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Massive arrivals of pelagic Sargassum to the coasts of several countries in the

Atlantic Ocean began in 2011. Monitoring the abundance and distribution of

Sargassum in the ocean and along the coasts is necessary to understand the

phenomena better and develop forecasting products and management

protocols. Most Sargassum monitoring has been conducted in the open ocean

through traditional remote sensing techniques. However, since the most

significant ecologic and socioeconomic impacts occur on the coasts, it is

necessary to monitor these macroalgae on nearshore waters and beaches.

This manuscript reviews the remote sensing algorithms used in Sargassum

observation reported in the last 17 years in more than sixty high-impact

scientific publications. The discussion regarding the evolution of the

methodologies used for monitoring these macroalgae allowed us to conclude

that the synergy generated by incorporating new disciplines like artificial

intelligence and citizen science has positively impacted the development of

this field. Additionally, the current state-of-the-art methods, the fundamental

challenges, and the directions for future research are also discussed.
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1 Introduction

Since the 1970s, the coastal waters of various regions of the planet have experienced the

arrival of large volumes of macroalgae. Some examples include the Green Tides ofUlva spp.

that affected the North American, Asian, and French coasts (Charlier et al., 2007; Hu et al.,

2010a; Xiao et al., 2021) and Cladophora sp. as well as Enteromorpha in Europe (Charlier

et al., 2008). Brown tides of Sargassum horneri have also affected various regions of Asia

since the 2000s (Wang and Hu, 2016; Qi et al., 2017). More recently, those composed of two

holopelagic Sargassum species (S. fluitansmorphotype III and S. natansmorphotypes I and

VIII) began affecting several nations in the tropical Atlantic (Gower et al., 2013; Smetacek

and Zingone, 2013; Johns et al., 2020). These two holopelagic species reproduce asexually
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by fragmentation and float through their lifecycle (Ortega-Flores

et al., 2022). Their distribution and abundance in the Sargasso Sea

have been known since the 15th century. Nevertheless, in recent

decades they had only occasionally arrived in relatively large

numbers along the coasts and beaches of the Caribbean Sea (CS).

However, since 2011, pelagic Sargassum spp. (herein referred to as

Sargassum) landings in the Caribbean increased due to the

formation of a recurrent Great Atlantic Sargassum Belt (GASB),

often extending fromWest Africa to the Gulf of Mexico (Wang et al.,

2019). In the open ocean, Sargassum constitutes a habitat for more

than a hundred species (Anderson, 2007; Rodrıǵuez-Martıńez et al.,

2019; Uribe-Martıńez et al., 2020). Still, its accumulation and

decomposition on beaches and in coastal waters result in severe

ecologic (Rodrıǵuez-Martıńez et al., 2019), economic (Martıńez-

González, 2019), and human-health related (Resiere et al., 2018)

impacts. Despite significant scientific and technological advances in

Sargassum monitoring, questions such as: What is the extent of

Sargassum cover along the coast? What is its volume? What is the

amount of biomass reaching the beaches? are still being studied. This

information is needed to generate better strategies for the appropriate

collection, handling, use, and disposal of Sargassum. To develop such

strategies, we need to know Sargassum’s origin, biomass, physiology,

biochemical composition, and spatiotemporal dynamics at different

scales. Additionally, the legal framework for managing Sargassum

locally, regionally, and internationally is required.

The first observation of Sargassum from space was conducted in

2005 using algorithms developed to detect Chlorophyll-a (Chl-a)

because it can be found in Sargassum (Gower et al., 2006). Since

then, several remote sensors and algorithms have been developed and

evaluated under different conditions to determine the distribution

and abundance of Sargassum in the ocean (Blondeau-Patissier et al.,

2014; Cuevas et al., 2018; Wang and Hu, 2020; Wang and Hu, 2021).

Currently, several early warning platforms provide information

regarding the presence of Sargassum in the open ocean (e.g., SaWS,

FIU-NOAA, SAMTOOL). However, these satellite remote sensing

methods have certain limitations. For instance, several factors can

affect macroalgae measurements from satellite images, including

atmospheric moisture, clouds, intense sunglint, water depth and

turbidity, and African dust (Wang and Hu, 2016). Satellite imagery

pixel sizes also limit the accurate measurement of accumulated

Sargassum cover area. For example, MODIS imagery may

underestimate Sargassum coverage by 50%, as small mats (< 2m

wide), are not captured (Hu et al., 2021). These limitations can result

in disparities between satellite and beach-cast estimated biomass

(Rodrıǵuez-Martıńez et al., 2022). To date, in situ monitoring of

Sargassum has been limited to relatively small coastal areas due to

limited resources to cover larger areas (Garcıa-Sanchez et al., 2020;

Torres-Conde and Martıńez-Daranas, 2020; Rodrıǵuez-Martıńez

et al., 2022; Torres-Conde, 2022).

The scientific work related to Sargassum observation and

monitoring has recently increased to study aspects of its biology,

ecology, and impact. Nevertheless, it is still necessary to design

methodologies that support automatic and scalable quantification

of its coverage and biomass (wet and dry) on coasts and beaches. This

information will help elaborate early warnings and decision-making

for Sargassum management, use, and disposal to reduce ecology and
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socioeconomic impacts. Due to the adverse effects of Sargassum in

several countries of the Caribbean, Central America, West Africa,

Florida, and Brazil, diverse scientific-based international forums have

been created to integrate the existing studies around the areas of

knowledge required for studying this phenomenon.

The present review analyzed how Sargassum monitoring

through satellite remote sensing is being addressed at different

spatial-temporal scales. The manuscript is structured in different

parts. First, based on information from the Scopus database, a set of

manuscripts related to monitoring pelagic Sargassum between 1991

and 2023 is presented. Subsequently, we discuss the physical

limitations that the Earth’s atmosphere imposes on spatial

observations and the spectral characteristics of Sargassum. In the

following sections, we comment on the traditional methods for

mapping vegetation, which served as the foundation for designing

new, more specific algorithms for observing floating algae. Later, we

address reflectance band-ratio, spectral band difference, and bio-

optical algorithms, focusing on the algorithms used to identify

Sargassum in the ocean through satellite imagery. Later we address

studies that have applied Machine Learning (ML) algorithms to

improve ocean Sargassum monitoring. Following, we discuss how

Sargassum monitoring along the coastline is approached. Finally,

we present the discussion section and the conclusions.

2 Materials and methods

The bibliography used in this manuscript was found

traditionally, that is, by searching in bibliographic databases.

Additionally, specific searches were conducted using Scopus to

review existing literature regarding the algorithms used in pelagic

Sargassum monitoring, which we describe in more detail below.
2.1 Peer-reviewed articles

We reviewed the existing literature on monitoring pelagic

Sargassum through remote sensing techniques, using Boolean

search in the Scopus database, for the period 1991 to date (March

23rd, 2023). We used the keywords “remote sensing” and “pelagic

Sargassum” ((TITLE-ABS-KEY (remote AND sensing) AND

TITLE-ABS-KEY (pelagic AND Sargassum). The search results

provided 22 documents (20 research articles, 1 conference paper,

and 1 note). Twenty of these documents were published between

2015 and 2023. We repeated the search, replacing the keywords

“pelagic Sargassum” with “floating Sargassum”. In this case, we

obtained 37 documents (35 research articles and 2 conference

papers). Thirty-one of these documents were published between

2015 and 2023. The second search contains 29 documents that are

different from those in the first search. A third search used the

keywords “Sargassum” and “Deep Learning” yielded 16 documents

(13 research articles, 1 conference paper, and 2 conference reviews).

Eleven of these documents were new and had not been part of the

first two searches. The outcome of these three searches is shown in

Figure 1. Peer-review publications related to monitoring Sargassum

through remote sensing (RS) and deep learning (DL) techniques

have increased significantly in the last five years.
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The searches yielded a total of 62 different documents, which

were analyzed using the VosViewer software (Van Eck and

Waltman, 2010). The papers with more than 30 citations were

chosen for display in Figure 2, which shows the 16 documents,

represented by circles and an abbreviated citation of each article for

identification purposes. The diameters of the circles demonstrate

the normalized number of citations of a document, which is equal to

the number of citations the paper has divided by the average

number of citations of all the documents published in the same

year. The normalization accounts for the fact that older documents

have had more time to receive citations than more recent

documents. The distance between the two papers in the image
Frontiers in Marine Science 03
indicates the closeness of the papers in terms of co-citation links.

Generally, the closer two papers are to each other, the stronger their

relatedness. The most robust co-citation links between papers are

represented by lines (Van Eck and Waltman, 2010).

Without being exclusive and to provide a panorama of the

benchmark studies related to the remote sensing of Sargassum,

Table 1 lists the five papers with the highest values in the number of

citations, number of links, and normalized number of citations.

The seminal studies of Gower et al. (2006); Hu (2009); Wang

and Hu (2016) appear in the first two categories (number of

citations and number of links). In contrast, more recent studies

appear in the normalized number of citations criterion. The highest
FIGURE 2

Overlay visualization of the most cited peer-reviewed journal publications (16), based on the 62 paper searches in the Scopus database as of March
23, 2023. The circle’s diameters are given by the normalized number of citations of a document (the number of citations of the paper divided by the
average number of citations of all documents published in the same year provided by scopus and not only the cites of the documents consulted for
the elaboration of the present study). The color scale indicates the time range in years from when the manuscript was published.
FIGURE 1

Contrasting the findings obtained from 3 peer-reviewed journal searches conducted in Scopus, using the terms ‘‘remote sensing’’ and ‘‘pelagic
Sargassum’’; ‘‘remote sensing’’ and ‘‘floating Sargassum’’ and “deep learning” and “Sargassum” as of March 23rd, 2023. Prior to 2006, no publications
were found in the searches.
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number of normalized citations corresponds to Arellano-Verdejo

et al. (2019). This study applied DL methods to Sargassum

monitoring for the first time.

Among the papers found in the Scopus database, we have

discussed those that have been a significant reference in the

observation, monitoring, or quantification of Sargassum and have

served as an inspiration for the development of new methodologies.

We also recognize that, within the limitations of this study, this

selection of papers can be debatable, and some relevant studies may

not have been considered. However, this study includes the most

representative research findings regarding the algorithms used in

pelagic Sargassum monitoring.

3 Algorithms for Sargassum
observation

One of the common challenges in satellite remote sensing is

overcoming the physical limitations the Earth’s atmosphere
Frontiers in Marine Science 04
imposes on electromagnetic radiation. The radiance of the Earth’s

surface undergoes several modifications before it reaches the sensor.

There is the addition of reflected sun and skylight from the sea

surface and scattered light from the intervening atmosphere.

Additionally, there is absorption by gasses in the atmosphere. The

absorption bands are primarily associated with water vapor (730

nm) and carbon dioxide. Additionally, there is an oxygen

absorption band at 687 and 760 nm (Abbott and Letelier, 1999).

Figure 3 shows the transmittance in the top atmosphere between 0.4

and 1.8 micrometers, some wavelengths of the electromagnetic

spectrum are almost entirely filtered out; this is an example of the

radiation detected by satellite sensors. The graph was produced with

specific atmospheric parameters using the modeling program

MODTRAN (Berk et al., 2014; Berk et al., 2015). In conclusion,

the solar energy that reaches the Earth’s surface is only a fraction of

the original incident energy. In the same way, the energy that

reaches the satellite sensors is a fraction of that reflected or emitted

by the study surface.
FIGURE 3

The transmittance of the atmosphere, between the sun and the Earth’s surface, is calculated using the program MODTRAN. The atmospheric model
is “Tropical,” and the aerosol model is “Rural,” with a visibility of 23km, sensor altitude of 99km, and azimuth of 135°.
TABLE 1 Top five papers according to the highest values in the number of citations, number of links, and normalized number of citations (based on
the search conducted in the Scopus database as of March 23, 2023).

Number of citations Number of links Normalized number of citations

1 Hu (2009) Wang and Hu (2016) Arellano-Verdejo et al. (2019)

2 Gower et al. (2006) Hu (2009) Putman et al. (2018)

3 Wang and Hu (2016) Hu et al. (2015) Qi et al. (2020)

4 Gower and King (2011) Gower et al. (2006) Wang et al. (2018)

5 Gower et al. (2008) Gower and King (2011) Gower et al. (2008)
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Aquatic photosynthetic organisms (i.e., phytoplankton,

cyanobacteria, micro and macroalgae) contain different

combinations of photosensitive pigments (e.g., chlorophylls,

carotenoids, and biliproteins) to produce their food by

transforming a fraction of solar energy to biochemical energy

(Lazcano-Hernandez et al., 2019). Sargassum exhibits unique

spectral characteristics between 600 and 650 nm due to the

presence of the photopigment Chlorophyll c (Chl_c) (Hu et al.,

2015). Field reflectance measurements suggest that Sargassum

exhibits a local minimum at approximately 632 nm due to Chl_c

absorption, generating a unique spectral signature (Figure 4).

However, to our knowledge, the sensors used for ocean

observation do not discriminate such wavelengths in this spectral

range, making analysis of this feature difficult. The observation of

pelagic Sargassum from space is based on the fact that Sargassum

when floating on the sea surface, favors the increase of reflectance in

the near-infrared (NIR), especially in the red edge (700 to 740 nm),

as can be seen in Figure 4. However, monitoring Sargassum remains

a challenge for several reasons: First, it is constantly moving at the

mercy of ocean currents and winds; second, there is a constant

presence of clouds in the Caribbean that make it difficult to observe

the sea surface; third, Sargassum is not the only marine organism

that can cause an increase in reflectance in the red edge, organisms

such as Trichodesmium, Syringodium, as well as debris and

emulsified oil can also generate this increase. Therefore, from a

spectral point of view, the detection of Sargassum in the sea is

challenging because although the spectral signatures of the different

organisms and objects that could be floating in the ocean are

different, the spectral resolution of the sensors available for their

study does not always allow to distinguish Sargassum from other

types of organisms or objects (Hu et al., 2015). The study by Hu

et al. (2015) also shows typical reflectances for Sargassum,

Trichodesmium, Ulva prolifera, emulsified oil, various garbage
Frontiers in Marine Science 05
materials, and the seagrass Syringodium. Another challenge in

monitoring Sargassum is that the rafts of this macroalgae tend to

vary in size, from individual clusters of the order of cm2 to rafts of

hundreds of m2 (Ody et al., 2019). For this reason, the detection of a

raft also depends on the spatial resolution of the sensor used. A

study by Hu et al. (2015) suggests that to discriminate Sargassum in

a pixel of an image, the minimum coverage of Sargassum in that

pixel must be between 20 and 30% of the pixel (Hu et al., 2015). The

phytoplankton absorption coefficient is an essential parameter in

ocean color algorithms and is increasingly used to parameterize

algal bloom algorithms (Goela et al., 2013). The current challenge is

to develop bio-optical algorithms that can take advantage of each

organism’s particular spectral characteristics to identify its spectral

response under actual observation conditions.

The algorithms developed to observe and assess vegetation on

land or Chl_c/phytoplankton in deep ocean waters provided the

basis for designing new algorithms for monitoring Sargassum and

other macroalgae. This study will address those used to observe

massive Sargassum blooms. According to Blondeau-Patissier et al.

(2014), RS algorithms for ocean observation can be categorized into

four major groups: 1) Reflectance classification algorithms, 2)

Reflectance band-ratio algorithms, 3) Spectral band-difference

algorithms, and 4) Bio-optical models.
3.1 Traditional methods for vegetation
mapping

The Vegetation Indices (VI) are mathematical expressions that

have an input of radiometric measurements of the vegetation used

to evaluate the temporal and spatial variations of many vegetal

biophysical parameters (Liu and Huete, 1995). These indices have

been widely applied in RS applications using aerial and satellite
FIGURE 4

Average of several surface reflectance measurements of Sargassum floating on the sea surface under natural lighting conditions. Measurements
were performed with a field portable spectroradiometer (SVC HR-5112i).
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platforms (Xue and Su, 2017). VI are effective algorithms for

quantitative and qualitative evaluations of vegetation coverage,

vigor, and growth dynamics, among other applications. VI were

initially used for land-based observations and provided the basis for

marine observations. This study addressed those used to observe

massive Sargassum blooms.

Between 1972 and 1973, the United States of America developed

an experiment to map regional vegetation conditions during the

Great Plains growing season (Rouse et al., 1974). Vegetation

conditions were measured in vast regions using Multispectral

Scanner (MSS) data from the Earth Resources Technology

Satellite 1 (ERTS-1, later renamed Landsat-1). The radiance

values recorded in ERTS-1 spectral bands 5 (0.6-0.7mm) and 7

(0.8-1.1mm), corrected for the angle of the sun, were used to

calculate the band ratio parameter (BRP), defined as the

difference in the ERTS radiance value measured in Bands 5 and 7,

divided by their sum, which shows a correlation with the green

aboveground biomass in the grasslands (Rouse et al., 1974). The

BRP parameter also contributed to the Normalized Difference

Vegetation Index (NDVI), which is defined as (Eq. 1):

NDVI =
RNIR − RRED

RNIR + RRED
(1)

Where RNIR and RRED are the reflectance in the near-infrared

(NIR) and red bands, respectively. Many applications have utilized

NDVI for land coverage/land usage. Several scholars have reported

applications of the NDVI concept in studying massive algal blooms

(Prangsma and Roozekrans, 1989; Kahru et al., 1993; Hu and He,

2008). The NDVI can be used when there is a high contrast between

Sargassum and the background in the images, and their values can

be used as input to other indices to discriminate between Sargassum

and emulsified oil, garbage, and different types of seaweeds (e.g.,

Trichodesmium, Syringodium, and Ulva) (Hu et al., 2015). On the

other hand Hu (2009) used it as a reference method to compare

against a Floating Algae Index (FAI) that he developed to estimate

the abundance of Sargassum (Hu, 2009). However, it is sensitive to

environmental variables and observing conditions (e.g.,

atmospheric influences, solar/viewing geometry, and sun glint)

(Hu, 2009), which makes it difficult for quantitative analyses,

because the absolute NDVI values can be changed, manual

adjustments are necessary, limiting automation and large spatial-

scale applications (Hu and He, 2008; Hu, 2009). Several indexes

have been proposed to overcome these issues (Huete et al., 1999),

including the Enhanced Vegetation Index (EVI) (Liu and Huete,

1995), which is a feedback-based index that corrects for the

interactive canopy background and atmospheric influences by

incorporating background adjustment and atmospheric resistance

concepts. This enhanced soil and atmosphere-resistant vegetation

index is defined in Eq. 2 (Huete et al., 1999):

EVI =
G(RNIR − RRED)

RNIR + C1RRED − C2RBLUE + C3
(2)

Where RNIR, RRED, and RBLUE are the reflectance in the NIR,

RED, and BLUE bands, respectively. G is the gain factor to

compensate for the aerosol effects, and C1, C2, and C3 are the
Frontiers in Marine Science 06
independent coefficients of the pixels to compensate for the impact

of the vegetation background.

Despite efforts, EVI remains sensitive to environmental

variables and observation conditions. Therefore, developing more

stable algorithms for these conditions is necessary. Also, given the

dynamics of the marine environment, the monitoring of Sargassum

in the sea and its accumulation on beaches requires periodic

information to know the moment-to-moment status of the

phenomenon, which is often unavailable, making the data

provided by algorithms challenging to validate for marine

coastal zones.
3.2 Reflectance band-ratio algorithms

Reflectance band-ratio algorithms use spectral bands in the blue

and green regions of the visible spectrum to estimate Chl_a

concentrations in open oceans (Blondeau-Patissier et al., 2014).

Examples include NASA’s ocean color algorithms, such as the the

SeaWiFS OC4 (O’Reilly et al., 1998; O’Reilly et al., 2000) and

MODIS OC3M (Campbell and Feng, 2005). Most reflectance

band-ratio algorithms were designed for global applications in

deep ocean waters (Odermatt et al., 2012). Therefore, it is

inappropriate to generalize the parameterization of some

algorithms to all ocean regions (e.g., Dierssen and Smith (2000);

Sathyendranath et al. (2001); Claustre and Maritorena (2003);

Volpe et al. (2007)). On the other hand, the use of blue-green

spectral bands for specific detection of Chl-a in coastal waters is

affected by the absorption signal of CDOM and Total Suspended

Matter (TSM). Therefore, in coastal waters, the quality of Chl-a

detection is significantly reduced and is often considered unreliable.

A more detailed performance analysis of these algorithms can be

found in Blondeau-Patissier et al. (2014).

On the other hand, if appropriate spectral bands are available, it

is possible to use the Sargassum Index (SI) and the red/green band

ratio to identify the presence of Sargassum among other species of

algae and seagrasses, in which the color green prevails (Dierssen

et al., 2015). Hence, the SI is defined as Eq.3:

SI =
Rr3

Rr2
(3)

Where “r3” is the wavelength of a local reflectance peak, and

“r2” is the wavelength of a local reflectance trough. Using Portable

Remote Imaging Spectrometer (PRISM) images at 1 m resolution,

the Sargassum Index was used to effectively discriminate Sargassum

from Syringodium seagrass (Dierssen et al., 2015).

The red/green band ratio is defined as Eq.4:

RGR =
Rr3

Rgreen
(4)

Where “green” has a wavelength near 555 nm. The reason to

define this index is to differentiate Sargassum from Trichodesmium

(Cyanobacteria) because they have opposite red/green ratios

(Dierssen et al., 2015).
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A simple NDVI index can effectively discriminate Sargassum

from the background in an image with high contrast. However, line

depth (LD) and SI are required to enhance NDVI output to

differentiate Sargassum from Syringodium blooms, oil, or garbage.

SI can also differentiate Sargassum from other floating materials in

environments free of emulsified oil and debris (Dierssen et al., 2015).

Table 2 shows the steps to discriminate Sargassum from other algae

and seagrasses or floating materials using PRISM imagery.
3.3 Spectral band-difference algorithms
(Baseline algorithms)

Amethodology that has inspired several studies to avoid oxygen

absorption at 687 and 760 nm and water vapor absorption at 730

nm is known as the baseline algorithm (Abbott and Letelier, 1999).

Gower and co-workers used aircraft-based sensors to test several

channels as a baseline for calculating the Fluorescence Line Height

algorithm (FLH). They varied the bandwidth and position and

eventually developed a simple linear model using three bands

(Borstad, 1985), the general form is presented in Eq. 5. The

mathematical expression of this algorithm is also known as

Spectral Band Difference Algorithm (SBDA).

SBDA = R2 − K(R1 + (R3 − R1)
l2 − l1
l3 − l1

) (5)

Whereby R2 is the radiance or reflectance depending on the use

of the input data, measured in the peak of l2, R1 and R3 are the

radiance or reflectance of the baseline wavelengths, l1 and l3.
Finally, K is a constant (Palmer et al., 2015). The subscripts can be

rewritten with the reflectance used according to the study (Eq. 6).

Note that the subscripts are generic, and the associated wavelength

depends on the index used. For details, see Table 3.

SBDA = RNIR − (RRED + (RSWIR − RRED)
lNIR − lRED
lSWIR − lRED

) (6)

To make the expression shorter, it is usually rewritten, as shown

in Eq. 7 and 8.

SBDA = RNIR − R0 (7)

Where:

R0 = RRED + (RSWIR − RRED)
lNIR − lRED
lSWIR − lRED

(8)
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All SBDA algorithms discussed in this study are defined as the

difference between the reflectance or radiance (R) in the central

waveband (l2) - which corresponds to the maximum of the red-

edge effect -and a linear baseline, drawn between surrounding

bands (l1 and l3, respectively) (Gower et al., 2005; Hu, 2009;

Wang and Hu, 2016). SBDA algorithms take advantage of the fact

that absorption tends to vary more rapidly with wavelength than

dispersion; two adjacent reflectance spectral bands may have similar

backscatter properties but will differ significantly in absorption.

Therefore, this absorption can be quantified by spectral difference,

which these algorithms seek to take advantage of (Blondeau-

Patissier et al., 2014).

The first observation of Sargassum from space in 2005 (Gower

et al., 2006) was achieved using imagery from the Medium

Resolution Imaging Spectrometer (MERIS), on the Envisat

satellite launched by the European Space Agency (ESA), and from

the Moderate Resolution Imaging Spectroradiometer (MODIS),

launched on both the Terra and Aqua satellites by the National

Aeronautics and Space Administration (NASA). MERIS imagery

was used as input for the Maximum Chlorophyll Index (MCI), and

MODIS imagery for the Fluorescence Line Height (FLH) MODIS

product. FLH and MCI belong to SBDA algorithms and were the

inspiration for the Floating Algae Index (FAI) (Hu, 2009) and the

Alternative Floating Algae Index (AFAl) (Wang and Hu, 2016). The

SBDA algorithms use band triplets from the visible (VIS), infra-red

(IR), near infra-red (NIR) and shortwave infra-red (SWIR) spectral

regions (Table 3). The wavelengths are selected depending on the

phenomenon monitored to set the index, so the algorithm is

sensitive to Chl-a fluorescence, Chl-a concentration, or surface

flowering (Blondeau-Patissier et al., 2014). The features of these

algorithms are detailed below.

3.3.1 Fluorescence line height
The Fluorescence Line Height algorithm (FLH) measures the

relative amount of radiance leaving the sea surface, presumably

resulting from chlorophyll fluorescence (Abbott and Letelier, 1999).

It is one of the most widely used ocean color SBDA algorithms to

quantify solar-induced chlorophyll fluorescence. FLH estimates the

deviation from the radiance expected for pure water resulting from

chlorophyll fluorescence through a baseline composed of bands on

either side of the high fluorescence wavelength. This increase in

radiance (centered at 683 nm for chlorophyll) has been observed for

decades in light-field ocean measurements. However, the signal is

generally weak, even in regions of high chlorophyll concentrations.
TABLE 2 Steps to discriminate Sargassum from other floating materials and algae using PRISM imagery.

Stage Steps to discriminate Sargassum from

Syringodium, emulsified oil, and garbage Syringodium, Trichodesmium, and Ulva

1 NDVI N >0 (floating materials) NDVI >0 (floating materials)

2 LD>2 x 10-3 (spectral curvature around 630 nm to rule out the possibility of Syringodium, emulsified
oil, and garbage)

SI >1 (to rule out the possibility of Syringodium and
Ulva)

3 RGR >1 (to rule out the possibility of Trichodesmium, Syringodium, and Ulva) RGR >1 (to rule out the possibility of Trichodesmium
and Ulva)
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Thus, to measure fluorescence, the signal-to-noise ratio (SNR) was

increased for the fluorescence band and the adjacent “baseline”

bands at 665.1 nm (band 13) and 746.3 nm (band 15). In the case of

MODIS imagery, the fluorescence measurement was adjusted at

676.7 nm (band 14) as a compromise between measuring the

fluorescence peak (683 nm) and the presence of an oxygen

absorption band at 687 nm (Abbott and Letelier, 1999).

3.3.2 Maximum Chlorophyll Index
The Maximum Chlorophyll Index (MCI) monitors algal

blooms in inland waters and in ocean, ranging from low

chlorophyll and oligotrophic to optically complex, turbid, and

eutrophic conditions (Gower et al., 2006; Binding et al., 2013). The

MCI index is used for MERIS imagery at 709 nm to detect a

signature of dense surface phytoplankton in bloom conditions.

However, in shallow waters, a peak near this wavelength can also

indicate the presence of benthic vegetation (Gower et al., 2003).

Even though MCI is a versatile tool for monitoring intense surface

algal blooms, with chlorophyll concentrations in the 10-300 mg m-

3 range, this index has limited application when algae biomass is

low, as in the case of Lake Ontario (Binding et al., 2013). Thus, the

MCI can only be applied to MERIS in the 708.75 nm band because

it responds best to strong reflectance in the NIR but not in MODIS

and VIIRS, which lack similar bands.

3.3.3 Floating Algae Index
The Floating Algae Index (FAI) is based on the difference

between the reflectance at 859 nm (vegetation “red edge”) and a

linear baseline between the red band (645 nm) and the short-

wave infrared band (1240 or 1640 nm) (Hu, 2009). The

wavelengths of these reflectance bands are present in the

MODIS sensor. However, the FAI concept can be extended to

other satellite platforms because its equation is the same as

MODIS FLH (Letelier and Abbott, 1996) and MERIS MCI

(Gower et al., 2005), both of which are effective in estimating

solar-stimulated chlorophyll-a fluorescence (FLH) and to detect

intense phytoplankton blooms (MCI). FAI is more tolerant to

environmental changes and robust to the influence of CDOM,

aerosols, and sun glint because of the use of NIR bands.

Nevertheless, similarly to MCI, the FAI is sensitive to turbid

waters and shallow depths and is still susceptible to false
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positives. Since its release in 2009, the FAI algorithm has been

used to study several algae blooms in the ocean. Examples include

the monitoring of Sargassum in the North Atlantic Ocean and the

Gulf of Mexico, Ulva (Enteromorpha) prolifera in the Yellow Sea

(Hu et al., 2010a; Hu et al., 2010b), and Trichodesmium spp. on

the west Florida shelf (Hu et al., 2010a), with support of a multi-

sensor hydrocarbon tracking technique (Zhao et al., 2014).

Unfortunately, the FAI can confuse clouds, ocean waves, and

sun-glint pixels with floating algae (Hu, 2009).
3.3.4 MSI-Modify Floating Algae Index
The spectral bands that the theory indicates are ideal for

observing pelagic Sargassum from space are not available in all

satellite sensors, or technical aspects limit their implementation.

This has led to the creation of indexes that use alternative spectral

bands. This selection depends on the data sensor (Table 3).

Implementing an index is sometimes impossible since the

necessary spectral band is unavailable. For instance, the MCI uses

a l2 centered at 709nm and can be implemented only with data

from the MERIS and OLCI sensors (Blondeau-Patissier et al., 2014).

Another example is the MSI sensor onboard the Sentinel 2 A&B

platforms, which presents parallax effects due to the staggered

configuration of the 12 individual detectors concerning the focal

plane, resulting in odd or even different angles on the ground. These

effects can result in differences in radiometry measured on non-

Lambertian surfaces, for example, in the sun’s brightness on sea

surfaces (Clerc, 2016). On the other hand, the processing algorithm

ensures the co-registration of images acquired by all spectral bands

and the ground-level feature detectors. However, objects at higher

altitudes, such as airplanes and clouds, cannot be registered

correctly, leading to incorrect spectral registration (“rainbow”

effect) and discontinuities between the detectors, which causes

misalignment of the detector for objects at high altitudes.

Considering the effects mentioned above, Ody et al. (2019)

proposed using the 940nm band instead of the 1610 nm to

calculate the FAI using data from the MSI sensor. This

adaptation originated the MSI-Modified Floating Algae Index

(MSI-MFAI), which benefits the 10m resolution of the bands at

833 and 665nm. The 940 nm MSI spectral band must be up-

sampled to a 10m resolution because it has a native spatial

resolution of 60m (Ody et al., 2019).
TABLE 3 Wavelengths of spectral band difference algorithms used to monitor Chl-a fluorescence, Chl-a concentration, or surface flowering.

Central l (nm)

Index Red NIR NIR or SWIR Sensor/Satellite Use

FLH 665.1 676.7 746.3 MODIS/Terra, Aqua Chl_a

MCI 681 709 753 MERIS

FAI 645 859 1240 MODIS/Terra, Aqua Sargassum/Macroalgae

FAI 655 865 1609 OLI/Landsat

MFAI 665 833 940 MSI/Sentinel 2 (A&B)

AFAI 667 748 869 MODIS
frontiersin.org

https://doi.org/10.3389/fmars.2023.1216426
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lazcano-Hernandez et al. 10.3389/fmars.2023.1216426
3.3.5 Alternative Floating Algae Index
The Alternative Floating Algae Index (AFAI) was inspired by

the same mathematical expression used in the FAI. To eliminate

false positives caused by clouds, the AFAI proposes masking the

clouds using a new combination of spectral bands (lRED=667 nm,

lNIR=748 nm, and lSWIR=869 nm) (Wang and Hu, 2016). Although

the 869nm band is in the NIR spectral range, it is still called “SWIR”

for consistency (Table 3). In addition to eliminating false positives

due to the presence of clouds and solar flares, this proposal

improves visual contrast and allows simple interpretation by a

wider audience (Wang and Hu, 2016). Although AFAI has a

lower spatial resolution (1km) than FAI (250m), the bands used

to calculate AFAI have much higher signal-to-noise ratios (SNRs)

than those for FAI (Table 3), thus, compensating for the reduction

in resolution when detecting small Sargassummats (Hu et al., 2012;

Wang and Hu, 2016). The AFAI was applied to MODIS data to

generate the first-time distribution and area coverage maps of

Sargassum in the western central Atlantic region from 2000 to

2015 (Wang and Hu, 2016), obtaining results consistent with those

previously reported using MERIS observations up to 2011 (Gower

et al., 2013).

Spectral band-difference algorithms have provided the most

significant findings in observing these algae and are currently a

reference in ocean monitoring. However, their performance in the

coastal zone decreases considerably. The FAI is the current

benchmark index for Sargassum monitoring in the ocean and is

used to compute the Satellite-based Sargassum Watch System

bulletins (SaWS, https://optics.marine.usf.edu/projects/

saws.htmlhttps://optics.marine.usf.edu/projects/saws.html).

Nevertheless, several studies seek to improve the results provided by

this index, as discussed in the following section.
3.4 Bio-optical algorithms

Bio-optical modeling is an essential tool for understanding the

effects of dense algal concentrations on light absorption and

backscatter coefficients (Blondeau-Patissier et al., 2014). To bio-

optical models have meaningful applications, it is necessary to

calibrate them with values from in situ measurements of the

variables used in the model so that the coefficients used are the

most adequate to represent the phenomena under study as

accurately as possible. To our knowledge, only the study of

Schamberger et al. (2022) sheds light on a bio-optical algorithm

specifically designed to detect Sargassum. This study adapted the

semi-analytical radiative transfer model (Lee et al., 1998), proposed

by Descloitres et al. (2021), which included the submerged

Sargassum in rafts. This model is called Sargassum Radiative

Transfer (SRT). Like Lee’s et al. (1998) model, SRT can simulate

surface reflectance using the bio-optical properties of the water

column, bottom depth, and bottom composition as inputs (forward

model). The model uses the following variables as inputs: Chl-a, the

concentration of Non-Algal Particles (NAP), the Colored Dissolved

Organic Matter (CDOM) absorption coefficient, the seabed

reflectance, and the depth (z) (Schamberger et al., 2022). These
Frontiers in Marine Science 09
parameters determine the Inherent Optical Properties (IOP) of the

water, such as the absorption (a(l)) and backscattering (bb(l))
coefficients that are used to model the deep-water reflectance

prsdp(l).
4 Machine learning and Sargassum
observation

The atmosphere imposes limitations on the Earth’s observation

from space that are challenging to avoid. Several actions have been

conducted to overcome these limitations, including developing

sensors with better spectral and radiometric characteristics and

indices with features that highlight the study object from the

background of the images. Concerning Sargassum monitoring,

filters or masks have been designed to eliminate clouds, cloud

shadows, intense reflections of the sun, and others. However, false

positives and false negatives persist in most images. In recent years,

the development of hardware and software has supported the

democratization of ML. Since a decade ago, ML has been

employed successfully in various Earth observation studies

(Camps-Valls et al., 2021). The first published work that used ML

to improve Sargassum monitoring using Landsat images was

published in 2018 (Cuevas et al., 2018), and the first one using

DL in 2019 (Arellano-Verdejo et al., 2019). In 2020, ML steps were

incorporated to improve extracting Sargassum-associated features

in imagery obtained from AFAI (Wang and Hu, 2021). The

following section discusses ML and relevant studies where ML

has been implemented to improve Sargassum observations from

satellite imagery.
4.1 Brief presentation of machine learning

In the context of Computer Science, ML is a branch of Artificial

Intelligence (AI) (Minsky, 1961) that allows machines to learn

without being expressly programmed for it. An ML algorithm can

learn from the data (Goodfellow et al., 2016), which is an essential

skill for making systems capable of identifying patterns to be able to

make predictions. This technology is present in several applications

(e.g., content recommendation on streaming platforms, speech

recognition from virtual assistants, autonomous cars, search

engines, medical diagnoses, or fraud detection). The contribution

of ML is the paradigm shift from rule-based programming to

autonomous learning from data (Goodfellow et al., 2016).

Additionally, ML methods are widely used to extract patterns and

insights from the ever-increasing data streams in sensory systems

(Camps-Valls et al., 2021). In general terms, ML helps to make a

prediction or data grouping based on input data. Prediction

problems can be divided into two broad categories: Regression

problems, where the variable to be predicted is numerical, and

Classification problems, where the variable to be predicted is part of

a predefined set of categories. For the training of an algorithm,

ideally, a balanced dataset is required, i.e., with homogeneous values

of the different elements or variables included in the study case.
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A characteristic of ML is that there are metrics for evaluating

models and their performance quantitatively, allowing us to know

the confidence level of the algorithm in different scenarios. A

fraction of the dataset (generally 80%) is used as the training

dataset, and the remainder is the test dataset, used to evaluate the

algorithm’s performance. The ML evaluation metrics depend on the

model type (regression or classification). Classification models are

applied in Sargassum monitoring, and their most straightforward

evaluation metric is accuracy, which is the percentage of

observations correctly predicted by the model. However, it must

be interpreted cautiously, especially if the classes to be predicted are

out of balance (Hossin and Sulaiman, 2015).

The confusion matrix is another tool to evaluate and compare

models. It compares the actual values of the target variable against

the predicted values. The matrix number of rows and columns

depends on the number of possible outcomes. There are only two

possible outcomes for binary classification, so only two columns

and two rows exist. The labels that make up a confusion matrix are

true positive (TP), false negative (FN), false positive (FP), and true

negative (TN). Additionally, the information from the confusion

matrix makes it possible to calculate the following metrics: Precision

Eq.9 and Recall Eq.10, as defined below (Hossin and

Sulaiman, 2015).
Precision =

TP
TP + FP

(9)

Recall =
TP

TP + FN
(10)

Precision and Recall are used to define the metric F1 score as

shown in Eq.11

F1 = 2� Precision� Recall
Precision + Recall

(11)
4.2 Classical ML algorithms

The metrics above allow us to quantitatively determine the

performance of the algorithm used for a particular study and

compare different algorithms with each other (Hossin and

Sulaiman, 2015). Then, we will describe innovative study cases

that use ML techniques to improve the Sargassummonitoring in the

ocean, the coast, and the beach.

4.2.1 Tree-based models
The study conducted by Cuevas et al. (2018) had two main

objectives. First, to understand the spatio-temporal dynamics of

pelagic Sargassum in the waters of the northern Yucatan Peninsula,

Mexico. Second, to extend existing methodological approaches by

implementing a low-cost proposal with relatively low

computational demand. A Random-Forest type algorithm was

designed with inputs defined from the combination of five

vegetation indices and two Landsat spectral bands with the

potential to contribute to detecting Sargassum under supervised

classification: NDVI, EVI, FAI, Atmospherically Resistant

Vegetation Index (ARVI), Soil Adjusted Vegetation Index (SAVI),
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B2 (blue, 0.452–0.512 mm), and B5 (SWIR, 0.851–0.879 mm) were

used as inputs of the algorithm.

The classification input was a dataset built with 91 Landsat-8

imagery of the northern Yucatan Peninsula from the years 2014 and

2015. For all classifications, the number of variables in the random

subset at each node (m) was set at 3, and the number of trees in the

forest (k) at 1,000, with the replacement of samples at each step.

Five training zones were included for the other more representative

objects present in the scene to provide the classifier with a broader

spectral context of each analyzed image and increase the

possibilities of correctly classifying Sargassum. The results showed

that combining vegetation indices in a classification process is a

more robust way to detect Sargassum in Landsat-8 imagery,

improving even those using a single index.
4.2.2 Support vector machine classification
The study conducted by Shin et al. (2021) aimed to detect

Sargassum distribution along the coast of Jeju Island using the

Geostationary Ocean Color Imager-II (GOCI-II) images and a ML

model-based on a Support Vector Machine (SVM) and Gentle

Adaptive Boosting. The model was trained using the Rayleigh-

corrected reflectance image (RhoC) from GOCI-II as input and a

“ground truth” of the ground extracted from high-resolution

images as output. A Sargassum ground truth map was generated

from Landsat OLI and Sentinel-2 MSI imagery.
4.3 Algorithms based on deep learning

The democratization of DL has been possible thanks to the

availability of large datasets, the advances in hardware and

parallelization, computational resources, and community efforts

to develop and share codes. This has resulted in an increasing

number of people using DL to solve different challenges. Nowadays,

DL seems to be consolidating as a widely used scientific research

paradigm (Camps-Valls et al., 2021). The vast amount of data about

the Earth and its environments, generated by satellite observation

platforms and other remote sensors has enabled Earth observation

to join the data revolution. The use of DL in Earth Sciences has

grown exponentially in recent years because the datasets available

offer enormous potential to study terrestrial ecosystems and to

address major societal challenges related to emerging issues (e.g.,

food, water, energy security, and climate change) (Camps-Valls

et al., 2021). DL allows the analysis of RS data from another

perspective. Below we describe some of the most recent studies

incorporating DL to improve Sargassum observation.

4.3.1 Artificial Neural Networks approach
The study conducted by Arellano-Verdejo et al. (2019),

presented ERISNet, a convolutional and recurrent ANN, to

classify pixels into two classes: with and without Sargassum.

Aqua-MODIS imagery of the coast of Quintana Roo in Mexico

was used to build the training, testing, and validation datasets. After

the learning process, the designed algorithm achieved 90%

probability in its classification capabilities. ERISNet was the first
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ANN developed to classify pixels for Sargassum observation and

provides a novel view to detect the arrival of algal blooms

accurately. This study also made the first dataset with MODIS

pixels classified as with or without Sargassum available.
4.3.2 Denoising model filtering
A significant challenge for automatically extracting pelagic

Sargassum information from satellite images is the background

noise. Traditionally, noise in VIIRS images is removed using

methods such as Gaussian smoothing. However, this

methodology cannot be applied in MSI images because the noise

patterns are highly variable and attenuate the features, even after

local adjustments for optimal performance. MSI images also present

relatively large-scale variations in the background, which can result

from the image fringe patterns and changes in the optical properties

of the water. The study by Wang and Hu (2020) aimed to develop a

reliable and fully automatic method for extracting pelagic

Sargassum features from MSI images using the FAI. The proposal

relied on applying a DL model called Trainable Nonlinear Reaction-

Diffusion (TNRD) for noise removal. The results show that the

proposed model is adequate for image preprocessing and reduces

the underlying problems when applying the AFAI index.

4.3.3 UNET image segmentation
The study conducted by Wang and Hu (2021) addressed two

main questions. First, how much Sargassum had gone undetected in

coarse-resolution observations such as MODIS. Second, how would

it be possible to fill data gaps in nearshore waters? The authors used

a deep convolutional neural network (DCNN) of U-net type to

answer these questions and to develop a unified approach to extract

Sargassum features and quantify its abundance using high-

resolution images from multiple sensors (MSI,OLI, WV-2, and

PlanetScope/Dove). Sargassum biomass density or coverage areas

were quantified, while other confounding features (i.e., waves,

currents, phytoplankton blooms, clouds, shadows of clouds, or

streak noise) were discarded. To design the model, the authors

took the feature extraction section of a VGG network to build a U-

Net named VGGUnet.

The dataset generated in the study served to train the proposed

model. As a result, satisfactory performance was achieved as no

apparent noise signal was misidentified as Sargassum (false positives),

while pixels containing Sargassum were mainly detected (few false

negatives). Most detection errors (either false positives or false

negatives) came from pixels with relatively low biomass densities.

Accuracy and recovery rates were high (85%), suggesting that most

pixels containing Sargassum were detected successfully. The accuracy

of Sargassum biomass estimated from OLI images was ~92%; from

MSI images 90%; from WV-2 images ~98%; and from PlanetScope/

Dove images 82%. The study presents beneficial results and statistics;

however, the authors omitted to incorporate metrics to evaluate the

training performance of their proposed algorithm.

The VGGUnet model showed robust performance even with

limited spectral bands, high background variations, and several

confounding targets. Another critical advantage of the proposed

method was its flexibility. The VGGUnet model can easily adapt to
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different types of satellite data or features by adjusting the input

layer and optimizing the model parameters.

The study conducted by Zhang et al. (2022) demonstrated the

potential of 3m resolution imagery to monitor Sargassum on the

beaches of Miami and Cancun by employing a U-net-based DL

model using Dove images. The model was trained with a dataset of

four-band TOA reflectance images and labeled Sargassum images.

Pixels were roughly delineated to create the labeled Sargassum images

using NDVI values. The model was applied to the images after local

cloud masking of the TOA reflectance. The authors admit that future

work is required to improve cloud masking and apply an appropriate

atmospheric correction for global applications. The Sargassum

demonstration clearly shows how valuable high-resolution and

high-frequency Dove data are for monitoring dynamic events, such

as Sargassum inundation. The results show how the Sargassum

coverage changed quickly, although the results were encouraging,

in this case, like in others where ML and DL techniques are

employed, the methodologies applied in the datasets used to train

the models were not described in depth. It is not clear how the results

were evaluated and interpreted since, in most cases, there is no

mention of how the authors avoid overtraining and overfitting.
5 Beach monitoring

Monitoring Sargassum along the coasts presents challenges to

traditional remote sensing because of the heterogeneous

characteristics of the shores, which are not evident in the images

from most of the sensors that offer open data. An alternative is using

very high spatial and temporal resolution data. However, conducting

large-scale studies with these inputs is computationally and

economically expensive. However, it offers the advantage of

monitoring areas of interest with images that provide finer detail.

Below is a review of studies that propose alternatives for monitoring

Sargassum on beaches, what they do, how they do it, their

contributions to the state-of-the-art, and their areas of opportunity.
5.1 Network camera systems

In 2021, Rutten et al. (2021) characterized the temporal

variation in Sargassum found in the reef lagoon in Puerto

Morelos, Quintana Roo, Mexico. The study analyzes images taken

every hour for approximately 5.2 years (September 2015 to

November 2022) to observe the relationship between landings

with wave energy, water level, and wind speed. With this

information, the authors proposed a model to explain how the

natural cleaning process of the Sargassum accumulated on the

beach occurs. This study used a SVM to classify the images

automatically. However, it is necessary to know more details of

the algorithm adjustment process to reproduce the experiment; for

example, the kernel used, the implication of training the algorithm

with an unbalanced dataset, and confusion matrices for different

cases. This study contributes to the knowledge about Sargassum

dynamics and the capacity of the coastal system to remove

Sargassum naturally on beaches.
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5.2 Crowdsourcing and citizen science

Sargassum monitoring on beaches using photographs and

videos has also been carried out through various citizen science

initiatives, including Crowdsourcing. The increasing use of mobile

devices, such as smartphones and tablets, and the infrastructure that

interconnects them with the Internet, have made collective

participation a vital source for photographs of the presence of

Sargassum on beaches. Citizen science has recently been used as a

methodology to collect field information for the validation and

calibration of supervised algorithms for identifying Sargassum on

the beaches (Arellano-Verdejo and Lazcano-Hernandez, 2020;

Iporac et al., 2020). In addition, the study by Putman et al. (2023)

suggests the inclusion of wind speed and citizen science data to

improve Sargassum inundation reports along beaches. This study

constructed its dataset by vertically cropping each photograph to

remove the sky and then superimposing 50 random points on the

image using the Coral Point Count with Excel extensions (CPCe)

software (Kohler and Gill, 2006). Each point was classified into six

classes (Sargassum, sand, sky, water, vegetation, or ‘other’). To

estimate the relative amount of Sargassum present in the photo, a

ratio was calculated between the number of Sargassum pixels and

the sum of sand, water, vegetation, and Sargassum points.

The study conducted by Arellano-Verdejo and Lazcano-

Hernandez (2021) proposed a methodology for monitoring

Sargassum on beaches based on Crowdsourcing for capturing

geotagged photographs. An application for mobile devices (e.g.,

smartphones, tablets) was developed so that volunteers could

capture and send the photographs to the cloud for storage. A

dataset of 2400 photographs (1200 with Sargassum and 1200

without) was built to train, test, and validate the classification

algorithms. DL algorithms classified the images automatically into

two classes (with and without Sargassum), and maps were created

with GIS to visualize the presence or absence of Sargassum on

beaches. To accomplish this task, three state-of-the-art CNNs

(LeNet-5, AlexNet, and VGG16) were chosen for image

classification and compared on their performance to find the most

suitable architecture. Each CNNS was adjusted for the classification

process to use the new dataset. LeNet-5 was modified to work with

RGB images. The last layer of 1,000 categories in the AlexNet and the

VGG16 architectures was replaced by a fully-connected layer for two

classes (Sargassum and non-Sargassum images). AlexNet and VGG

used augmented data and transferred learning to maximize the

generalization capacity of the network for the given dataset. The

architecture with the best performance in this study was AlexNet,

with an f1 score of 92%. This is a significant result considering that

the training was performed with a relatively small set of images

(2400). The main contribution of this study is the building of the first

dataset of segmented and geotagged images that can be used in other

studies. This is important since there is a lack of datasets for studying

natural phenomena. Additionally, this study uses the results of the

proposed methodology to develop presence/absence maps of

Sargassum along the beaches.

The study conducted by Santos-Romero et al. (2022) proposed a

method to classify images automatically to build adequate datasets
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for studies that highlight the presence of Sargassum along the

beaches. The images were classified into two classes, in-depth

linear perspective and no linear perspective. The Transfer

Learning technique on three Artificial Neural Networks (ANN’s)

from the literature (ResNet50, MobileNetv2, and VGG16) was

implemented to find the optimal architecture. The study also used

the Collective View dataset as input for constructing its training

dataset. From that collection, 5,000 pictures were manually selected

and classified into two balance classes: 2,500 images with a linear

beach perspective and 2,500 images without this perspective. The

dataset was divided into two subsets using an 80-20 hold-out

scheme (Chollet, 2021). 80% of the data were used for training

the model and 20% for its testing. The ANN’s performance was

assessed with the Accuracy, Precision, and F1 score metrics. A

resampling analysis of the F1-Score metric was performed with the

Bootstrapping technique, concluding that VGG16 and

MobileNetV2 obtained similar results with a confidence interval

of 95% between 0.88 and 0.92. Finally, considering both

architectures’ spatial and temporal complexity, MobileNetV2 was

proposed as the most appropriate for classifying images with and

without linear perspective in depth. One of the main contributions

of this study is the implementation of resampling to analyze the

algorithm’s performance. Resampling is a statistical technique that

allows computing estimates of the variance, bias, and confidence

intervals of an estimator, using random subsets of the dataset.
5.3 Beach image processing approach

The study by Valentini and Balouin (2020) used a SOLARCAM

system for beach monitoring, to compute the semantic

segmentation of the imagery, the following was carried out: 1) the

image was partitioned in superpixels using the sticky-edge adhesive

algorithm; 2) the pre-trained CNN MobileNet-V2 classified the

superpixels; and 3) semantic image segmentation was performed

through fully connected Conditional Random Field (CRF). The

segmented classes were algae, anthropic structure, seafoam and

swash, sand, sky, vegetation, and seawater. According to the F1

score metric, the performance of the proposed methodology related

to the presence of Sargassum reached a maximum of 90%. At

publication, this study was the first to apply the semantic

segmentation technique to beach monitoring. The proposal is

scalable and would only need to integrate the results into a map

for visualization.

Balado et al. (2021) applied a semantic segmentation technique

to classify imagery of five macroalgal species (Bifurcaria bifurcata

Linnaeus, Cystoseira tamariscifolia (Hudson) Papenfuss, Sargassum

muticum (Yendo) Fensholt, Sacchoriza polyschides (Lightfoot)

Batters, and Codium spp). The study used data augmentation to

build the high-resolution dataset to retrain three CNNs and

compare their performance (Mobilnet-V2, Resnet 18, and

Xception). The framework used in this study was DeepLabV3 in

Matlab. In total, 130 images were labeled and distributed: 90 images

for training, 10 for validation, and 30 for testing. This paper shares

the hyperparameters used in the learning process of the algorithm
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(optimization method, learning rate, momentum, L2 regularization,

max epochs, and batch size), which are useful for conducting a

replica of the study and is information that has usually been omitted

in papers. This is one of the pioneering applications of semantic

segmentation to differentiate five species of macroalgae.

To improve the results of this type of study, many ground

images are required, as well as a good segmentation of the training

dataset. On the other hand, geospatial metadata is required to apply

the algorithm in the elaboration of maps or other useable products

in decision-making. To implement this proposal in aerial images,

new datasets are needed to train, test, and validate the algorithm.

Additionally, the number of classes required for segmentation needs

to be analyzed since UAV-acquired imagery includes information

that does not appear in ground images.

In 2022, Arellano-Verdejo et al. (2022), used the collection of

geotagged photographs of Arellano-Verdejo and Lazcano-

Hernandez (2021) to apply a semantic segmentation technique to

propose a new mapping methodology for estimating Sargassum

coverage on beaches. Implementing the semantic segmentation

image technique requires several steps, one of which is to build a

dataset consisting of pairs of pictures (source and segmented). To

achieve image segmentation, two stages are required: image

translation and subsequent segmentation. Image translation was

carried out using the Pix2Pix architecture, and segmentation was

performed using the k-means algorithm. All images in the dataset

were segmented into three classes (Sargassum, sand, and others). If

all the Sargassum observed in the photographs lies on the beach, the

total beach area was confirmed by Sargassum and beach pixels.

With this criterion, the Sargassum coverage percentage over the

beach on every picture was calculated for each segmented

photograph. The number of photographs available for the study

zone allowed statistically reliable mapping of the percentage of

Sargassum coverage from the segmented images. As an element of

validation of the proposed methodology, an orthophoto generated

by a UAV flight of the study area was used for one of the

photographic sampling dates. The main contributions of this

study were the generation of the first geotagged and segmented

image dataset for Sargassum monitoring for the study area

(Mahahual, Quintana Roo, Mexico), and the design of a

methodology to generate maps of Sargassum coverage on beaches,

which provides more information than maps of the presence/

absence of Sargassum. One challenge of the methodology is the

need for a constant flow of images for map creation. This situation

is generally not possible since society’s participation rate is

overall low.
6 Discussion

The observation and monitoring of pelagic Sargassum landings

poses several challenges. Regarding remote sensing capabilities, it

requires information at the synoptic scale for oceanic observations,

and at the human scale for coastal and beach monitoring, i.e. scale

that can be directly visible, touchable and appreciable by the human

body and its environment (Long and Ye, 2016). Understanding the

dynamics of this phenomenon requires daily fine spatial resolution
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data and short revisit times. Nevertheless, satellite images have

several limitations, because of the nature of the interaction of light

with the earth’s atmosphere (e.g., absorption, refraction, reflection);

the elements and biodiversity in the observation areas (e.g., clouds,

cloud remnants, reflections, waves, other species of algae and sea

grasses, and floating objects); and the technical limitations of the

satellites’ platform and sensors. Although several platforms have a

resolution of less than one meter at present, it is not economically

feasible for most academic groups to carry out long-term

monitoring with this type of image. Therefore, exploring the

possibility of complementing observations with images from

citizen science, and geostationary platforms such as GOES is

relevant. Another challenge is that AQUA and TERRA platforms

are at the end of their useful life. These platforms are important for

the observation of the Sargassum as they provide daily information

at a synoptic scale through MODIS sensor.

The challenges presented by in situ beach monitoring are also

diverse due to the extensive areas with Sargassum which are not

always feasible to visit; there is a lack of infrastructure and electricity

services needed for the installation of a monitoring network and

greater and better internet connectivity; the data capture through

citizen science is minimal; and there is a need for the consolidation

of platforms for the exchange of beach-level information, as well as

those that exist for satellite imagery. Legislation is also an issue to

consider in the design of monitoring systems on beaches. If they are

located within protected areas, the construction of infrastructure

can be prohibited or must follow a rigorous process to be

authorized. Additionally, in the case of installing a camera system

for monitoring Sargassum on the beach, we must consider the costs

of maintenance and surveillance to maximize the useful life of the

equipment and avoid looting.

The current academic challenge is generating methodologies

that allow obtaining as much information as possible from freely

available satellite images or under other information-gathering

schemes (e.g., to create low-cost solutions from the most

affordable inputs).
6.1 Brief evolution of Sargassum
observation

The evolution of Sargassum observation and study approaches

can be summarized chronologically, methodologically, by area, and

by scale.
6.1.1 Chronological approach
Sargassum observations in the CS can be classified into two

stages: before and after 2018. Before 2018, Sargassum oceanic

observations were carried out using ocean color sensors (i.e.

MODIS, MERIS) and algorithms (i.e. FLH, MCI). After 2018,

monitoring Sargassum on coasts and beaches became necessary

due to the environmental and socioeconomic impacts it provokes.

False positives (FP) were minimized with FAI and AFAI indices

since the first observations of Sargassum in images were obtained

with MERIS and MODIS sensors. However, this did not solve the
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problem entirely because FPs are more accentuated in coastal areas

due to the diversity of elements compared to those in the open sea,

where the surface is homogeneous. To overcome this challenge, ML

algorithms were incorporated to remove the background noise from

the satellite images and make Sargassum identification easier.

The challenges caused by Sargassum landings in 2018,

coincided with the democratization of ML, which refers to the

accessibility of software, libraries, and computing resources needed

for its implementation. For example, in 2015, Google made the

Open-Source Neural Networks library – Keras – available to any

user, which can run on Tensor Flow, Microsoft Cognitive Toolkit,

or Theano. Keras was designed to experiment DL networks

relatively easily, being user-friendly, modular, and extensible

extensible (Chollet, 2021). In this context, ERISNet was published

in 2019 (Arellano-Verdejo et al., 2019). At that time, the state-of-

the-art indicated that observing Sargassum in coastal areas with

MODIS imagery was impossible due to the difficulty of

discriminating it from other near-shore elements.

6.1.2 Methodological approach
Since 2005, Sargassum observation in the open ocean has been

conducted using several baseline-type indices (MCI, FLH, FAI,

AFAI) that share the same mathematical expression but different

suits of spectral bands to set the image background to improve the

observation of floating algae. From a methodological point of view,

there has been no real innovation in applying these indices to observe

Sargassum. From 2018 onwards, studies began to be published where

they implemented image processing and ML techniques to improve

the images before applying ocean color indexes. Incorporating these

techniques suggests a new stage in the observation and monitoring of

Sargassum; however, the process is still in the initial phase. In this

context, Sargassum’s observation can be classified into the two

methodological approaches described below.

The initial observations of Sargassum from space employed

indices designed to observe Chl a in the open sea. MCI and FLH

indices were first used in 2005. Later, in 2009, the FAI was published

and became the benchmark until the AFAI was published in 2016.

These techniques share the same mathematical expression; the

difference lies in the bands selected to calculate the index. Due to

the nature of the indices, no methodologies or statistical metrics have

been used to assess their performance, except for in situ validation.

The second methodological stage incorporated ML techniques to

improve the results provided by the indices. The first study

incorporating ML for Sargassum detection in the sea was published

in 2018 (Cuevas et al., 2018). ML had already been used to analyze

satellite data and images with excellent results (Camps-Valls et al.,

2021). ML techniques were either incorporated at some stage of the

methodology to improve the discrimination of Sargassum offered by

the existent indices or used from scratch to design new techniques.

The first study incorporating DL for Sargassum detection in the sea

was published in 2019 (Arellano-Verdejo et al., 2019).

6.1.3 Study area approach
Sargassum monitoring can be conducted in oceanic, coastal,

and beach environments. Oceanic monitoring began in 2005 using
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traditional indices and algorithms and was improved using ML

techniques from 2018 onwards. Coastal monitoring was improved

using high-resolution satellite imagery and ML to minimize false

positives and improve the generation of value-added products from

satellite inputs. Although field data collection has always been

carried out to validate satellite data, Sargassum monitoring on

beaches began improving in 2018 by installing cameras along the

coast and through Citizen Science. Data becomes in inputs for

computer vision techniques (Álvarez-Carranza and Lazcano-

Hernandez, 2019; Arellano-Verdejo and Lazcano-Hernandez,

2020). This information allowed to train ANNs to be capable of

classifying photographs with/without Sargassum (Arellano-Verdejo

and Lazcano-Hernandez, 2021), segmenting Sargassum in

snapshots (Arellano-Verdejo et al., 2022) and classifying beach

perspective in photographs (Santos-Romero et al., 2022), allowing

the creation of Sargassum coverage maps using photographs at the

beach level.

6.1.4 Study scale approach
MERIS, MODIS, and VIIRS have been the most widely used

sensors for Sargassum studies and monitoring at the synoptic and

mesoscale space scales. In 2012, the Envisat mission ended, making

MODIS and VIIRS the only sensors available when writing this

manuscript. The MODIS sensor obtains 250-1000 meter resolution

images with an average of a 2-day revisit period. By combining data

from both satellites, daily images can be obtained. UnlikeMODIS, the

LANDSAT platform obtains images with a better spatial scale (15-

30 m), but the revisit period is 16 days. On the other hand, the

Sentinel 2A (launched June 2015) and Sentinel 2B (March 2017)

satellites provide images with a spatial resolution of 10-60 m and a

revisit period of 10 days (or five days if images from both satellites are

used). The platforms mentioned above offer free access to several

databases collections highly used by the scientific community.

However, the databases of images with higher spatial and temporal

resolutions considered the ideal input for Sargassum monitoring are

costly1. For those who cannot afford them, the alternative has been

using aerial and ground photographs and videos.
6.2 Research gaps

Different platforms provide information on Sargassum biomass in

the ocean, coastal waters, and beaches. However, ideally, they should

provide consolidated information for all environments. The only

source of periodic reports on the distribution and abundance of

Sargassum in the Atlantic Ocean is the Satellite-based Sargassum

Watch System (SaWS) from the Optical Oceanography Laboratory

of the University of South Florida2. Most countries affected by
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Sargassum in the Greater Caribbean rely on this information to

estimate landing volumes and develop management strategies.

Nevertheless, adequate measurements of Sargassum coverage and

biomass in coastal waters and on beaches are needed to understand

spatial and temporal variability in landings, both within and between

countries, and to feed numerical prediction models. Thus, to improve

Sargassum’s understanding and management, the current geoportals

and information sources must evolve into hybrid Sargassum

monitoring observation and survey systems.

Sargassummonitoring in coastal waters faces several challenges.

In the CS, the shallow oligotrophic waters and enormous ecological

diversity result in a wide variety of colors, making it difficult to

correctly identify the elements in a scene. Thus, monitoring coastal

areas requires images with a sharp spatial resolution (1 m) and high

revisit periods, preferably once a day. Although satellite platforms

that offer very high spatial resolution images do exist3, they are

economically inaccessible for most researchers in the region.

A significant research gap has been quantifying Sargassum

landing volumes because in situ measurements are difficult and

time-consuming (Rodrıǵuez-Martıńez et al., 2022). The computer

vision algorithms for the classification and semantic segmentation

of Sargassum in photographs collected by citizen science are a step

towards developing beach monitoring scalable techniques.

Nevertheless, methods to discriminate Sargassum from other

types of macroalgae or seagrasses are still needed to reduce false

positives and avoid overestimating Sargassum landing volumes. The

main challenge of monitoring techniques based on citizen science is

for society to adopt them. The platforms based on data and images

captured by the voluntary participation of citizens depend on a

constant flow of data to produce value-added products. Also, for

these platforms to be successful and use their total capacity, they

should be run and promoted by the institutions in charge of

Sargassum management. To date, most of the information

available consists of photographs and isolated data records in

different formats and with little or no knowledge of metadata.

Incorporating ML methodologies in the Sargassum observation

process has contributed to minimizing the background noise in the

satellite images, thereby reducing the number of false positives and

negatives (Wang and Hu, 2020; Wang and Hu, 2021). However, it

requires being more rigorous in its implementation, and evaluation.

There are well-defined steps in ML that must be followed to

successfully implement an algorithm. However, they have either

not been followed or have not been discussed in the studies. For

example, the supervised classification algorithms applied for

Sargassum monitoring, requires balanced datasets with thousands

of images for training stage (training, testing, and validation).

However, most of the studies that employ ML algorithms, lack a

detailed explanation about the characteristics of the dataset and

about the hyperparameters settings. There is also a need to

implement confusion matrices to analyses algorithm performance

and implement metrics (F1 score, IoU), to assess with more detail
3 https://www.planet.com/our-constellationshttps://www.planet.com/

our-constellations
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the algorithm performance. Table 4 shows the general aspects

expected to be described in any study using supervised

classification algorithms.
6.3 Potential developments in the field

Regarding the application of high-resolution satellite imagery

for monitoring Sargassum on the coast and beaches also has

potential. Although its implementation may be economically

costly, its application may be feasible for observing strategic study

areas. On the other hand, the development of methodologies using

inputs from geostationary satellite platforms is also pending.

Regarding citizen participation in monitoring proposals, an

action that we consider essential for gathering data is the

coordination and periodic participation of several sectors of the

citizenry to serve their purpose.

Regarding the application of ML in the monitoring of

Sargassum we consider is still in the initial stage, their potential

has not been used yet, and improvements will help to obtain more

information from satellite imagery. The current challenges are

adequately implementing image processing and computer vision

techniques to eliminate noise in the images regardless of their scale

and to later ingest the image to the preferred index to detect

Sargassum with the least possible error. We believe that designs

from scratch are needed for Sargassum discrimination. On the other

hand, DL are not always necessary, image processing and computer

vision techniques in some cases may be sufficient for the Sargassum

discrimination in an image.

A common feature in studies that use ML as a methodology to

enhance Sargassum contrast in images is the use of the UNet

architecture, which is a convolutional neural network developed

for biomedical image segmentation at the Department of

Informatics of the University of Freiburg (Ronneberger et al.,

2015). One of the main features of this architecture is that it

offers useful image translations from small training data sets (i.e.,

hundreds of images). This feature has allowed its application to

address problems where data is scarce. Such is the case of Sargassum

observation and monitoring, where the UNet has been used as an

architecture base to improve Sargassum observations in oceans,

coasts, and beaches.

Another challenge is the design of hybrid systems that

incorporate information at different scales and environments to

improve our understanding of the Sargassum phenomenon and the

development of better strategies for its management, valorization,

and disposal.
7 Conclusions

Ecological and social challenges caused by the enormous

quantities of Sargassum arriving at beaches in most of the

countries located in the CS, particularly since the year 2018 and

to date, have generated the necessity of enhancing Sargassum

monitoring onshore and nearshore to support the management
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and disposal of Sargassum. However, the methodologies used for

monitoring Sargassum in the open sea are not useful on coasts and

beaches due to various physical and biological factors. Thus, other

areas of knowledge, such as computer science and citizen science,

have been incorporated to contribute to the improvement of the

results, at different scales, obtained using the traditional RS indices.

Currently, the benchmarks for Sargassum monitoring in the

open ocean are the FAI and AFAI indexes inspired by the MCI and

FLH indices. These four indices only differ in the input spectral

bands that feed the equation. All the indices used for Sargassum

monitoring, observe objects that contrast with the ocean surface.

Therefore, what is observed could possibly be Sargassum or another

type of algae (Syringodium, Trichodesmium, or Ulva) or object

(garbage or emulsified oil). To address this challenge, the study

conducted by Dierssen et al. (2015) proposes Sargassum

discrimination in two different scenarios, the first step is to apply

the NDVI index and then the LD, SI, or RGR indices, as

appropriate. This methodology was implemented with high-

resolution PRISM images.

From an image processing perspective, the main elements to be

discriminated in an image to observe Sargassum can be grouped in

two cases: 1) low-frequency elements, such as clouds and their

shadows and even terra firma; and 2) high-frequency elements, such

as wave crests and coastal zone heterogeneity. Buffers or masks can

be used to overcome the drawbacks of low-frequency elements. To

deal with high-frequency elements, various filtering techniques can

be used. Despite advances in image processing, its application in the

observation and monitoring of Sargassum is still at an early stage.

Computer vision techniques, implemented for several years in

other areas of knowledge with excellent results, were incorporated

in Sargassum monitoring until 2018. However, there are challenges

to its proper implementation, for instance, there is a lack of

information on the construction of the dataset and the criteria

used to create the training, testing, and validation subsets; also, to
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evaluate the performance of algorithms, it is necessary to

incorporate confusion matrices, performance evaluation metrics,

and resampling techniques in case that the training dataset is a

sample and not the whole population.

One of the main challenges in observing Sargassum in satellite

images is background noise discrimination from the images to

successfully apply a RS index. Recent proposals for Sargassum

observation have focused on using various ML techniques to

perform background noise removal. This means that ML has

been applied only in the preprocessing of the images, therefore,

ML designs implemented from scratch are needed.
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