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Abstract

Vitamin D deficiency is associated with hyperlipidemia, but it remains unclear whether 
vitamin D supplementation reduces serum lipid levels. The aims of this study were to 
investigate the associations between increased serum 25-hydroxyvitamin D (25(OH)D)  
concentrations and lipid levels and identify the characteristics of people with or without 
lipid reduction associated with increased 25(OH)D levels. The medical records of 118 
individuals (53 men; mean age, 54.4 ± 10.6 years) whose serum 25(OH)D levels increased 
between 2 consecutive measurements were retrospectively reviewed. People with 
increased 25(OH)D levels (from 22.7 (17.6–29.2) to 32.1 (25.6–36.8) mg/dL; P < 0.01) 
had a significant reduction in serum levels of triglycerides (TGs) (from 111.0 (80–164) to 
104.5 (73–142) mg/dL; P < 0.01) and total cholesterol (TC) (from 187.5 (155–213) to 181.0 
(150–210) mg/dL; P < 0.05). The individuals who responded to vitamin D (≥10% reduction 
in TG or TC levels) exhibited significantly higher baseline TG and TC levels than those 
who did not. Only patients with hyperlipidemia (not those without hyperlipidemia) at 
baseline exhibited significantly reduced TG and TC levels at follow-up. However, increasing 
serum 25(OH)D concentrations were significantly correlated with decreasing lipid levels 
in individuals with baseline 25(OH)D levels less than 30 ng/mL and in individuals aged 
50–65 years (not in patients younger than 50 years or older than 65 years). In conclusion, 
increasing serum 25(OH)D concentrations may be potentially helpful for the treatment of 
hyperlipidemia in people with vitamin D deficiency.

Background

Vitamin D, a group of lipid-soluble molecules, is 
synthesized primarily from 7-dehydrocholesterol in 
the skin through the action of ultraviolet B radiation.  
A major physiological role of vitamin D involves the 
regulation of calcium homeostasis (1). In addition to  
being associated with poor musculoskeletal health,  
vitamin D deficiency is associated with obesity, 
hypertension, dyslipidemia, diabetes mellitus, 

metabolic syndrome, and cardiovascular diseases (2, 
3, 4, 5, 6). Vitamin D deficiency, defined as a serum 
25-hydroxyvitamin D (25(OH)D) level less than 30  
ng/mL, is a common disorder with an estimated 
prevalence of approximately 30–80% among adults 
worldwide (7, 8). Although a serum 25(OH)D level  
greater than 30 ng/mL is considered to be adequate for 
improved musculoskeletal health, the optimal serum 
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level of 25(OH)D for organs other than bone remains 
debatable. The 2018 Vitamin D Supplementation 
Guidelines recommended daily supplementation  
of 400–800 IU vitamin D for bone health, 400–2000 IU 
vitamin D for pleiotropic benefits, and 30–50 ng/mL 
serum 25(OH)D levels for overall health benefits (9).

Observational data indicate an inverse correlation 
between the serum levels of 25(OH)D and those of  
lipids (10, 11). The aforementioned studies have  
reported that individuals with low levels of serum  
25(OH)D have higher levels of total cholesterol (TC), 
triglycerides (TGs), and low-density lipoprotein 
cholesterol (LDL-C) but lower levels of high-density 
lipoprotein cholesterol (HDL-C) than those with higher 
levels of 25(OH)D. Our recent study in an East Asian 
population revealed that sex and age modulate the 
positive correlation between vitamin D deficiency and 
hypertriglyceridemia (12). Furthermore, a recent meta-
analysis indicated that vitamin D supplementation 
substantially reduces the levels of TC, TG, and LDL-C 
(13). Conversely, another meta-analysis suggested  
that vitamin D supplementation does not affect the 
levels of TC, LDL-C, and HDL-C but increases those of 
TG in adults with metabolic syndrome (14). Moreover, 
whether patient characteristics can help predict their 
response to the lipid-lowering effects of vitamin D remains 
unclear. Therefore, in the present study, we investigated 
the association between increased concentrations of 
circulating vitamin D and the levels of serum lipids  
and aimed to identify the individuals (responders) who 
could benefit from vitamin D supplementation.

Methods

Participants

We retrospectively reviewed the data of individuals  
aged >18 years whose serum 25(OH)D levels increased 
between two consecutive blood tests and who had 
available biochemistry data, including data on complete 
blood count (CBC) and the levels of TC, TG, HDL-C,  
LDL-C, glycated hemoglobin (HbA1c), blood urea 
nitrogen, creatinine, uric acid, aspartate transaminase, 
alanine transaminase (ALT), γ-glutamyl transpeptidase  
(γ-GT), alkaline phosphatase, total bilirubin, and 
albumin. Inclusion criteria were individuals aged  
older than 18 years who had two serum 25(OH)D 
measurements during the period between June 2017 
and May 2022 in Wan Fang hospital. Exclusion criteria  
were individuals who had decreased serum 25(OH)D  
levels, had no lipid measurement within 12 weeks of 
each 25(OH)D measurement, and had two 25(OH)D  
measurements less than 3 months or greater than 
3 years apart (Fig. 1). We collected data regarding  
patient characteristics, such as age, sex, body 
weight, body height, drug history (e.g., statin, fibric 
acids, nicotinic acid, and ezetimibe), and medical 
history (e.g., hypertension, diabetes mellitus, and 
cancer). Hypertriglyceridemia was defined as a TG 
level of >150 mg/dL, and hypercholesterolemia was 
defined as a TC level of >200 mg/dL (15). TC and TG  
responders were defined as individuals exhibiting 
decreases of ≥10% in their serum levels of TC and TGs, 
respectively (16). The present study was approved by  

Figure 1
Flow diagram of study individual enrollment 
process. 25(OH)D, 25-hydroxyvitamin D.
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the Institutional Review Board of Taipei Medical 
University, Taiwan (protocol code: N202205067).

Statistical analysis

Data are expressed as the mean ± standard deviation  
for normally distributed variables, or median and 
interquartile range for non-normally distributed 
variables, or frequency and percentage for categorical 
variables. Chi-square test (for categorical variables), 
paired or unpaired t-test (for normal distribution), and 
Wilcoxon signed-rank test or Mann–-Whitney U test  
(for non-normal distribution) were performed to  
analyze between-group differences. SigmaPlot (version 
12; Systat Software, Inc., San Jose, CA, USA) was used 
for statistical analyses. Logistic regression analysis was 
performed to evaluate the independent biomarkers 
associated with TC or TG responders, and the data 
are expressed as odds ratios (ORs). A P-value of <0.05  
indicated statistical significance.

Results

General characteristics

We included a total of 118 individuals (53 men;  
mean age, 54.4 ± 10.6 years) with increased serum  
25(OH)D levels during a mean follow-up period of 
447 ± 230 days. In total, 34 individuals used statin  
and 4 used fenofibrate (including two who used both 
statin and fenofibrate) at consistent doses of these lipid-
lowering agents between baseline and follow-up. As 
shown in Table 1, people with increased 25(OH)D levels 
(from 22.7 (17.6–29.2) to 32.1 (25.6–36.8) mg/dL; P < 0.01) 
also had a significant reduction in TG levels (from 111.0 
(80–164) to 104.5 (73–142) mg/dL; P < 0.01) and TC levels 
(from 187.5 (155–213) to 181.0 (150–210) mg/dL; P < 0.05). 
No significant differences were noted in LDL-C (from 
113.5 (95–136) to 109.0 (88–130) mg/dL; P = 0.51), HDL-C 
(from 52.2 ± 13.9 to 54.0 ± 15.4 mg/dL; P = 0.82), HbA1c 
(from 5.7 (5.4–6.1) % to 5.6 (5.3–6.1) %; P = 0.93), or BMI 
(from 24.0 (21.4–27.6) to 24.1 (21.7–26.9) kg/m2; P = 0.84) 
between baseline and follow-up.

Additionally, the 118 individuals were divided  
into two groups according to the magnitude of increases 
in 25(OH)D levels, which was greater or less than 10  
mg/dL. We found that people with increased 25(OH)D 
>10 mg/dL had a tendency to have a greater reduction  
in TG levels than those with increased 25(OH)D <10  
mg/dL (TG change: −14 (−49.5 to 1.5) mg/dL vs −5 (−29.5 
to 14.5) mg/dL, P = 0.089). The decreases in TC levels  

were similar between people with increased 25(OH)D 
greater and less than 10 mg/dL (TC change: −7 (−18.5  
to 12) mg/dL vs −6 (−21.5 to 12.5) mg/dL, P = 0.764).

Comparison between the responders and 
nonresponders to vitamin D

Among the 118 individuals, 55 exhibited decreases 
of >10% in TG levels (TG responders). TG responders 
had significantly higher baseline TG levels and lower 
baseline 25(OH)D levels than did the nonresponders 
(Table 2). However, at follow-up, both TG responders 
and nonresponders exhibited similar levels of 25(OH)D. 
Furthermore, no differences were noted in the baseline 
levels of TC, LDL-C, HDL-C, or HbA1c between TG 
responders and nonresponders. However, TG responders 
exhibited nonsignificantly decreasing levels of HbA1c 

Table 1 Biomarkers of cohorts (n = 118) at baseline and 
follow-up: mean ± s.d. for normally distributed variables or 
median (interquartile range) for non-normally distributed 
variables.

Biomarkers Baseline Follow-up P-value

BMI (kg/m2) 24.0 (21.4–27.6) 24.1 (21.7–26.9) 0.84
25(OH)D  

(ng/mL)
22.7 (17.6–29.2) 32.1 (25.6–36.8) <0.01

TG (mg/dL) 111.0 (80–164) 104.5 (73–142) <0.01
TC (mg/dL) 187.5 (155–213) 181.0 (150–210) <0.05
LDL-C (mg/dL) 113.5 (95–136) 109.0 (88–130) 0.51
HDL-C (mg/dL) 52.2 ± 13.9 54.0 ± 15.4 0.82
HbA1c (%) 5.7 (5.4–6.1) 5.6 (5.3–6.1) 0.93
BUN (mg/dL) 12.3 ± 5.6 13.2 ± 6.0 0.06
Creatinine  

(mg/dL)
0.7 (0.6–0.9) 0.7 (0.6–0.9) 0.51

Albumin (g/dL) 4.4 ± 0.2 4.4 ± 0.2 0.27
AST (U/L) 19 (17–23) 20 (17–23) 0.45
ALT (U/L) 19 (14–29) 21 (15–28) 0.98
Total bilirubin 

(mg/dL)
0.8 (0.6–1.1) 0.8 (0.6–1.0) 0.53

Alk-p (U/L) 60 (46–65) 55 (45–62) 0.25
γ-GT (U/L) 21 (15–31) 20 (14–28) <0.05
Uric acid  

(mg/dL)
5.6 ± 1.2 5.7 ± 1.3 0.89

Hb (g/dL) 14.5 ± 1.2 14.3 ± 1.3 0.11
Hct (%) 42.7 ± 3.3 42.6 ± 3.9 0.35
MCH (pg) 31.1 (29–32) 30.6 (29–32) 0.26
MCV (fL) 90.2 (87–93) 91.1 (88–94) 0.57
WBC (103/µL) 6.2 (5.2–7.6) 5.8 (4.9–7.0) <0.01
Platelets  

(103/µL)
229.5 ± 60.4 235.8 ± 57.4 0.62

25(OH)D, 25-hydroxyvitamin D; AST, aspartate transaminase; ALT, alanine 
transaminase; Alk-p, alkaline phosphatase; BUN, blood urea nitrogen; 
γ-GT, γ-glutamyl transpeptidase; HbA1c, glycated hemoglobin; HDL-C, 
high-density lipoprotein cholesterol; Hb, hemoglobin; Hct, hematocrit; 
LDL-C, low-density lipoprotein cholesterol; MCH, mean corpuscular 
hemoglobin; MCV, mean corpuscular volume; TGs, triglycerides; TC, total 
cholesterol; WBC, white blood cell count.
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while TG nonresponders exhibited nonsignificantly 
increasing levels of HbA1c; at follow-up, the levels of 
HbA1c were considerably lower in TG responders than  
in TG nonresponders. No differences were noted between 
TG responders and nonresponders in terms of age, 
sex, BMI, creatinine level, liver function, CBC, lipid-
lowering agent use, or the presence of diabetes mellitus, 
hypertension, or cancer. Additionally, we performed 
multivariate analysis (including age, sex, body weight, 
body height, drug and medical history, baseline 25(OH)D,  
TC, and TG levels) and found that decreased baseline 
25(OH)D levels (OR per 1 ng/mL = 0.942, 95% CI, 0.888–
1.000, P = 0.049) and elevated baseline TG levels (OR 
per 1 mg/dL = 1.008, 95% CI, 1.001–1.015, P = 0.02) were  
both independent biomarkers to predict TG responders.

As shown in Table 3, among the 118 individuals, 32 
exhibited decreases of >10% in TC levels (TC responders). 
TC responders exhibited substantially higher baseline 
levels of TC, TGs, BMI, and HbA1c, and lower baseline 
levels of HDL-C than did TC nonresponders. However, 
no significant differences were noted between TC  
responders and nonresponders in terms of baseline and 
follow-up 25(OH)D levels. TC responders exhibited 
considerably higher use of lipid-lowering agents and 
incidence of hypertension than did TC nonresponders. 
However, we found that only increased baseline TC  
levels (OR per 1 mg/dL = 1.038, 95% CI, 1.006–1.072, 
P = 0.02) were an independent biomarker to predict TC 
responders through multivariate analysis (including  
age, sex, body weight, body height, drug and medical 
history, baseline 25(OH)D, TC, TGs, HDL-C, HbA1c, ALT, 
and γ-GT levels).

Different effects of increased vitamin D levels on 
individuals with or without hypertriglyceridemia

We investigated the effects of baseline TG levels on the 
correlations between increases in the levels of serum 
25(OH)D and changes in the levels of various biomarkers. 
Individuals with or without hypertriglyceridemia 
had similar baseline and follow-up data and increases 
in 25(OH)D levels. These individuals used similar 
medications for diabetes mellitus, hypertension, cancer, 
and dyslipidemia. However, at baseline, individuals with 
hypertriglyceridemia exhibited considerably higher 
body weight and HbA1c levels but lower HDL-C levels 
than those without hypertriglyceridemia. However, at  
follow-up, no significant differences were noted in 
body weight, HbA1c levels, or HDL-C levels between 
individuals with hypertriglyceridemia and those  

without hypertriglyceridemia. As shown in 
Fig. 2, at follow-up, individuals with hypertriglyceridemia  
exhibited significant decreases in the serum levels of TG 
(from 209 (164–296) to 181 (125–218) mg/dL; P < 0.005), 
TC (from 197 ± 37.5 to 177 ± 39.0 mg/dL; P < 0.005),  
and LDL-C (from 120 ± 33.4 to 104 ± 32.7 mg/dL; P < 0.05). 

Table 2 Correlations between increases in 25(OH)D levels 
and biomarkers among TG responders and TG nonresponders: 
mean ± s.d.for normally distributed variables or median 
(interquartile range) for non-normally distributed variables.

Serum TG response 
to 25(OH)D

TG responders 
(n = 55)

TG nonresponders 
(n = 63)

 
P-value

Age (years) 54.4 ± 10.0 54.3 ± 11.2 0.97
Female, n (%) 32 (58) 33 (52) 0.52
BMI (kg/m2) 24.8 (21.7–28.4) 23.7 (21.2–27.2) 0.22
Use of lipid-lowering 

medication, n (%)
16 (29) 20 (31) 0.75

History of DM, n (%) 6 (10) 10 (15) 0.43
History of 

hypertension, n (%)
14 (25) 11 (17) 0.28

History of cancer,  
n (%)

4 (7) 2 (3) 0.55

Baseline 25(OH)D 
(ng/mL)

20.6 (15.4–27.3) 26 (20.6–31.2) <0.01

Baseline TGs (mg/dL) 141 (90–210) 98 (74–133) <0.01
Baseline TC (mg/dL) 192.4 ± 36.0 184.2 ± 40.6 0.25
Baseline LDL-C  

(mg/dL)
118.1 ± 29.9 112.8 ± 29.3 0.37

Baseline HDL-C  
(mg/dL)

47 (42–60) 52 (43–60) 0.30

Baseline HbA1c (%) 5.7 (5.5–6.1) 5.6 (5.4–6.2) 0.93
Baseline BUN  

(mg/dL)
11 (9.5–14) 11 (8.8–14) 0.62

Baseline creatinine 
(mg/dL)

0.8 (0.6–0.9) 0.7 (0.6–0.9) 0.78

Baseline albumin  
(g/dL)

4.4 ± 0.2 4.4 ± 0.2 0.84

Baseline AST (U/L) 19 (17–21) 19 (18–23) 0.88
Baseline ALT (U/L) 20 (13–33) 18 (14–25) 0.48
Baseline total 

bilirubin (mg/dL)
0.8 (0.5–0.9) 0.9 (0.6–1.4) 0.06

Baseline Alk-p (U/L) 60 (46–64) 58 (46–67) 0.88
Baseline γ-GT (U/L) 21 (14–38) 22 (15–31) 0.76
Baseline uric acid 

(mg/dL)
5.5 (4.8–6.5) 5.5 (4.7–6.2) 0.67

Baseline Hb (g/dL) 14.4 ± 1.4 14.6 ± 1.1 0.53
Baseline Hct (%) 42.3 ± 3.6 43.1 ± 2.9 0.29
Baseline MCH (pg) 31.4 (30–32) 31.0 (30–32) 0.86
Baseline MCV (fL) 90 (86–93) 90 (88–92) 0.63
Baseline WBC  

(103/µL)
6.5 (5.4–7.9) 6.0 (5.1–7.3) 0.17

Baseline platelets 
(103/µL)

237 (199–257) 217 (184–263) 0.49 

25(OH)D, 25-hydroxyvitamin D; AST, aspartate transaminase; ALT, alanine 
transaminase; Alk-p, alkaline phosphatase; BUN, blood urea nitrogen; 
γ-GT, γ-glutamyl transpeptidase; HbA1c, glycated hemoglobin; HDL-C, 
high-density lipoprotein cholesterol; Hb, hemoglobin; Hct, hematocrit; 
LDL-C, low-density lipoprotein cholesterol; MCH, mean corpuscular 
hemoglobin; MCV, mean corpuscular volume; TGs, triglycerides; TC, total 
cholesterol; WBC, white blood cell count.
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By contrast, individuals without hypertriglyceridemia 
exhibited similar changes in the levels of TGs (from  
87 (72–111) to 88 (64–116) mg/dL; P = 0.63), TC (from  
183 (151–211) to 183 (156–212) mg/dL; P = 0.84), and 
LDL-C (from 111 (90–132) to 111 (95–134) mg/dL; P = 0.46) 
at follow-up.

Different effects of increased vitamin D levels on 
individuals with or without hypercholesterolemia

We investigated the effects of baseline TC levels on 
the correlations between increases in serum 25(OH)D  
levels and changes in serum biomarker levels. No 
significant differences were found between individuals 
with hypercholesterolemia and those without it in 
terms of 25(OH)D levels at baseline or follow-up or the 
increases in 25(OH)D levels. The patients with or without 
hypercholesterolemia used similar medications for 
diabetes mellitus, hypertension, cancer, and dyslipidemia 
and exhibited similar HbA1c levels or body weight at 
baseline and follow-up. However, at baseline, individuals 
with hypercholesterolemia exhibited significantly  
higher levels of TC, TGs, and LDL-C than did those  
without hypercholesterolemia. As shown in 
Fig. 3, patients with hypercholesterolemia exhibited  
significant decreases in the serum levels of TGs (from 
139 (88–222) to 120 (74–190) mg/dL; P < 0.01), TC (from 
220 (210–239) to 202 (172–228) mg/dL; P < 0.005) and 
LDL-C (from 142 ± 23.8 to 122 ± 35.9 mg/dL; P < 0.005) at 
follow-up. By contrast, at follow-up, individuals without 
hypercholesterolemia exhibited significant increases  
in the serum levels of LDL-C (from 99.9 ± 21.0 to 105.5 ±  
25.9 mg/dL; P < 0.05); no significant changes in the  
serum levels of TG, TC or HDL-C.

Baseline 25(OH)D levels, sex, and age modulate the 
effects of vitamin D on lipids

We assessed the influence of baseline 25(OH)D levels 
on the effects of vitamin D on lipids. Individuals with 
baseline 25(OH)D levels greater or less than 30 ng/mL 
both exhibited significantly elevated 25(OH)D during 
the follow-up (from 34.7 (31.7–39.5) to 39.5 (34.7–46.9) 
mg/dL; P < 0.01 and 20.9 (16.9–26.0) to 29.8 (23.7–34.6) 
mg/dL; P < 0.01, respectively). As shown in Fig. 4A, at 
follow-up, individuals with baseline 25(OH)D levels less 
than 30 ng/mL exhibited significant decreases in the 
levels of TGs (from 211 (86–177) to 106 (77–143) mg/dL; 
P < 0.005). However, individuals with baseline 25(OH)D  
levels greater or less than 30 ng/mL exhibited similar 
changes in TC levels at follow-up (Fig. 4A).

We further evaluated the influence of age and 
sex on the effects of vitamin D on serum lipids. Both 
genders exhibited decreased TG levels at follow-up with  
increased 25(OH)D levels (Fig. 4B). Moreover, middle-
aged adults (aged 50–65 years) had reduced levels of TGs 
(from 110 (83–196) to 105 (70–159) mg/dL; P < 0.005)  
and TC (from 194 (168–227) to 180 (149–213) mg/dL; 
P < 0.05; Fig. 4C).

Table 3 Correlations between 25(OH)D levels and 
biomarkers among TC responders and nonresponders: 
mean ± s.d. for normally distributed variables or median 
(interquartile range) for non-normally distributed variables.

 
Serum TC response to 
25(OH)D

TC responders  
(n = 32)

TC 
nonresponders 

(n = 86) P-value

Age (years) 55.5 ± 10.0 53.9 ± 10.8 0.47
Female, n (%) 14 (43) 51 (59) 0.13
BMI (kg/m2) 24.9 (23.9–27.8) 22.9 (21.0–27.3) <0.05
Use of lipid-lowering 

medication, n (%)
17 (53) 19 (22) <0.01

History of DM, n (%) 6 (18) 10 (11) 0.31
History of 

hypertension, n (%)
11 (34) 14 (16) <0.05

History of cancer, n (%) 2 (6) 4 (4) 0.90
Baseline 25(OH)D  

(ng/mL)
25.1 (17.8–30.2) 22.3 (17.6–28.3) 0.57

Baseline TGs (mg/dL) 157 (109–219) 99 (75–150) <0.01
Baseline TC (mg/dL) 203.0 ± 40.0 182.5 ± 36.7 <0.01
Baseline LDL-C (mg/dL) 123.7 ± 35.2 112.4 ± 28.6 0.09
Baseline HDL-C  

(mg/dL)
44 (39–53) 52 (44–63) <0.01

Baseline HbA1c (%) 5.8 (5.7–6.3) 5.6 (5.4–6.0) <0.05
Baseline BUN (mg/dL) 13 (10–15) 11 (8.5–14) 0.07
Baseline creatinine  

(mg/dL)
0.8 (0.7–1.0) 0.7 (0.6–0.9) 0.08

Baseline albumin  
(g/dL)

4.4 ± 0.2 4.4 ± 0.2 0.78

Baseline AST (U/L) 20 (17–25) 28 (17–23) 0.54
Baseline ALT (U/L) 21 (15–31) 17 (13–27.5) 0.07
Baseline total bilirubin  

(mg/dL)
0.9 (0.6–1.1) 0.8 (0.6–1.1) 0.91

Baseline Alk-p (U/L) 60 (44–66) 55 (47–65) 0.82
Baseline γ-GT (U/L) 30 (21–42) 19 (14–30) <0.01
Baseline uric acid  

(mg/dL)
6.1 (5.2–6.5) 5.4 (4.5–6.3) 0.14

Baseline Hb (g/dL) 14.7 ± 1.4 14.4 ± 1.2 0.34
Baseline Hct (%) 43.2 ± 3.6 43.0 ± 3.2 0.40
Baseline MCH (pg) 31 (30–32) 31 (30–32) 0.73
Baseline MCV (fL) 92 (88–93) 90 (88–93) 0.84
Baseline WBC (103/µL) 6.5 (5.8–7.9) 6.0 (5.1–7.5) <0.05
Baseline platelets  

(103/µL)
232 (198–262) 227 (188–257) 0.67 

25(OH)D, 25-hydroxyvitamin D; AST, aspartate transaminase; ALT, alanine 
transaminase; Alk-p, alkaline phosphatase; BUN, blood urea nitrogen; 
γ-GT, γ-glutamyl transpeptidase; HbA1c, glycated hemoglobin; HDL-C, 
high-density lipoprotein cholesterol; Hb, hemoglobin; Hct, hematocrit; 
LDL-C, low-density lipoprotein cholesterol; MCH, mean corpuscular 
hemoglobin; MCV, mean corpuscular volume; TGs, triglycerides; TC, total 
cholesterol; WBC, white blood cell count.
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Discussion

Patients with hyperlipidemia exhibited  
lipid reduction associated with increased  
serum 25(OH)D levels

Vitamin D deficiency is associated with atherogenic  
serum lipid profiles (higher levels of TGs, TC, and 
LDL-C but lower levels of HDL-C), which are known risk  
factors for cardiovascular disease (4, 17). However, 
an individual’s change in serum 25(OH)D levels 
following vitamin D supplementation may be diverse. 
It remains unclear for the effective dosage of vitamin D 
supplementation that may affect serum lipids. Because  
of the differences in the doses, frequencies, and  
durations of vitamin D supplementation and end-
line vitamin D levels between the intervention groups 
of previous interventional trials, these trials have  
collectively failed to generate convincing evidence for  
the therapeutic efficacy of vitamin D on hyperlipidemia 
(13, 14, 18, 19). Thus, we aimed to investigate the 
associations between increased serum vitamin D 
concentrations and lipid levels. In a large retrospective 
cohort study comprising a total of 8592 patients  
with vitamin D deficiency (baseline mean 25(OH)D  
levels, 14.3 ng/mL), an increase in the levels of 25(OH)D 
to 41.6 ng/mL was not associated with an improvement  
in the levels of serum lipids. However, the baseline TG  

and TC levels of the study cohort were <150 and <200  
mg/dL, respectively (20). Similarly, in a Norwegian double-
blind, randomized, placebo-controlled trial including 
a total of 251 healthy adults aged 18–50 years with low 
vitamin D levels, 16-week vitamin D3 supplementation 
(where serum 25(OH)D levels were increased from 11.6 
to 19.6 ng/mL) exerted no effects on lipid profiles (serum 
TG levels remained approximately 132.8 mg/dL and 
serum TC levels remained approximately 189.4 mg/dL) 
(21). Another randomized controlled trial including a 
total of 511 individuals with prediabetes revealed that 
vitamin D3 supplementation at a weekly dose of 20 000 
IU for 5 years (serum 25(OH)D levels were increased  
from 24 to 46 ng/mL) exerted no effects on serum TGs 
levels (remained approximately 115.1 mg/dL) (22). The 
lipid-lowering effects of vitamin D were not observed 
in the aforementioned study possibly because most 
participants had no hyperlipidemia at baseline. To the 
best of our knowledge, the present study is the first to 
report that increases in 25(OH)D levels may be correlated 
with decreases in serum TG and TC levels in individuals  
with hyperlipidemia but not in those without 
hyperlipidemia. Our results also showed that increasing 
serum 25(OH)D concentrations might be dose 
dependently correlated with decreasing levels of serum 
TGs. These findings suggest the therapeutic potential  
of vitamin D for hyperlipidemia.

Figure 2
Changes in serum lipid levels with increasing 
levels of 25-hydroxyvitamin D (25(OH)D) differed 
between individuals with or without 
hypertriglyceridemia. Baseline and follow-up 
levels of (A) total cholesterol, (B) triglycerides, (C) 
low-density lipoprotein cholesterol (LDL-C), and 
(D) high-density lipoprotein cholesterol (HDL-C) in 
individuals with triglyceride levels higher or lower 
than 150 mg/dL. *P < 0.05 and ***P < 0.005. n, 
number of subjects.
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Figure 3
Changes in serum lipid level with increasing levels 
of 25-hydroxyvitamin D (25(OH)D) varied between 
individuals with or without hypercholesterolemia. 
Baseline and follow-up levels of (A) total 
cholesterol, (B) triglycerides, (C) low-density 
lipoprotein cholesterol (LDL-C), and (D) high-
density lipoprotein cholesterol (HDL-C) in 
individuals with total cholesterol levels higher or 
lower than 200 mg/dL. *P < 0.05, **P < 0.01 and 
***P < 0.005. n, number of subjects.

Figure 4
Changes in total cholesterol and triglyceride levels 
with increasing levels of serum 25-hydroxyvitamin 
D (25(OH)D) were modulated by baseline 25(OH)D 
levels, sex, and age. Baseline and follow-up levels 
of total cholesterol and triglycerides in (A) 
individuals with baseline 25(OH)D levels greater 
or less than 30 ng/mL, (B) men and women, and 
(C) individuals aged <50 years, aged 50–65 years, 
and >65 years. *P < 0.05 and ***P < 0.005. n, 
number of subjects.
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Baseline vitamin D status may affect the 
association between increased serum  
25(OH)D and lipid levels

A recent meta-analysis of 41 randomized controlled 
trials including a total of 3434 participants showed  
that vitamin D supplementation appeared to have 
a beneficial effect on reducing serum lipids. The 
improvements in TC and TG levels are more prominent 
in individuals with baseline vitamin D deficiency (13). 
In 2017, the International Lipid Expert Panel suggested 
that vitamin D supplementation combined with 
statin represents an effective management strategy for 
hypercholesterolemia, particularly in individuals with  
low levels of vitamin D (23). Thus, the reason underlying 
the conflicting findings of clinical trials regarding the 
effects of vitamin D on serum lipids is probably due to the 
fact that the study cohorts might not have had vitamin 
D deficiency. Our study also revealed that increased 
serum 25(OH)D levels weresignificantly associated 
with decreased serum TG levels in only individuals 
with baseline 25(OH)D levels of <30 ng/mL but not in 
those with baseline 25(OH)D levels of >30 ng/mL. We 
demonstrated that TG responders had significantly  
lower baseline 25(OH)D levels than did TG  
nonresponders, and baseline vitamin D levels 
were an independent predictor for TG response.  
Therefore, vitamin D supplementation may be  
considered as an adjunct therapy in patients with 
hypertriglyceridemia and concomitant vitamin D 
deficiency in clinical practice.

Age and sex modulate the association between 
increased serum 25(OH)D and lipid levels

Vitamin D receptor polymorphism is reportedly  
associated with a risk of dyslipidemia in the Han  
Chinese population (24), and this association is  
influenced by patient sex (25). A cross-sectional study 
comprising a total of 4021 middle-aged and older 
participants indicated that vitamin D deficiency 
was positively associated with the prevalence of 
hyperlipidemia, and this association was stronger in men 
than in women (26). Similarly, our previous study revealed 
the positive association between vitamin D deficiency 
and hypertriglyceridemia was significant in men but  
not in women (12). However, this study demonstrated  
that increases in the levels of 25(OH)D were correlated 
with decreases in the TG levels in both the genders.  
We also found that only middle-aged adults (not in 
individuals aged <50 or >65 years) exhibited significant 

decreases in the levels of TC and TGs in association  
with increased serum 25(OH)D levels. These findings 
suggest that age and sex might modulate the association 
between vitamin D and hyperlipidemia.

Potential mechanisms of vitamin D on lipids

Several possible mechanisms may explain how vitamin 
D affects lipid metabolism. Adipose tissue is the main 
site for vitamin D storage (27), and obesity was associated 
with a high prevalence of vitamin D deficiency (28). 
Gangloff et  al. found that decreased adiposity volume  
was correlated with increased serum 25(OH)D 
concentrations (29). It has been demonstrated that 
vitamin D receptor and vitamin D metabolizing enzymes 
(25-hydroxylase and 1α-hydroxylase) were expressed 
in human adipocytes, suggesting vitamin D modulates 
adipose tissue biology (30, 31). Vitamin D upregulates 
the expression of genes involved in fatty acid oxidation 
and mitochondrial biogenesis in adipose tissue (32). In 
addition to fat tissues, muscle was also considered as 
another functional storage area for 25(OH)D (33, 34), and 
exercise may have direct effects on serum 25(OH)D levels. 
Observational studies have found a positive relationship 
between 25(OH)D levels and physical activity regardless  
of sun exposure (35, 36). Sun et  al. demonstrated that  
serum 25(OH)D levels were increased after intense 
exercise and short-term endurance training, without 
changes in total body fat or visceral fat (37, 38). Vitamin 
D also enhances intestinal calcium absorption, leading 
to serum TGs reduction via the suppression of hepatic 
TGs formation and secretion (39). Excessive parathyroid 
hormone inhibits plasma lipoprotein lipase activity, 
resulting in decreased lipid removal from the circulation 
and consequently hyperlipidemia (40). Accordingly, 
vitamin D may reduce serum lipids through inhibiting 
parathyroid hormone secretion. Moreover, vitamin 
D deficiency was shown to increase the risk of insulin 
resistance, which is linked to an elevation of serum  
TG levels (27). The therapeutic potential of vitamin D  
in alleviating insulin resistance may contribute to its  
lipid-lowering effects.

Study limitations

The present study has some limitations. This  
retrospective observational study had a small sample 
size. Although we adjusted for potential confounding 
factors, such as lipid-lowering agents, body weight, 
and serum glucose levels, the data regarding vitamin D  
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supplementation, vitamin D dietary intake, physical 
activity, and sun exposure were lacking. We could not 
control patient exposure, outcome assessment, and record 
accuracy, which limit the strength of our findings in 
this retrospective observational study. Accordingly, our 
study is not able to answer all burden of illness research 
questions due to insufficient clinical data detail being 
recorded. Therefore, to clarify the therapeutic potential 
of vitamin D for hyperlipidemia, large-scale randomized 
trials on vitamin D supplementation must be designed  
to investigate the changes in the serum lipid levels of  
well-defined populations.

Conclusions

Increased serum 25(OH)D levels were associated with 
decreased serum TC and TG levels, particularly in 
hyperlipidemic patients with vitamin D deficiency. Thus, 
increasing circulating 25(OH)D concentrations may be 
considered as an adjunct therapy in the management of 
hyperlipidemia.
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