset. The dataset contains the single-cell expression level of 18 transcription factors
measured in a total of 597 mouse bone marrow cells during hematopoietic differentiation. By applying CALISTA, we
successfully identified the five subpopulations and the two branching points detected in the original study (Moignard
et al., 2013): long-term hematopoietic stem cells (HSC) differentiating intomegakaryocyte–erythroid progenitors (PreM)
or lymphoid-primed multipotent progenitors (LMPP); LMPP cells differentiating into granulocyte–monocyte progen-
itors (GMP) and common lymphoid progenitors (CLP) (for details see (Papili Gao et al., 2020)).

Pairwise correlation analysis of transcriptional uncertainty and transcriptional burst size and frequency
We define gene transcriptional burst size and burst frequency using the two-state model parameters, as follows:

Burst size S¼ θt
θoff

(1)

Burst frequency F¼ θon (2)

The burst size and burst frequency for each cluster k and gene g, denoted by Sg,k andFg,k, respectively, are evaluated using
the cluster parameters θ g,kð Þ¼ θon,θoff ,θt

� �k

g
obtained from CALISTA single-cell clustering analysis. Meanwhile, the

average gene-wise NLL values for each single-cell cluster is computed as follows:

NLLg,k ¼
PNk

n¼1NLL
n
g,k

Nk
(3)

where NLLn
g,k is the negative log-likelihood of cell n based only on the expression of gene g in cluster k, andNk is the total

number of cells in cluster k. Finally, the Pearson correlation coefficients between the burst size Sg,k and NLLg,k and
between the burst frequency Fg,k and NLLg,k are computed for each dataset to quantify the pairwise associations between
these variables. The statistical significance of the correlation coefficients is determined using the t-test—specifically, by
evaluating the score t¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn�2Þ=ð1� r2Þp
where r is the sample correlation coefficient.

RNA velocity analysis
Cells and genes were first filtered based on the pre-processing strategy in the original publication by La Manno and
colleagues (La Manno et al., 2018), which resulted in a total of 1720 cells and 1448 genes from human glutamatergic
neurogenesis, and a total of 18140 cells and 2141 genes from the mouse hippocampus dataset. We further reduced the
number of genes to only the top 500 highly variable genes for the transcriptional uncertainty analysis. The cell cluster
assignments generated byVelocyto – the algorithm for computingRNAvelocity from the original publication (LaManno
et al., 2018) –were considered, instead of using CALISTA. Based on the clustering, we employed CALISTA to generate
the lineage progression and cell pseudotimes (Extended data, S13 Figure (Gao et al., 2023)). The RNA velocity and
transcriptional uncertainty values for the top 500 genes were calculated by employing Velocyto and CALISTA,
respectively. The cell-wise RNA velocity was set to the Euclidean norm of the vector of RNA velocities for each cell,
while the cell-wise NLLs was

NLLk
n ¼

P500
g¼1NLL

n
g

500
(4)

Results
Single-cell transcriptional uncertainty landscape
In this work, we used CALISTA (Papili Gao et al., 2020), a likelihood-based bioinformatics toolbox designed for an end-
to-end analysis of single-cell gene expression data, to evaluate the transcriptional uncertainty of each individual cell based
on its gene expression data (see the Extended data, Supplementary Notes S1 (Gao et al., 2023)). CALISTA uses the two-
state model of stochastic gene transcription bursts to characterize the steady state distribution of mRNA counts in
individual cells (Peccoud&Ycart, 1995). In themodel, a gene promoter stochastically switches between theON andOFF
state, and only in theON state can gene transcription occur. The distribution ofmRNAdepends on fourmodel parameters:
θon (the rate of promoter activation), θoff (the rate of promoter inactivation), θt (the rate of mRNA production when the
promoter is in theON state), and θd (the rate constant ofmRNAdegradation) (Herbach et al., 2017; Kim&Marioni, 2013)
(see Figure 1a). For example, when θoff >>θon and θoff >>θd, keeping θt/θoff fixed, mRNA are produced through bursts of
short but intense transcription, which is a typical case observed for gene transcriptions in single cells (Munsky et al.,
2012) (Suter et al., 2011). As the mRNA distribution is linked to mechanistically interpretable parameters, CALISTA is
able to give insights into the possible mechanism driving the cell heterogeneity dynamics during cell differentiation.
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Figure 1. Single-cell transcriptional uncertainty landscape. (a) The illustration depicts the landscape of single-cell
transcriptional uncertainty during a differentiation process over the (pseudo) time (from blue to yellow). Each dot
corresponds to a cell in the single-cell transcriptomic dataset. Cells start their journey from a valley in the landscape,
through a hill, before ending at one of the final valleys/states. (b–f) Analysis of single-cell transcriptional profiles
during iPSCdifferentiation into cardiomyocytes (Bargaje et al., 2017). (b) Boxplots of the negative log-likelihood (NLL)
values for each single-cell cluster. (c–d) Moving-window average NLL along (c) endoderm and (d) mesoderm
fate trajectory. (e) NLL of each gene and cell for every single-cell cluster. (f) Protein-protein interaction network of
top variable genes inferred by STRING (Szklarczyk et al., 2015). Blue nodes represent transcription factors, while red
nodes denote proteins involved in signal transduction. The width of the edges denotes the confidence for the
inferred relationship (thicker edge = higher confidence).
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CALISTA employs a maximum likelihood approach and assigns a likelihood value to each cell based on its gene
expression based on themRNA distribution governed by the two-state model of stochastic gene transcription. The single-
cell transcriptional uncertainty is evaluated as the negative logarithm of the likelihood (NLL) value for a cell. The single-
cell likelihood value reflects the joint probability of its gene expression repertoire. A cell with a low likelihood value may
indicate that the gene expression of the cell is different from its neighboring cells, i.e. the cell is an outlier. But, more
interestingly, a low likelihood value may also correspond to a cell state of high uncertainty in the gene expression. The
group of cells in such a high uncertainty state have gene expressions that are dissimilar to each other, and thus, the gene
expression distribution will have a high entropy. By visualizing the single-cell transcriptional uncertainty over the two-
dimensional projection of the single-cell transcriptomics data—for example, using the first two principal components
from PCA—we constructed a transcriptional uncertainty landscape in the form of a surface plot of the NLL value. In this
way, we studied the landscape of transcriptional uncertainty during cell differentiation at single-cell resolution. On such
single-cell transcriptional uncertainty surface, an aberrant cell can be easily distinguished from a cell of high uncertainty
state, since such an aberrant cell will appear isolated from its neighboring cells with a high NLL.

Transcriptional uncertainty landscape of iPSC cell differentiation to cardiomyocytes
In the following, we demonstrated an application of our procedure described above to a single-cell transcriptional dataset
from cardiomyocytes differentiation from human induced pluripotent stem cells (iPSCs) (Bargaje et al., 2017). The
single-cell clustering of CALISTA returned five clusters (Papili Gao et al., 2020) and identified one bifurcation event in
the lineage progression, which led to two cell lineages (Bargaje et al., 2017), in good agreement with the number of cell
types reported in the original study. The estimated uncertainty landscape shows cells exiting the initial epiblast state that is
characterized by a valley in the landscape, passing through a hill of high transcriptional uncertainty corresponding to
primitive streak (PS)-like progenitor state, before ending up at one of the low transcriptional uncertainty terminal states
corresponding to either mesodermal (desired) or endodermal (undesired) fate (see the Extended data, S1 Figure (Gao
et al., 2023)). As depicted in Figure 1b, the intermediate cell cluster (cluster 2) comprising PS-like cells have higher cell
uncertainty (lower single-cell likelihood) than the other clusters. Figure 1c and d give the moving-averaged uncertainty
values for pseudotemporally ordered cells using a moving window of 10% of the total cells for both endodermal and
mesodermal paths, respectively. The moving-averaged transcriptional uncertainty for the two differentiation paths
follows a rise-then-fall trajectory where the peak of uncertainty coincides with the lineage bifurcation event.

We explored whether the rise-then-fall in uncertainty is an artefact from using the two-state model to evaluate the cell
likelihood values. To this end, we implemented a modified version of the algorithm for ordering cells by calculating the
cell likelihood values using the empirical (observed) distribution, instead of the analytical distribution from the two-state
model. As shown in the Extended data S2 Figure (Gao et al., 2023), the transcriptional uncertainty landscape from the
modified implementation shows a strong resemblance to the original one. We also investigated whether the number of
clusters may affect the landscape, in which using too few of the clusters may artificially inflate the uncertainty due to the
mixing of cells from different states. We reran CALISTA by using a higher number of clusters (set to nine based on the
eigengap heuristic (von Luxburg, 2007)). The hill in the uncertainty landscape is again seen around the bifurcation event
upon using a higher number of cell clusters (Extended data, S3 Figure (Gao et al., 2023)). Finally, we used a different
algorithm to cluster cells, specifically using a Laplacian-based clustering algorithm called single-cell interpretation via
multikernel learning (SIMLR) (Wang et al., 2017), to test whether the shape of the transcriptional uncertainty landscape
changes with the clustering algorithm. The single-cell clusters can be interpreted as the transitional states that the
differentiating cells go through. Starting with the result of SIMLR cell clustering, we then generated the lineage
progression and estimated the cell likelihood values using CALISTA. The transcriptional uncertainty landscape from
SIMLR cell clustering has the same shape as that in Extended data S1 Figure (Gao et al., 2023), demonstrating that the
transcriptional uncertainty landscape observed above is not dependent on using CALISTA for cell clustering (Extended
data, S4 Figure (Gao et al., 2023)).

To further elucidate the role of specific genes in shaping the transcriptional uncertainty landscape, we looked at the
transcriptional uncertainty associated with individual genes. Figure 1e depicts the NLL distribution of each gene for the
five single-cell clusters. As expected, cells in cluster 2 have generally higher NLL than those in the other clusters.
Figure 1e clearly illustrates that within cluster 2, some genes show higher NLL values than the others (Extended data, S5
Figure (Gao et al., 2023)). To identify the important genes related to transcriptional uncertainty, we identified genes with
NLLvalues exceeding a threshold δ for at least 30%of the cells in each cluster, where δ is set to 3 standard deviation above
the overall mean NLL for all cells and genes in the dataset (see Methods equation (2)). None of the genes in clusters 1, 4
and 5 have a NLL above the threshold. Meanwhile, 16 and eight genes in clusters 2 and 3, respectively, pass the above
criterion for high uncertainty with four common genes between the two gene sets (Extended data, S1 Table (Gao et al.,
2023)). Genes with high transcriptional uncertainty in cluster 2 may have functional roles in cell fate determination.
The gene set of cluster 2 includes known genes upregulated only in the PS-like state (e.g. EOMES, GSC, MESP1 and
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MIXL1), as well as markers of mesodermal and endodermal cells (e.g. BMP4, HAND1, and SOX17) (Bargaje et al.,
2017; Papili Gao et al., 2020) (Extended data, S6 Figure (Gao et al., 2023)). Meanwhile, the main contributors to cell
uncertainty in cluster 3 (e.g. BMP4 and MYL4 (Bargaje et al., 2017; Papili Gao et al., 2020)) are known transition
genes between PS-like cells and the final mesoderm fate (Extended data, S7 Figure (Gao et al., 2023)). Figure 1f depicts
the protein-protein interaction (PPI) network related to the gene set of cluster 2 using STRING (minimum required
interaction score of 0.4) (Szklarczyk et al., 2015), indicating that these genes form a strongly interconnected hub of
known transcription factors and molecules involved in the signal transduction of embryonic development (Extended
data, Table S1 (Gao et al., 2023)).

Transcriptional uncertainty landscapes of cell differentiation
We further applied the procedure above to seven additional single-cell transcriptomic datasets that were generated using
scRT-qPCR (Guo et al., 2010; Moignard et al., 2013; Moussy et al., 2017; Richard et al., 2016; Stumpf et al., 2017) and
scRNA-sequencing (Nestorowa et al., 2016; Treutlein et al., 2016), to assess the universality of the rise-then-fall feature
of single-cell transcriptional uncertainty landscape during cell differentiation. The first of these datasets came from
405 cells during mouse embryonic fibroblast (MEF) reprogramming into induced neural (iN) and myogenic (M) cells
(Treutlein et al., 2016). Like the iPSC differentiation above, the lineage progression has a single bifurcation point. As
depicted in Figure 2a, the single-cell transcriptional uncertainty increases from the initial MEF state and reaches a peak
around the bifurcation before decreasing toward two end-point cell fates. The rise-then-fall of transcriptional uncertainty
in the MEF reprogramming is in good agreement with what we observed in the iPSCs differentiation above. Higher
entropy of gene expression distribution in a cell population has also been reported in the reprogramming of iPSCs
(Buganim et al., 2012).

Next, we analyzed datasets from cell differentiation processes without a lineage bifurcation and with multiple
lineage bifurcations. Three scRT-qPCR datasets came from differentiation systems without bifurcation, including the
Richard et al. study on chicken erythrocytic differentiation of T2EC cells (Richard et al., 2016), the Stumpf et al. study
on differentiation of mouse embryonic stem cells (ESC) to neural progenitor cells (NPC) (Stumpf et al., 2017),
and the Moussy et al. study during CD34+ cell differentiation (Moussy et al., 2017). The single-cell clustering and
lineage progression by CALISTA produced the expected cell differentiation trajectory (see Extended data, S8 to S10
Figures (Gao et al., 2023)). The single-cell transcriptional uncertainty landscapes of these three differentiation systems, as
shown in Figure 2b, exhibit a rise-then-fall profile, creating a hill that the cells traverse through in the differentiation
process. A transitory increase in single-cell gene expression uncertainty was reported either directly or indirectly in the
original publications. In Richard et al. (2016) and Stumpf et al. (2017), the authors adopted the Shannon entropy to
quantify cell-to-cell variability (uncertainty), while Moussy et al. (2017) reported an unstable transition state with
‘hesitant cells’ flipping their morphology between polarized and round shapes before committing to the commonmyeloid
progenitors-like fate. Morphological uncertainty therefore corresponded to a higher transcriptional uncertainty. Note that
theMoussy et al. study looked at only the initial phase of the (hematopoietic) cell differentiation, and thus, it is likely that
the differentiation process had not completed for the cells in the dataset.

The next set of single-cell gene expression data came from differentiation systems with multi-branching lineage,
including the Guo et al. study during mouse embryo development from zygote to blastocyst (Guo et al., 2010),
Nestorowa et al. (2016) and Moignard et al. (2013) studies on hematopoietic stem cell differentiation. Figure 2c shows
the single-cell transcriptional landscape for each of the datasets. For the Guo et al. study, we identified seven cell clusters
and identified two bifurcations in the lineage. Here, we observed two hills in the transcriptional uncertainty landscape,
each coinciding with a bifurcation event in the lineage progression – one at 32-cell stage (cluster 2 to cluster 3 and 4) and
another at 64-cell stage (cluster 4 to cluster 6 and 7) (see the Extended data, S11 Figure (Gao et al., 2023)). For the
Nestorowa et al. (2016) (Extended data, S12 Figure (Gao et al., 2023)) and Moignard et al. (2013) (see Methods and
(Papili Gao et al., 2020)) datasets, we again observed peaks in the transcriptional uncertainty landscape that colocalize
with the bifurcation points in the lineage progression.

The use of the two-state mechanistic gene transcriptional model within CALISTA enabled us to probe into a mechanistic
explanation for the observed shape of the transcriptional uncertainty landscape. Table 1 show the pairwise Pearson
correlations between the cell-averaged NLL of each cluster with two biologically interpretablemodel parameters, namely
transcriptional burst size (number of transcripts generated in each burst) and burst frequency (occurrence of burst per unit
time) (Nicolas et al., 2017) (see Methods). The Pearson correlations indicate that the single-cell gene expression
uncertainty increases with higher burst size and burst frequency (p-value ≤ 0.01). Higher transcriptional burst size
and frequency are associated with a lower θoff – a lower rate of promoter turning off – and a greater θon – higher rate of
promoter turning on. One possible explanation for such a change in model parameters is a higher chromatin accessibility
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during the transition period of cell differentiation. This finding is consistent with the view that stem cells increase its gene
expression uncertainty or stochasticity by adopting a more open chromatin state to enable the exploration of the gene
expression space (Antolovi�c et al., 2017; Fritzsch et al., 2018; Nicolas et al., 2017; Zhang & Zhou, 2018).

Figure 2. CALISTA analysis of single-cell expression data. (a–c) Landscape plots (based on cell clusters and
pseudotime) and moving-averaged negative log-likelihood (NLL) values for each differentiation path of (a) single-
branching trajectory (Treutlein et al., 2016), (b) linear trajectories (Moussy et al., 2017; Richard et al., 2016; Stumpf
et al., 2017), (c)multi-branching trajectories (Guo et al., 2010;Moignard et al., 2013; Nestorowa et al., 2016). Green and
red vertical arrows in moving-averaged NLL plots indicate the first and second peak in cell uncertainty, respectively.
Abbreviations: (a) MEF:mouse embryonic fibroblast, iN: induced neuronal, M:myocyte, (b) T2EC: chicken erythocytic
progenitor cell, ESC: embryonic stem cell, NPC: neuroprogenitor cell, HSC: haematopoietic stem cell, CMP: common
lymphoid progenitor, (c) 8C: eighth cell stage, 16C: sixteenth cell stage, ICM: inner cell mass, TE: trophectoderm, PE:
primitive endoderm, E: endoderm, MPP: multipotent progenitor, LMPP: lymphoid multipotent progenitor, CMP:
common myeloid progenitor, MEP/PreM: megakaryocyte-erythrocyte progenitor, GMP: granulocyte-monocyte
progenitor, CLP: common lymphoid progenitor.
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RNA velocity and transcriptional uncertainty
In a recent paper (La Manno et al., 2018), La Manno and colleagues introduced the concept of RNA velocity, which
involves computing the rate of change of mRNA from the ratio of unspliced to spliced mRNA. A positive RNA velocity
indicates an induction of gene expression, while a negative RNA velocity indicates a repression of gene expression. La
Manno et al. demonstrated that RNA velocities are able to predict the trajectory of cells undergoing a dynamical
transition, such as in circadian rhythms or cell differentiation. In the following, we explored the relationship between
RNA velocities and single-cell transcriptional uncertainty.

We evaluated the single-cell transcriptional uncertainty and RNA velocity for two single-cell gene expression
datasets that were previously analyzed in La Manno et al. (2018). The first dataset came from human glutamatergic

Table 1. Pairwise correlation coefficients between transcriptional uncertainty and transcriptional burst
frequency/burst size.

Correlation with Transcriptional Uncertainty
(p-value ≤ 0.01 in red boldface):

Burst frequency Burst size

Bargaje et al. 0.74 0.70

Treutlein et al. 0.71 0.64

Richard et al. 0.68 0.55

Stumpf et al. 0.68 0.88

Moussy et al. 0.40 0.81

Guo et al. 0.75 0.82

Nestorowa et al. 0.73 0.71

Moignard et al. 0.04 0.83

La Manno et al. 0.78 0.55

Kreigstein et al. 0.77 0.32

Figure 3. Comparison between RNA velocities estimated using Velocyto and CALISTA negative log-likelihood
(NLL) values. (Top row) Human glutamatergic neurogenesis and (Bottom row) mouse hippocampal neurogenesis
(La Manno et al., 2018). (First column) Cell clustering assignments evaluated from Velocyto (La Manno et al., 2018).
Normalized values for Euclidean norm of RNA velocities (2nd column), CALISTA single-cell transcriptional uncertainty
(NLL; 3rd column). The colors in the first column indicate the cell clusters, and those in the second-third columns
indicate the normalized cell-wise RNA velocities and NLL values respectively.
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neurogenesis which has a linear (non-bifurcating) lineage progression. Figure 3 (top row) depicts the cell clustering,
single-cell transcriptional uncertainty, and RNA velocities (see also Extended data, S13 Figure (Gao et al., 2023)).
The single-cell transcriptional uncertainty landscape again has the rise-then-fall shape, as in the other cell
differentiation systems discussed above. Interestingly, the same rise-then-fall profile is also seen in the RNA velocity.
As illustrated in Figure 3, the increase and decrease of the RNA velocity preceed the transcriptional uncertainty, and the
peak of RNA velocity occurs prior to those of the transcriptional uncertainty (see the Extended data S1 File for animated
illustration (Gao et al., 2023)). Furthermore, a gene-wise cross-correlation analysis confirms a positive correlation
between RNA velocity and single-cell transcriptional uncertainty with a delay for individual genes (see the Extended
data, Figure S14 (Gao et al., 2023)).

We also compared RNA velocity and single-cell transcriptional uncertainty for another dataset frommouse hippocampal
neurogenesis with a multi-branching lineage (La Manno et al., 2018). Figure 3 (bottom row) shows that like in the
neurogenesis dataset earlier, the RNA velocity increases and then decreases during cell differentiation, and the change in
the RNA precede that of the transcriptional uncertainty (see the Extended data, S2 File for animated illustration (Gao
et al., 2023)). Also, the RNA velocity peaks take place before the transcriptional uncertainty peaks. The rise-then-fall
dynamic of the RNA velocity seen in the two datasets above is consistent with the view that cells engage in exploratory
stochastic dynamics as they leave the progenitor state, and disengage this explorative mode as they reach toward the final
cell state.

Discussion
Although Waddington’s epigenetic landscape was originally proposed only as a metaphor, the landscape has helped
stem cell researchers to conceptualize the cell differentiation processes through canalization of cell lineages. As
mentioned earlier, much of the existing literature on the analytical reconstruction of the epigenetic landscape relied on
either a dynamical system theory applied to a simple gene network, or a thermodynamic interpretation based on the
potential energy of a reaction (Bhattacharya et al., 2011; Rebhahn et al., 2014). In this study, we did not make any prior
assumptions on the gene regulatory network driving the differentiation process nor on the characteristics of the landscape,
such as the existence of a stable valley or that of an energetic barrier (hill). Rather, we assumed that the gene transcription
at the single-cell level occurs via stochastic transcriptional bursts that described by a two-state stochastic gene
transcription model (Peccoud & Ycart, 1995). We defined single-cell transcriptional uncertainty based on the likelihood
of the cell’s gene expression, computed using the steady-state mRNA distribution from the stochastic transcriptional
model above. While high transcriptional uncertainty may reflect a cell with an aberrant gene expression signature with
respect to other cells of the same state, such a cell will have little effect on the shape of the transcriptional uncertainy
landscape. More importantly, high single-cell transcriptional uncertainty also reflects a cell state that is characterized
by high level of heterogeneity in gene transcription. These cells together form the hill region of our transcriptional
uncertainty landscape. Thus, the transcriptional uncertainty landscape in our study is a reflection of the dynamic trajectory
of gene transcriptional stochasticity during the cell differentiation process.

The two-state model used in CALISTA captures the essential features of stochastic transcriptional bursts – an ON/OFF
promoter state and an mRNA transcription only during the ON state. The model is able to reproduce the characteristic
negative binomial distribution of mRNA commonly observed in single-cell transcriptomic data.More detailedmodelling
of gene transcriptional bursts that includes RNA polymerase recruitment and paused release, maturation of nascent
mRNA, and cell divisions (Bartman et al., 2019; Cao et al., 2020; Suter et al., 2011), demonstrates how various aspects of
gene transcription contribute to the overt cell-to-cell heterogeneity in gene expression. Under conservative simplifying
assumptions, the mRNA distribution from the more detailed models can be reduced to that of the two-state model. Thus,
the parameters of the two-state model, for example the rate constants of promoter activation (OFF-to-ON state) and
deactivation (ON-to-OFF), should be interpreted as effective constants – i.e. not fundamental biophysical constants – that
capture the aggregate impact of various sources of gene transcriptional stochasticity. Note that while we used the two-
state model for single-cell clustering and transcriptional uncertainty calculations, as we demonstrated in the iPSC cell
differentiation, the rise-then-fall of the transcriptional uncertainty landscape is still valid when using SIMLR clustering
algorithm and when using the empirical distribution of mRNA, rather than the two-state model distribution, for
computing single-cell transcriptional uncertainty.

The reconstruction of the transcriptional uncertainty landscapes from 10 single-cell transcriptomic datasets of various cell
differentiation processes in our study reveals a universal rise-then-fall trajectory in which cells start from a high potency
state with a uniform gene expression pattern in the cell population, then progress through transitional cell state(s) marked
by increased transcriptional uncertainty (i.e., higher cell-to-cell variability), and eventually reach one of possibly several
final cell states with again a uniform gene expression pattern among the cells. Furthermore, the peaks of the transcrip-
tional uncertainty landscape colocalize with forks in the cell lineage. The rise-then-fall in cell uncertainty agrees well with
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other reports from different cell differentiation systems (Han et al., 2020; Mojtahedi et al., 2016; Moussy et al., 2017;
Richard et al., 2016; Semrau et al., 2017; Stumpf et al., 2017), suggesting that stem cells go through a transition state of
high gene expression uncertainty before committing to a particular cell fate. Notably, an increase of variability is a known
early warning signal associated with critical transitions in stochastic dynamical systems that are driven by slow,
monotonic change in the bifurcation parameter (Kuehn, 2011; Sarkar et al., 2019). While the results of our analysis
are consistent with critical transitions during cell fate commitment in stem cells (see also (Mojtahedi et al., 2016)), our
analysis does not require nor imply this phenomenon. The existence of a hill or barrier during the intermediate stage of
cell differentiation has also been proposed in previous studies (Braun, 2015; Fard et al., 2016; Moris et al., 2016). In
particular, Moris and colleagues compared this transition state to the activation energy barrier in chemical reactions
(Moris et al., 2016). We noted however, that a hill in our transcriptional uncertainty landscape is a reflection of a peak in
the cell-to-cell gene expression variability, and thus does not represent a resistance or barrier that a cell has to overcome.

In the analysis of iPSCs differentiation into cardiomyocytes (Bargaje et al., 2017), the genes that contribute significantly
to the overall transcriptional uncertainty at or around the peak in the landscape (clustes 2 and 3 in Figure 1e) are known to
regulate cardiomyocyte differentiation (Bargaje et al., 2017) (see the Extended data S1 Table for gene lists and S5
Figure and S6 Figure for pathway enrichment analysis of these genes (Gao et al., 2023)), supporting the idea that dynamic
cell-to-cell variability has a functional role in cell-fate decision making processes (Guillemin et al., 2018; Moris et al.,
2018; Rebhahn et al., 2014). Such an ideawould be in congruencewith the recent demonstration that, in a physiologically
relevant cellular system, gene expression variability is functionally linked to differentiation (Guillemin et al., 2018;Moris
et al., 2018).

The rise-then-fall trajectory in the transcriptional uncertainty landscape are more pronounced in some datatsets than
in others. For example, in Nestorowa (Nestorowa et al., 2016) and Moignard (Moignard et al., 2013) datasets (see
Figure 2c), peaks in the transcriptional uncertainty landscape are less noticeable than in the other differentiation systems.
We noted that cells in the Nestorowa (Nestorowa et al., 2016) and Moignard (Moignard et al., 2013) studies were pre-
sorted by using flow cytometry based on the expression of surface protein markers. We posited that at least some cells in
the transition state(s) might have been lost during the cell pre-sorting since such cellsmight not express the chosen surface
markers strongly.

Further, the correlation analysis between the cell transcriptional uncertainty and biologically meaningful rates of the
stochastic gene transcription model showed strong positive correlations with transcriptional burst size and frequency.
Note that cellular processes such as cell division can affect the heterogeneity of mRNA in a cell population in a similar
fashion as stochastic gene transcriptional bursts (Cao&Grima, 2020; Perez-Carrasco et al., 2020), providing an alternate
explanation for gene expression fluctuations. But, several studies have reported an increase in gene transcriptional bursts
during transition states in cell differentiation and other recent studies have suggested that both burst frequency and burst
size regulate gene expression levels (Antolovi�c et al., 2017; Fritzsch et al., 2018; Zhang & Zhou, 2018). Importantly, our
comparison of the single-cell transcriptional uncertainty and the single-cell RNA velocity revealed that an increase
(decrease) in RNA velocity predicts an increase (decrease) in transcriptional uncertainty after a short delay, and that a
peak of RNA velocity preceeds that of the transcriptional uncertainty.

The aforementioned observations, while correlative in nature, points to possible biological mechanisms underlying
the universal dynamic feature of single-cell transcriptional uncertainty during cell differentiation. At the start of the
differentiation process, cells engage an exploratory search dynamics in the gene expression space by increasing stochastic
transcriptional burst size and burst frequency. The putative objective of such a stochastic search is to optimize the cell’s
gene expression pattern given its new environment. The engagement of this stochastic exploratory mode is supported by
the observed increased in the overall RNA velocity and its expected-but-delayed effect in elevating the cell-to-cell gene
expression variability (i.e. higher transcriptional uncertainty). Increased transcriptional burst size and frequency are an
indication of increased frequency of the promoter turning ON (higher θon and lower θoff).

A possible mechanism behind this exploratory search dynamic is an increase in chromatin mobility, driven by metabolic
alterations in early differentiation (Paldi, 2012). Multiple studies have demonstrated that a mismatch between the
intracellular state of stem cells and their immediate environment can lead to metabolic reorganization (Argüello-Miranda
et al., 2018; Folmes et al., 2011; Gu et al., 2016). More specifically, a change in the balance between glycolysis
and OXPHOS metabolism has been associated to numerous differentiation processes (see (Richard et al., 2019) and
references therein). Furthermore, changes in the metabolic flux state in early differentiation can modulate the activity
of chromatin modifying enzymes through their metabolic co-factors (Moussaieff et al., 2015), or in more direct fashion
(Zhang et al., 2019) and alter the cell differentiation outcome. A more dynamic state of the chromatin is associated
with more variable gene expressions due to the changes in the opening-closing dynamics (breathing) of the chromatin
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(Zwaka, 2006). As the cells approach the final state, cells disengage the exploratory search mode, as the cells approach an
optimal gene expression and metabolic state associated with a chosen cell type.

The findings of our analysis fit within the paradigm of a stochastic stem cell differentiation process. More specifically, in
this paradigm, the cell differentiation is thought to proceed as follows (Braun, 2015; Kupiec, 1996, 1997; Paldi, 2003):

I) extrinsic and/intrinsic internal stimuli, such as a medium change or the addition of new molecules in the
external medium, trigger a cellular response that destabilizes the initial high potency cell state;

II) each cell alters its internal cell state and engages an exploratory dynamic through a combination of the
inherent stochastic dynamics of gene transcription and the emergence of new stable cell state(s). At the cell
population level, we observe a rise in the cell-to-cell variability of gene expression;

III) a physiological selection/commitment to one stable lineage among possibly multiple lineages;

IV) finally, a reduction in the exploratory dynamics commences along with the establishment of stable cell
state(s) corresponding to differentiated cell type(s).

The disordered gene expression pattern during the transition period can be seen as an exploratory dynamic to find the
optimal pattern(s) (Braun, 2015; Paldi, 2003). The transcriptional uncertainty in our analysis can be interpreted as
the width of the valley in Waddington’s epigenetic landscape. If one considers the epigenetic landscape as a depiction
of the accessible gene expression subspace through which stochastic single-cell trajectories pass during differentiation,
a wider valley indicates a more variable gene expression pattern. While in the original Waddington’s epigenetic
landscape the valley naturally widens around the branching point in the cell lineage, our analysis shows that a widening
of the valley (an increase in transcriptional uncertainty) also occurs in non-branching lineage. In other words, the increase
in transcriptional uncertainty appears to be a universal feature of the cell differentiation process, one that arises from the
engagement of exploratory mode through increased stochasticity in transcriptional bursts, as explained above. The above
view is also compatible with the idea that cell phenotype transition results from the dynamics of an underlying stochastic
molecular network (Gupta et al., 2011; Thomas et al., 2014).

In summary, our model-based single-cell transcriptome analysis and the evaluation of single-cell transcriptional
uncertainty have shed a new light on the role of stochastic dynamics of gene transcription in the cell differentiation
process. Importantly, the peaks of single-cell transcriptional uncertainty mark cellular decision-making points in the
cell lineage tree. By identifying, isolating, and analyzing more comprehensively individual cells from the peaks of
transcriptional uncertainty, we can gain a much better understanding of the key molecular players in the stem cell
decision-making.

Data availability
Underlying data
All the public single cell data sets analysed in this study are available from the original publications (Bargaje et al., 2017;
Guo et al., 2010; LaManno et al., 2018;Moignard et al., 2013;Moussy et al., 2017;Nestorowa et al., 2016; Richard et al.,
2016; Stumpf et al., 2017; Treutlein et al., 2016).

Extended data
Zenodo: Extended Data for Single-cell Transcriptional Uncertainty Landscape of Cell Differentiation. https://doi.
org/10.5281/zenodo.7776102 (Gao et al., 2023).

This project contains the following underlying data:

• Data file 1. Additional Figures and Notes (S1-S14 Fig. and S1 Note of CALISTA workflow)

• Data file 2. S1 Table. Genes with high transcriptional uncertainty in Cluster 2 and 3 of Bargaje et al. (Bargaje
et al., 2017) data analysis.

• Data file 3. S1 File. Animated illustration of RNA velocity and transcriptional uncertainty landscape in mouse
hippocampal neurogenesis (La Manno et al., 2018).
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• Data file 4. S2 File. Animated illustration of RNA velocity and transcriptional uncertainty landscape in human
glutamatergic neurogenesis (La Manno et al., 2018).

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
CALISTA tutorial is available from: https://www.cabselab.com/calista

CALISTA source code is available from: https://github.com/CABSEL/CALISTA

License: BSD-3-Clause license
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Using the CALISTA method that they have developed, Papili Gao et al. quantify single cell 
transcriptional uncertainty in 10 sets of single cell data associated to differentiating systems. This 
includes single-cell mRNA as well as single-cell RT-qPCR. The representation of the cells in the 
uncertainty landscape allows to visualize the differentiation trajectories and the increase in 
stochasticity that precedes each fate commitment.  The authors also show that the transcriptional 
uncertainty correlates with the RNA velocity, a concept that was introduced by La Manno et al. in 
2018. 
 
These results shed light on the mechanism underlying cell fate commitment, with the increase of 
uncertainty allowing cells to possibly engage in different cellular outcomes. It also provides a new 
data-based visualisation of the Waddington's landscape that directly takes stochasticity in gene 
expression into account. 
 
I would suggest the authors to clarify how the cell likelihood values are computed from the data, 
because it is central to the work and its conclusions. In my opinion, the section entitled “Pairwise 
correlation analysis …” should be extended. In particular, the link with the parameters of the 2 
state models should be made explicit. In the same line, the fit of the data with the distributions of 
the 2 state model may be discussed. 
 
The authors also may wish to comment about the possible biological significance of the depths of 
the different valleys, as observed for example in the linear trajectories of the first line of Figure 2C 
(early embryonic development in mice). 
 
In the Introduction, the work by M. Saez and colleagues1 should be added in the paragraph 
related to the graphical representation of the Waddington's landscape. 
 
References 
1. Sáez M, Blassberg R, Camacho-Aguilar E, Siggia ED, et al.: Statistically derived geometrical 
landscapes capture principles of decision-making dynamics during cell fate transitions.Cell Syst. 
2022; 13 (1): 12-28.e3 PubMed Abstract | Publisher Full Text  
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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Reviewer Expertise: Modelling differentiation processes

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 18 Jul 2023
Rudiyanto Gunawan 

Comment: 
Using the CALISTA method that they have developed, Papili Gao et al. quantify single cell 
transcriptional uncertainty in 10 sets of single cell data associated to differentiating 
systems. This includes single-cell mRNA as well as single-cell RT-qPCR. The representation of 
the cells in the uncertainty landscape allows to visualize the differentiation trajectories and 
the increase in stochasticity that precedes each fate commitment.  The authors also show 
that the transcriptional uncertainty correlates with the RNA velocity, a concept that was 
introduced by La Manno et al. in 2018. 
 
These results shed light on the mechanism underlying cell fate commitment, with the 
increase of uncertainty allowing cells to possibly engage in different cellular outcomes. It 
also provides a new data-based visualisation of the Waddington's landscape that directly 
takes stochasticity in gene expression into account. 
 
Response: 
On behalf of my co-authors, I would like to sincerely thank the reviewer for the critiques on 
our work. We revised the manuscript to address the reviewer’s comments. Below, I am 
providing the response to each of the comments. 
 
Comment: 
I would suggest the authors to clarify how the cell likelihood values are computed from the 
data, because it is central to the work and its conclusions. In my opinion, the section entitled 
“Pairwise correlation analysis …” should be extended. In particular, the link with the 
parameters of the 2 state models should be made explicit. In the same line, the fit of the 
data with the distributions of the 2-state model may be discussed. 
 
Response: 
Following the suggestion of the reviewer, the section on pairwise correlation analysis has 
been expanded. In addition, more detail of the computation of the negative log-likelihood 
for each cell—a metric for single-cell transcriptional uncertainty—is provided in the section 
“Single-cell transcriptional uncertainty”. The full description of the cell likelihood calculation 
can be found in the journal article of the method CALISTA (
https://doi.org/10.3389/fbioe.2020.00018). 
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Regarding the fit of the data to the theoretical distribution from the 2-state model, we 
noted that the transcriptional uncertainty was computed for each cell and therefore it was 
not possible to evaluate distribution fit to the 2-state model. Still, we may compare the gene 
expression distribution of cells that were initially assigned to clusters. An example of the 
distribution fit using Kolmogorov-Smirnov (KS) distance—the maximum difference in the 
cumulative distributions between the data and theoretical distribution—is shown in Figure 
A. 
 
Figure A. Kolmogorov-Smirnov distances of single cell gene expression distribution. The 
distances were computed between the distribution of gene expression from CALISTA 
clusters and the theoretical distribution from the 2-state model. 
 
Comment: 
The authors also may wish to comment about the possible biological significance of the 
depths of the different valleys, as observed for example in the linear trajectories of the first 
line of Figure 2C (early embryonic development in mice). 
 
Response: 
Thank you for this comment. We avoided making deeper interpretation and comparison of 
the depth of the valley—and by the same token, the height of the hill—across datasets 
because the negative log-likelihood values were not normalized. One reason was that 
different datasets include distinct sets of genes. In addition, the experimental platforms 
that were used to generate single-cell gene expression data differ across datasets. One 
potential avenue to produce comparable landscapes across datasets would be to use a 
common mechanistic model describing gene transcriptional network as we recently 
described in (https://doi.org/10.1371/journal.pcbi.1010962). 
 
Comment: 
In the Introduction, the work by M. Saez and colleagues should be added in the paragraph 
related to the graphical representation of the Waddington's landscape. 
 
Response: 
Following the reviewer’s suggestion, we have added this reference in Introduction.  
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1 Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy 
2 Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy 

In this paper the authors are able to 'put on the ground' the time-honoured Waddington's 
metaphor of epigenetic landscape. They were not the first ones to face the problem to make 
quantitative and operational the Waddington model but, at odds with other scholars, Gao et al. 
offer the readers a very clear and immediately reproducible data analytic procedure free of any 
strong theoretical frame, being only based on classical multivariate data analysis structural 
optimization principles with no use of a priori distributional hypothesis. Thus, the 'amount of 
genome expression uncertainty' at both single cell and population levels only descends from the 
degradation of structural compactness of clusters in terms of within cluster distance following 
cluster fusion and by the decrease in cell-cell correlation. 
 
In this way the authors are able to uncover the 'B side' of Waddington landscape, i.e., the 'ropes' 
underlying the landscape and provoking its changes in shape (see Gigante, Giuliani, and Mattia 
20231). 
 
By the analysis of diverse data sets, the authors are able to answer their initial question about the 
'bystander' or 'essential' character of the observation of an 'entropic burst' for initiating the 
trajectory going from a relatively stable initial stemness attractor toward cell terminal 
differentiation state, by a clear proof of the unescapable need of such entropic burst. 
 
The material basis of such entropic burst must be looked for in the chromatin decompaction 
allowing for an increased variance of gene expression that was already observed by other scholars 
(see for example Zimatore et al., 20212). 
 
All in all, this is a very elegant and innovative work that opens new avenues to the analysis of cell 
differentiation process by means of a physically plausible model. 
 
References 
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Cell Syst. 2023; 14 (3): 177-179 PubMed Abstract | Publisher Full Text  
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Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes
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On behalf of the co-authors, I wish to thank the reviewer for the positive feedback and 
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