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This work aimed to explore the diagnostic value of a deep convolutional neural

network (CNN) combined with computed tomography (CT) images in patients

with severe pneumonia complicated with pulmonary infection. A total of 120

patients with severe pneumonia complicated by pulmonary infection admitted to

the hospital were selected as research subjects and underwent CT imaging scans.

The empty convolution (EC) and U-net phase were combined to construct an

EC-U-net, which was applied to process the CT images. The results showed that

the learning rate of the EC-U-net model decreased substantially with increasing

training times until it stabilized and reached zero after 40 training times. The

segmentation result of the EC-U-net model for the CT image was very similar

to that of the mask image, except for some deviations in edge segmentation.

The EC-U-net model exhibited a significantly smaller cross-entropy loss function

(CELF) and a higher Dice coefficient than the CNN algorithm. The diagnostic

accuracy of CT images based on the EC-U-net model for severe pneumonia

complicated with pulmonary infection was substantially higher than that of CT

images alone, while the false negative rate (FNR) and false positive rate (FPR)

were substantially lower (P < 0.05). Moreover, the true positive rates (TPRs) of CT

images based on the EC-U-net model for patchy high-density shadows, diffuse

ground glass density shadows, pleural effusion, and lung consolidation were

obviously higher than those of the original CT images (P < 0.05). In short, the

EC-U-net model was superior to the traditional algorithm regarding the overall

performance of CT image segmentation, which can be clinically applied. CT

images based on the EC-U-net model can clearly display pulmonary infection

lesions, improve the clinical diagnosis of severe pneumonia complicated with

pulmonary infection, and help to screen early pulmonary infection and carry out

symptomatic treatment.

KEYWORDS

empty convolution, deep convolutional neural network, severe pneumonia, pulmonary
infection, computed tomography images

1. Introduction

Inflammation in lung tissues (bronchioles, alveoli, and interstitium) caused by various
etiologies and pathogens on different occasions has similar or the same pathophysiological
process and can deteriorate into severe pneumonia (Zhou et al., 2021; Al Khoury et al.,
2022). It can be caused by various pathogenic causes. Pneumonia with cardiopulmonary
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foundation or additional risk factors or infection with special
pathogenic microorganisms, such as severe acute respiratory
syndrome (SARS) virus, avian influenza virus, and legionella
bacteria, will aggregate pneumonia and increase the risk of death
(Cai and Zheng, 2020; Gerges Harb et al., 2020; Wan et al.,
2021). Severe pneumonia is a serious respiratory disease, and most
patients will be complicated with organ dysfunction. In addition
to the common respiratory symptoms of pneumonia, there are
respiratory failure and obvious involvement of the circulatory
system, nervous system, and other systems. Common symptoms
include fever, chills, cough, expectoration, chest pain, dyspnea, and
increased respiratory rate (Issa et al., 2020). Severe pneumonia
will result in various sequelae, the most common of which is
lung injury (such as bullae, empyema, and pyopneumothorax) and
heart-related diseases, including heart failure or pulmonary heart
disease. Therefore, it is very important to pay attention to the early
diagnosis and treatment of severe pneumonia.

Imaging examination is an important process in the diagnosis
of pneumonia and is one of the important indexes to judge severe
pneumonia. Clinical diagnosis of lung lesions often adopts X-ray,
bedside ultrasound, conventional chest computed tomography
(CT) plain scan, etc (Hu et al., 2021). Chest X-ray examination
is relatively convenient and cost-effective, but it exhibits great
limitations in the patient’s position and scope of fluoroscopy, which
limits the imaging results and easily leads to a false negative result
(Sayad et al., 2021). Ultrasound shows the lungs clearly and features
with low price, is easy to operate, and is easily disturbed by lung gas.
CT images are grayscale images with high density resolution that
can clearly display the lung and other soft tissue organs at low cost
and have been widely used in the diagnosis of lung diseases.

Image segmentation refers to finding and distinguishing the
target area according to the properties and characteristics of the
image. In the medical field, segmenting the images of tissue and
organ lesions is an important auxiliary means for clinical diagnosis,
treatment, and efficacy evaluation of diseases. Traditional image
segmentation algorithms are still widely used, even in commercial
applications. However, with the exponential growth of the current
data volume, the requirements for the depth of information mining
and segmentation technology are increasing, so it is necessary to
study higher-level technologies (Arej et al., 2022). Deep learning
is a deep nonlinear structure that is based on the human neural
network mechanism, layered feature extraction, and recognition.
Ideally, as long as the amount of data is sufficient and the network
is deep enough, an ideal effect can be achieved, and the accuracy
rate of human beings can even be exceeded (Diab et al., 2020;
Alimoradi et al., 2021). Due to its excellent quality, deep learning
is also widely used in medical image processing. Therefore, deep
learning was combined with CT imaging technology and applied
in clinical diagnosis in this work. Wang et al. (2021) discussed the
application of deep learning technology in conical beam computed
tomography image analysis of oral lesions, and processed images
by artificial segmentation, threshold segmentation algorithm, and
full convolutional neural network algorithm. The results showed
that the image segmentation accuracy of the full convolutional
neural network algorithm was superior to the traditional manual
segmentation and threshold segmentation algorithms. Wu et al.
(2020) proposed a deep convolutional neural network fusion
support vector machine algorithm (DCNN-F-SVM) and applied it
to brain tumor image segmentation. According to the segmentation

results obtained, the image segmentation performance of this
model was significantly better than that of deep convolutional
neural network and integrated SVM classifier.

In summary, the combination of deep learning technology and
medical imaging is still the focus of clinical research. Therefore,
120 patients with severe pneumonia complicated with pulmonary
infection were selected as subjects for CT imaging scanning. An
EC-U-net network model based on empty convolution (EC) and
the U-net network phase was constructed and applied to patient
CT image processing. The diagnostic value of a deep convolutional
neural network (CNN) combined with CT images for severe
pneumonia complicated with pulmonary infection was discussed
by analyzing the imaging characteristics of patients. In this study,
deep learning technology was innovatively combined with lung CT
image, which was jointly applied in clinical treatment, providing
a theoretical reference for the evaluation of lung infection in
patients with pneumonia.

2. Materials and methods

2.1. Research objects

In this work, 120 patients with severe pneumonia complicated
with pulmonary infection, aged 20–69, admitted to the hospital
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FIGURE 1

Schematic diagram of the U-net network structure.
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FIGURE 2

The convolution blocks of the EC-U-net network model.
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from November 2019 to April 2021, were selected as the research
subjects. This study was approved by the medical ethics committee
of the hospital, and patients and their families were informed of this
study and signed informed consent.

Inclusion criteria: (i) patients older than 18 years; (ii) patients
with complete clinical data; (iii) patients who signed informed
consent; (iv) patients who met the diagnostic criteria for severe
pneumonia formulated by the American Society of Infectious
Diseases/American Thoracic Society in 2007 (Vetrugno et al.,
2020); and (v) the diagnosis of severe pneumonia was in accordance
with the guidelines of the Respiratory Society of Chinese Medical
Association in 2006 (Kim, 2020).

Exclusion criteria: (i) patients with autoimmune diseases; (ii)
patients complicated with organ transplantation; (iii) patients with
other tumors; (iv) patients with heart disease and other important
organ damage; and (v) patients who had poor compliance
with examination.

2.2. CT image scanning

All patients were scanned by 64-row spiral CT. The patients
were placed in the supine position and scanned from the chest
entrance to the bottom of the lung. The scanning parameters
were as follows: layer thickness of 2.5 mm, pitch of 1.25, tube
voltage of 120 kV, tube current of 120 mA, and matrix of
521× 521.
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FIGURE 3

Sigmoid function.
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FIGURE 4

ReLU function diagram.

2.3. CT image segmentation based on
the deep learning model

The U-net model (Feng et al., 2020) is an improved
fully convolutional network (FCN) structure, which is generally
composed of a contracting path on the left half and an expansive
path on the right half (Figure 1). The compression channel
is a typical CNN structure. It repeats the structure with two
convolutional layers and one maximum pooling layer. The
dimensionality of the feature map is doubled after each pooling
operation. In the expansion channel, a deconvolution operation
was performed first to reduce the dimensionality of the feature map
by half, and then the feature maps obtained from the corresponding
compression channel were spliced to reconstitute a feature map of
two times the size. Then, two convolutional layers were adopted
for feature extraction, and this structure was repeated. In the final
output layer, two convolutional layers were employed to map the
64-dimensional feature map into a 2-dimensional output map.

Empty convolution (EC) (Moore and Gardiner, 2020) is
essentially a convolution with intervals. It can enlarge the receiving
field without changing the number of parameters and enhance
the ability of the model to extract information. EC and the U-net
network were combined to design an EC-U-net network model in
this work. The convolution block of the model (Figure 2) mainly
included the EC and activation function.

In the field of mathematics, convolution is an operation on a
function. In fact, it is a weighted summation process, which is an
integral operation. The convolution operation is expressed as the
following equation.

(h∗1h2)(t) ,
∫
∞

−∞

h1(υ)h2(t − υ)dυ (1)

In equation (1), h1 and h2 are functions, and two continuous
functions are integrable within the real number range. When CNN
is adopted to process the CT image, image pixels are used as
input, the convolution kernel is an impact function that acts on the
system and can extract system features, and the output is a feature
map corresponding to the image. Therefore, the image convolution
process is actually a linear operation, and the convolution of a
two-dimensional vector is expressed as follows.

P∗(i, j) = (P × C)(i, j) =
∑
a

∑
b

P(a+ i, b+ j)∗C(a, b) (2)

In equation (2), P represents the input, C represents the
convolution kernel, with a step size of 1, P∗ represents the output,
and (i, j) represents the pixel coordinates. Since the input data
dimension may not be an integer multiple of the convolution kernel
dimension, the method of padding zeros in the edge area is usually
adopted to protect effective information, and the filling column is
introduced.

P =
[
i− c+ 2k

l

]
+ 1 (3)

In equation (3), k represents the filling column, and l represents
the step size. Weight sharing is a major feature of CNNs, which
can greatly reduce the number of parameters and increase the
nonlinearity of the model. Then, the total number of parameters
(TNP) is calculated as shown in the following equation.

TNP = m+ n = c2
∗ z ∗ j+ j (4)
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FIGURE 5

Model learning rate under different training times.

In equation (4), m represents the weight, n represents the bias value,
z is the number of feature channels, and j represents the feature
map. In practical applications, the EC may cause some image pixels
to not participate in the convolution calculation due to the interval,
thereby losing the continuity of some information. To solve this
problem, the hole size of the model network is designed according
to the hybrid dilated convolution (HDC) standard. The following
condition is needed.

Ti = max[Ti+1 − 2ei,Ti+1 − 2(Ti+1 − ei), ei] (5)

In equation (5), ei is the space interval of the i-th layer, and Ti is the
space interval of the i-th layer.

Calculation of the convolutional layer is essentially a linear
weighted summation, so the model lacks nonlinear expression, and
the expression ability is extremely limited. Therefore, an activation
function should be introduced. In this work, the sigmoid function
(Ma et al., 2021) is used for classification output, and the ReLU
function (Kwee and Kwee, 2020) is employed for internal feature
extraction.

The sigmoid function can compress the value of the function
to the range of (0, 1), and it can be derived everywhere (Figure 3),
which is expressed as follows.

Sigmoid = 1
/

(1+ e−(mx+n)) (6)

The sigmoid function is related to the parameter update and model
optimization, and the step size of the parameter update is related to
the gradient. The reverse transfer process of the gradient between
the layers can be expressed as the following equation.

∂D
∂bu
= Sigmoid′(zc)mc+1Sigmoid′(zc+1)mc+2 (7)

· · · Sigmoid′(zu)
∂D
∂av

In equation (7), av is the v-layer output, and ∂D
∂bu

is the gradient of
the objective function to the bias term.

The ReLU function (Figure 4) can effectively avoid gradient
disappearance. It is an optimization of the sigmoid function, which
is expressed as the following equation.

Relu() = max(0, z) (8)

Relu()′ =

{
0 z < 0
1 z > 0

(9)

After the model is constructed, a learning criterion should be set to
supervise the model or select the optimal model. The cross-entropy
loss function (CELF) and Dice coefficient are used as the learning
criteria, which are expressed as the following equations.

CELF() = −

∑
[X log(F(I))+ (1− X) log(F(I))]

n
(10)

Dice = 2∗
M ∩ N
|M| + |N|

(11)

FIGURE 6

Cross-entropy loss function and Dice coefficient of the EC-U-net
model.
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FIGURE 7

Image segmentation results of the EC-U-net model. (A) Lung CT; (B) mask diagram; (C) segmentation results.

FIGURE 8

Comparison of segmentation performance between the traditional CNN algorithm and this model. (A) CELF; (B) Dice coefficient. *Compared to the
CNN algorithm, P < 0.05.

In equation (11), M represents the pixel matrix of the image mask,
N is the pixel matrix of the output predicted image, and M ∩ N
represents the inner product of the two image matrices.

2.4. Construction of the experimental
environment

The operating system is Windows 10, the processor uses
Xeon CPU E5-2630, and the graphics card uses NVIDIA Quadro
K2200. The framework uses TensorFlow, the language uses
Python3.5, and the dependent libraries use CUDA9.0, cudnn,
OpenCV, and SimpleITK.

The data set uses lung data from the Kaggle competition, which
includes 2,650 lung images and corresponding 250 mask images
made by experts. The training set and test set are set to 1:1.

2.5. Statistical methods

SPSS 19.0 was used for data processing in this study. The
mean ± standard deviation (X ± s) was used to indicate
the measurement data, and the percentage (%) was used for
counting data. Pairwise comparisons were performed by one-
way ANOVA. The difference was statistically significant at
P < 0.05.
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FIGURE 9

CT images of a 38-year-old male patient.

FIGURE 10

CT images of a 51-year-old male patient.

3. Results

3.1. Experimental results

In Figure 5, the learning rate of the EC-U-net model decreased
substantially as the number of training iterations increased until it
stabilized and became zero after 40 training iterations.

The CELF and Dice coefficients were compared (Figure 6). The
CELF of the EC-U-net model attenuated with increasing training
times, while the Dice coefficient increased with increasing training
times (gradually approaching 1) until it was stable.

3.2. Application effect of the EC-U-net
model in CT images

Figure 7 showed the CT image segmentation result of the EC-
U-net model. The result of CT image segmentation using the EC-
U-net model was very similar to the mask image, but there were
some deviations in the segmentation at the edge.

The traditional CNN algorithm was introduced and compared
with the segmentation results of the established model (Figure 8).
The CELF of the EC-U-net model for lung CT image segmentation

was observed to be substantially smaller than that of the CNN
algorithm, and the difference was considerable (P < 0.05). The
Dice coefficient of the EC-U-net model for lung CT image
segmentation was substantially greater than that of the CNN
algorithm (P < 0.05).

3.3. Patient imaging findings

Figure 9 showed the CT images of a 38-year-old male
patient, showing multiple small nodules in both lungs,
mostly in the upper and posterior parts of the lungs; fibrotic
masses were observed in the posterior segments of the
upper lobes of both lungs, with bilateral symmetry and
extravasation-like changes. Pulmonary bullae were observed
below the pleura in the periphery of the lungs where the
nodules were concentrated, and a pneumothorax shadow
was seen on the periphery of the lungs with localized pleural
hypertrophy.

Figure 10 showed the CT images of a 51-year-old male patient,
showing multiple segmental lesions in both lungs spreading more
than before. It was considered infectious lesions, multiple small
lymph nodes in the mediastinum, and a small amount of free
effusion in the right pleural cavity.
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FIGURE 11

Comparison of patient diagnosis accuracy, FNR, and FPR. (A)
accuracy; (B) FNR and FPR. 1: CT image based on the EC-U-net
model; 2: original CT image. *Compared with 1, P < 0.05.

3.4. Comparison of patient diagnosis
accuracy, false positive rate (FPR) and
false negative rate (FNR)

From Figure 11, the accuracy of CT images based on the
EC-U-net model in the diagnosis of severe pneumonia combined
with infection was substantially higher than that of CT images
(P < 0.05). The FPR and FNR of CT images based on the EC-
U-net model for severe pneumonia complicated by infection were
substantially lower than those of CT images, and the differences
were considerable (P < 0.05).

3.5. Comparison of diagnosis results of
CT imaging features

Figure 12 compared the diagnosis results of patients with
CT imaging features. The CT image based on the EC-U-net
model had a true positive rate (TPR) of 57.93% for patchy high-
density shadows and a TPR of 75.31% for diffuse ground-glass
density shadows. The TPRs were 16.39, 32.88, and 5.08% for
pleural effusion, pulmonary consolidation, and reticular nodules,
respectively. The original CT image had a TPR of 48.89% in
the diagnosis of patchy high-density shadows, 64.03% in diffuse
ground-glass density shadows, 11.27% in pleural effusion, 24.91%
in pulmonary consolidation, and 4.55% in reticular nodules. In
short, CT images processed by the EC-U-net model had a higher
TPR for patchy high-density shadows, diffuse ground glass density
shadows, pleural effusions, and lung consolidation shadows than
the original CT images, and the differences were substantial
(P < 0.05).

4. Discussion

Severe pneumonia is a very common critical symptom around
the world. It usually occurs in elderly individuals. Because its
onset is relatively insidious and there are no obvious symptoms
in the early stage, it will lead to delayed detection of the patient’s
condition and endanger the life of the patient (Salerno et al.,
2021). Therefore, early examination and early treatment are of
great significance to patients with severe pneumonia complicated
with pulmonary infection (Ding et al., 2020; Huang et al., 2021).
Thanks to the continuous development of computer technology,
medical imaging technology has gradually exceeded the scope
of traditional X-ray photography, among which CT imaging
technology is widely adopted in the diagnosis of various diseases
because of its high accuracy, low cost, and convenient operation.
A total of 120 patients with severe pneumonia combined with
pulmonary infection were selected as the research subjects and

FIGURE 12

Comparison of diagnosis results of patients with CT imaging features. 1: CT image based on the EC-U-net model; 2: original CT image; 3: patchy
high-density shadow; 4: diffuse ground-glass-like density shadow; 5: pleural effusion; 6: lung consolidation shadow; 7: reticular nodule shadow.
*Compared with 1, P < 0.05.
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underwent CT imaging scans. Then, an EC-U-net network model
was constructed based on empty convolution and the U-net
network and applied to CT image processing. First, analysis of
the performance of the model suggested that the learning rate
of the EC-U-net model decreased substantially as the training
times increased until it stabilized, and it even became 0 when
there were 40 training times. Such results indicated that the
training efficiency of the model was high and local fluctuations
were avoided. The segmentation result of the CT image by
the EC-U-net model was very similar to the mask image, but
there were some deviations in the edge segmentation. This was
different from the results of Shi et al. (2021), indicating that the
segmentation effect on the microstructure of the lungs in the EC-
U-net model was not satisfactory. The segmentation results of the
introduced traditional CNN algorithm and the proposed model
were compared. It was found that the EC-U-net model for lung CT
image segmentation exhibited a substantially smaller CELF and a
greatly larger Dice coefficient than the CNN algorithm (P < 0.05).
This showed that the overall segmentation performance of the EC-
U-net model for CT images was better than that of traditional
algorithms, and it had clinical application feasibility (Gordaliza
et al., 2018).

Accuracy reflects the precision of prediction. The FNR and FPR
are a pair of indicators from the perspective of prediction coverage.
The EC-U-net model was applied to the CT image processing
of 120 cases of severe pneumonia combined with pulmonary
infection. It was found that the accuracy of CT images based
on the EC-U-net model in the diagnosis of severe pneumonia
complicated by infection was substantially higher than that of CT
images. The FNR and FPR of CT images based on the EC-U-
net model for severe pneumonia complicated by infection were
substantially lower than those of CT images, and the differences
were great (P < 0.05). This showed that the combination of
the EC-U-net model and CT images can effectively improve the
clinical diagnosis of severe pneumonia complicated by pulmonary
infection, improve the diagnostic accuracy, and help screen early
pulmonary infections for symptomatic treatment (Haas et al., 2017;
Borodulina et al., 2020). Then, the CT image characteristics of
patients were analyzed, and the CT images based on the EC-U-net
model had a higher TPR for patchy high-density shadows, diffuse
ground-glass density shadows, pleural effusions, and pulmonary
consolidation shadows, and the differences were notable (P< 0.05).
This is similar to the research results of Morris et al. (2020),
indicating that CT images based on the EC-U-net model can
clearly show pulmonary infection lesions and determine the
scope of the lesion, thereby providing a diagnostic basis for the
early diagnosis of severe pneumonia combined with pulmonary
infection.

5. Conclusion

In this research, 120 patients with severe pneumonia
complicated with pulmonary infection were recruited to receive
CT imaging scans. Furthermore, an EC-U-net network model
based on the EC and U-net network phases was constructed
and applied to process the CT images of patients. The results
showed that the EC-U-net model was superior to the traditional

algorithm in the overall performance of CT image segmentation
and had feasibility for clinical application. CT images based on
the EC-U-net model can clearly display pulmonary infection
lesions, improve the clinical diagnosis of severe pneumonia
complicated with pulmonary infection, and help to screen early
pulmonary infection and carry out symptomatic treatment.
However, this study has not solved the unideal segmentation
effect of the EC-U-net model on microscopic structures such
as tiny pulmonary vessels, and imaging analysis of pulmonary
infections caused by different pathogens is lacking. In future
studies, we will include more case data of patients with severe
pneumonia complicated with pulmonary infection, and conduct
more image segmentation experiments with the proposed
algorithm to verify the reliability of deep learning technology.
In conclusion, the results provide data support for the clinical
diagnosis and treatment of severe pneumonia complicated with
pulmonary infection.
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