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Abstract

Automated insulin delivery systems, also known as closed-loop or ‘artificial pancreas’ 
systems, are transforming the management of type 1 diabetes. These systems consist of an 
algorithm which responds to real-time glucose sensor levels by automatically modulating 
insulin delivery through an insulin pump. We review the rapidly changing landscape 
of automated insulin-delivery systems over recent decades, from initial prototypes to 
the different hybrid closed-loop systems commercially available today. We discuss the 
growing body of clinical trials and real-world evidence demonstrating their glycaemic and 
psychosocial benefits. We also address future directions in automated insulin delivery such 
as dual-hormone systems and adjunct therapy as well as the challenges around ensuring 
equitable access to closed-loop technology.

Introduction

Over nine million people worldwide live with type 1  
diabetes (T1D) (1). In this condition, immune-
mediated destruction of pancreatic beta-cells leads to 
insulin deficiency and resultant hyperglycaemia. The 
management of T1D necessitates lifelong administration 
of exogenous insulin at appropriate doses to keep blood 
glucose levels within the target range.

Intensifying insulin therapy to minimise 
hyperglycaemia is important to reduce the risk of long-
term macrovascular and microvascular complications (2). 
Optimal glycaemic control is often limited by the risk of 
hypoglycaemia, and is made more challenging because 
insulin needs vary considerably day to day (3). A minority 
of people with T1D currently achieve the recommended 
glycaemic targets (4), and the high management burden 
associated with the condition can lead to reduced quality 
of life, burnout, diabetes distress, and depression (5).

There have been rapid advancements in diabetes 
technology since the discovery of insulin a century ago. 
Continuous subcutaneous insulin infusion (CSII) pumps 
were first developed in the 1970s and have since markedly 

reduced in size and increased in capability. Continuous 
glucose monitoring (CGM) devices, measuring real-time 
interstitial glucose concentration, have been available 
since 1999 and have steadily improved in accuracy and 
reliability (6). Insulin pump therapy is associated with 
improved glycaemic control and reduced hypoglycaemia 
compared with multiple daily insulin injections (7), and 
CGM is associated with improved glucose control and 
reduced hypoglycaemia compared to fingerstick capillary 
glucose monitoring (8, 9, 10, 11). Neither insulin pump 
therapy, CGM, or the use of both together as sensor-
augmented pump (SAP) therapy reduces management 
burden (12); requiring frequent user input to respond to 
glucose values and manually adjust insulin doses.

Automated insulin delivery (AID) systems address  
this issue by linking the glucose sensor and insulin pump 
via an algorithm which automatically adjusts insulin 
delivery in response to glucose levels (Fig. 1). These 
closed-loop systems, sometimes referred to as an ‘artificial 
pancreas, have the potential to not only improve glycaemic 
control but also reduce diabetes burden and improve 
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quality of life. Here, we review the changing landscape 
of AID: from initial development to current practice and 
future directions.

Methods

A literature search of PubMed and Google Scholar was 
conducted using keywords ‘closed-loop’, ‘automated 
insulin delivery’, ‘artificial pancreas’ and ‘type 1 diabetes’. 

The search was restricted to papers published in English 
over the last 15 years. Additional studies were identified 
from cited articles.

Past: the development of automated  
insulin delivery systems

Early intravenous systems

The first intravenous AID system was developed in  
1963 by Arnold Kadish (13). It comprised of an intravenous 
glucose monitor and two intravenous syringe pumps: 
a pump delivering insulin which was activated when 
glucose level rose above the higher threshold and a pump 
delivering either glucose or glucagon which was activated 
when glucose fell below the lower threshold. It never  
made it to market due to its impracticality, being the size 
of an army backpack (Fig. 2A).

The first commercial AID system was the Biostator 
(Miles Laboratories, Elkhart, IN, USA), developed in the 
1970s by Pfeiffer and colleagues (14). It consisted of a pump 
which controlled continuous venous blood withdrawal, a 
continuous blood glucose analyser, a computer algorithm 
to calculate the amount of insulin or dextrose to be 
infused, and an infusion pump for intravenous insulin/ 
dextrose delivery (Fig. 2B). Its size and complexity meant 
the Biostator was limited to inpatient use, but it was 
extensively used in research in the late 20th century (15).

First-generation automated  
insulin delivery systems

Numerous increasingly small and reliable CSII pumps 
and interstitial CGM systems were developed in the 

Figure 1
A closed-loop automated insulin delivery system comprising (1) a 
subcutaneous glucose monitor which communicates real-time glucose 
levels to (2) a device hosting the control algorithm which responds by 
regularly adjusting insulin delivery via (3) a subcutaneous insulin 
pump. Communication between systems is wireless. (Created with 
BioRender.com).

Figure 2
Early automated insulin delivery systems (A) The 
first insulin pump, developed by Kadish. (B) The 
Biostator computer-based glucose-controlled 
insulin infusion system. Reproduced with 
permission from Alsaleh FM, Smith FJ, Keady S & 
Taylor KM, ’Insulin pumps: from inception to the 
present and toward the future’, Journal of Clinical 
Pharmacy and Therapeutics, copyright 2010 John 
Wiley and Sons (93).
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2000s, making subcutaneous-subcutaneous AID systems 
a feasible therapy option. In 2005, JDRF established the 
Artificial Pancreas Project with the aim of promoting 
the development of AID technologies (15). JDRF defined 
six categories of AID technology, based on the level of 
automation involved (Fig. 3).

The simplest stage of automation was a low glucose 
suspend (threshold suspend) system, where the pump 
automatically suspends insulin delivery when sensor 
glucose drops below a pre-specified value. The first low 
glucose suspend system, the MiniMed Paradigm Veo 
/530G (Medtronic, Northridge, CA, USA), was released 
in 2009. The next stage up was predictive low glucose 
suspend (PLGS) systems, which include an algorithm 
that predicts future hypoglycaemia and pre-emptively 
reduces insulin delivery. PLGS technology first became 
commercially available in 2015 with the MiniMed 
640G (Medtronic) and then in 2018 with the t:slim X2 
Basal-IQ (Tandem, San Diego, CA, USA). Compared to 
non-automated pump and sensor systems, both LGS 
and PLGS are associated with a significant reduction 
in hypoglycaemia (16, 17), although PLGS did increase 
hyperglycaemia in a paediatric population (18).

Increasing automation was achieved by adding 
to the PLGS system a feature to automatically give a 
small correction bolus when glucose was predicted to 
increase above a pre-specified threshold. These predictive 
hyperglycaemia and hypoglycaemia minimisation 
systems were associated with improved overnight 
glycaemic control in both children and adults with TID 
(19, 20), but never made it to commercial products.

Control algorithms for automated insulin delivery

Subsequently, several research groups began developing 
more complex control algorithms to automatically 
adjust insulin delivery every 5–10 min based on real-
time sensor glucose levels, with the aim of more closely 

replicating normal pancreatic physiology. There are three 
main types of control algorithms that have been utilised 
in these closed-loop systems: proportional-integral-
derivative (PID) controllers, model predictive control 
(MPC) controllers, and fuzzy logic controllers. PID 
controllers modify insulin rates by evaluating glucose 
excursions from three perspectives: deviation from target 
glucose (proportional component), area under the curve 
between measured and target glucose level (integral 
component), and rate of change of measured glucose 
levels (derivative component) (21). MPC algorithms 
predict future glycaemic excursions and adjust insulin 
delivery based on inputs including sensor glucose levels 
and insulin boluses given, simultaneously considering 
insulin absorption delays, active insulin, and diurnal 
and post-prandial variability in glucose levels (22). The 
fuzzy logic approach is less commonly used and involves 
modulating insulin delivery based on rules which reflect 
the reasoning of experienced diabetes practitioners.

Development of hybrid closed-loop systems

The most advanced AID systems currently available are 
hybrid closed-loop (HCL) systems, where the control 
algorithm adjusts the basal insulin rate, but users must 
administer prandial insulin boluses for optimal control. 
Over the past decade and a half, HCL systems have 
undergone extensive testing: from safety studies in 
controlled laboratory settings (23, 24, 25), to transitional 
supervised outpatient settings (26, 27, 28), and finally to 
overnight and day-and-night studies under home free-
living conditions (29, 30, 31, 32, 33). In 2016, the MiniMed 
670G (Medtronic) became the first commercially available 
HCL system, with the pivotal trial in 124 participants over 
3 months showing a significantly increased time in range 
compared to baseline (34). Since then, there has been 
exponential growth in the field, with six HCL systems 
now approved for use in people with TID between North 
America and Europe.

Figure 3
The six developmental stages of artificial pancreas 
device systems as originally described by JDRF 
(https://www.jdrf.org/blog/2011/02/09/artificial-
pancreas-and-fda-the-latest/). (Created with 
BioRender.com).
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Present: current landscape in automated 
insulin delivery

Commercial hybrid closed-loop systems

Today, five manufacturers have licenced HCL systems for 
people with T1D: Medtronic MiniMed 670G/770G/780G, 
CamDiab (Cambridge, UK) CamAPS FX, Tandem (San 
Diego, CA, USA) Control-IQ, Insulet (Acton, MA, USA) 
Omnipod 5, and Diabeloop (Grenoble, Rhone-Alpes, 
France) DBLG1 (Fig. 4). All these systems follow the same 
basic principles but differ in terms of the algorithm, 
hardware, and functionality (Table 1).

DIY automated insulin delivery systems

The do-it-yourself (DIY) closed-loop movement began 
in 2013, when a community of people with T1D and 
their families began collaborating online to develop 
their own artificial pancreas systems (APS), behind the 
hashtag #WeAreNotWaiting. These DIY systems connect 

commercially available insulin pumps and CGMs to 
an open-source algorithm, which does not undergo 
any regulatory oversight or approval. The three main 
systems, Loop, OpenAPS, and AndroidAPS, were used by 
around 1500 people with TID in 2019 (35). Even now HCL 
therapy is commercially available, and these DIY systems 
remain appealing to those who have the confidence and 
skills to maintain them, due to lower costs and increased 
customisability (22). The not-for-profit company Tidepool 
(Palo Alto, CA, USA) developed a commercial version of 
the iOS app Loop (Tidepool Loop), which recently became 
the first DIY algorithm to be approved by the FDA (https://
www.tidepool.org/blog/tidepool-loop-has-received-
fda-clearance). The company are currently working on 
partnerships with CGM and pump manufacturers.

Glycaemic outcomes

All commercially available HCL systems have been shown 
to be safe and efficacious for people living with T1D. 

Figure 4
Commercially available hybrid closed-loop systems. (A) MiniMed TM 780G with Guardian 4 sensor; ©2023 Medtronic. All rights reserved. Used with the 
permission of Medtronic. (B) CamAPS FX algorithm on a smartphone with Dana or YpsoPump and Dexcom G6 or Freestyle Libre 3 sensor; CamAPS FX 
copyright University of Cambridge 2023. (C) Tandem t:slim X2 pump with Dexcom G6 sensor; copyright 2023 Tandem Diabetes Care. (D) Insulet Omnipod 
5 with patch pump and Dexcom G6 sensor; © 2023 Insulet Corporation. (E) Diabeloop DBLG1 algorithm with Kaleido patch-pump and Dexcom G6 sensor; 
© 2023 Diabeloop SA.
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Table 1 Comparison of commercially available automated insulin delivery systems.

Medtronic 
670G/770G/780G CamAPS FX

Tandem t:slim X2 with 
Control-IQ Diabeloop DBLG1 Insulet Omnipod 5

License 670G, 770G: CE label 
and FDA label

CE label CE label and FDA label CE label CE label and FDA 
label

780G: CE label Licensed in Australia
Licenced 

indications
≥2 years (770G), ≥7 

years (670G, 780G)
≥1 year and ≥10kg ≥6 years and ≥25kg ≥18 years ≥2years

TDD 8–250 U/day TDD 5–350 U/day TDD 10–100 U/day 8–90 U/day ≥5 U/day
Pregnancy excluded Pregnancy included Pregnancy excluded Pregnancy 

excluded
Pregnancy excluded

Licensed 
insulin

Rapid acting Rapid acting and 
ultra-rapid acting

Rapid acting Rapid acting Rapid acting

Compatible 
pump

MiniMed 670G YpsoPump t:slim X2 Accu-chek Insight 
Kaleido

Omnipod 5

MiniMed 770G Dana I
MiniMed 780G Dana RS

Compatible 
CGM

Guardian 3 (670G, 
770G)

Dexcom G6 Dexcom G6 Dexcom G6 Dexcom G6

Guardian 4 (780G) Freestyle Libre 3
Mobile control View app on phone 

(780G)
Full phone control 

(only Android)
Phone bolusing (iOS 

and Android) (US only)
No Full phone control 

(only Android)
Algorithm 

location
Pump integrated App-based Pump-integrated Dedicated 

handset
Pod-integrated

Type of 
algorithm

PID with insulin 
feedback (670G, 
770G)

MPC MPC MPC MPC

Additional model 
based auto-
corrections (780G)

Target 6.7 mmol/L (670G, 
770G)

Personalised target 
4.4–11.0 mmol/L; 
up to 48-time 
blocks per day

Target 30-min predicted 
range of 6.25–8.9 
mmol/L; corrections 
down to 6.1 mmol/L

Personalised 
target 5.6–7.2 
mmol/L

Personalised target 
6.1–8.3 mmol/L; 
up to 8-time blocks 
per day

Adjustable 5.5, 6.1 or 
6.7 mmol/L (780G)

Other modes Activity mode: target of 
8.3 mmol/L and no 
autocorrections

Ease-off mode: 
target 7 mmol/L, 
less insulin delivery 
~−35%

Sleep Activity: target 
6.25–6.7 mmol/L basal 
rate modulation only;

Activity mode: 
target +3.8 
mmol/L and less 
aggressive 
algorithm

Activity mode: 
target 8.3 mmol/L 
restricted insulin 
delivery

Boost mode: insulin 
delivery ~+35%, 
more responsive 
algorithm

Exercise activity: target 
7.8–8.9 mmol/L

Zen mode: target 
+0.5–2.2 mmol/L 
and less 
aggressive 
algorithm

Pre-set basal 
insulin rates 
influence AID

No No Yes (users can set 
multiple basal rates 
and different basal 
profiles)

No No (informs AID for 
first 48 h)

Bolus 
correction 
delivery

Automated correction 
boluses – up to 12 per 
hour (780G)

Automated 
corrections via 
intensive basal rate 
adjustments

Automated basal rate 
adjustment every 5 
min and automated 
correction boluses up 
to 1 per hour

Automated 
correction 
boluses

Automated 
corrections via 
intensive basal 
rate adjustments

Optional user-initiated 
correction boluses

Optional user-
initiated correction 
boluses

Optional user-initiated 
correction boluses

Optional user-
initiated 
correction 
boluses

Optional user-
initiated correction 
boluses

Active insulin 
time 
 

Adjustable 2–8 h 
 
 

Automatically 
adjusted based on 
adaptive learning 

Fixed 5 h 
 
 

Automatically 
adjusted based 
on adaptive 
learning

Adjustable 2–6 hs 
 
 

(Continued)
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An initial meta-analysis of 40 randomised controlled 
trials (RCTs) of several different AID systems in the 
outpatient setting demonstrated improved glycaemic 
control compared to control therapy: with increased 
percentage time spent in the target glucose range of 3.9–
10.0 mmol/L (weighted mean difference +9.6 percentage 
points, 95% confidence interval (CI) +7.5 to +11.7%), 
reduced hypoglycaemia <3.9 mmol/L (weighted mean 
difference −1.5 percentage points , 95% CI −1.9 to 
−1.1%), and a favourable effect on HbA1c (weighted mean 
difference −0.26%, 95% CI −0.38 to −0.13%) (33). A more  
recent network meta-analysis of ten RCTs found that 
closed-loop systems led to a greater time in target glucose 
range than any other management strategy: mean time in 
range was 17.9 percentage points higher when compared 
to multiple daily injections with capillary glucose 
monitoring and 8.8 percentage points higher when 
compared to insulin pump therapy with CGM (36).

Comparisons of efficacy between HCL systems 
are hampered by differences in participant baseline 
characteristics and study design. The only head-to-head 
comparison of two different HCL systems compared the 
Medtronic MiniMed 670G with the second-generation 
MiniMed 780G (37). In this multinational randomised 
crossover trial of 113 adolescents and young adults  
with T1D, the use of the MiniMed 780G led to a reduction 
in time spent in hyperglycaemia > 10.0 mmol/L by  
3.0 percentage points (95% CI −4.0 to −2.0%), 
without increasing hypoglycaemia compared with the  
MiniMed 670G.

HCL systems have now been tested in randomised 
trials in vulnerable cohorts, including the extremes of 
ages. In a crossover trial of 37 older adults (aged 60 years 
or above) with T1D, the use of CamAPS FX led to an 
increase in time in the range of 8.6 percentage points 

compared to SAP, importantly with no increased risk of  
hypoglycaemia (38). In 74 very young children (aged 1–7 
years) with T1D, CamAPS FX led to an increased time in 
the range of 8.7 percentage points, without increased 
hypoglycaemia (39). The Tandem Control-IQ system 
has also been evaluated in 102 very young children aged 
2–6 years in a parallel design trial, with those in the HCL 
group having 12.4 percentage points more time in range 
compared to usual care (40).

Pregnancy is a challenging time for people with T1D 
to achieve the tighter recommended glycaemic targets. A 
small study of 16 pregnant women showed that day-and-
night closed-loop insulin delivery was associated with 
significantly less hypoglycaemia and comparable glucose 
control compared to SAP therapy (41). Larger trials of 
the MiniMed 780G system (NCT04520971), CamAPS FX 
system (NTC04938557), and Tandem Control-IQ system 
(NCT04902378) in pregnancy are all currently underway.

The first randomised control of an open-source 
AID system (a modified version of AndroidAPS 2.8 
with a standard OpenAPS 0.7.0 algorithm) was recently 
conducted on 97 participants over 24 weeks. Compared to 
SAP, the use of an open-source AID system was associated 
with an increase in time in the target glucose range of 14 
percentage points (42).

Psychosocial outcomes

A growing body of qualitative research on HCL systems 
report a number of user benefits including reassurance 
and reduced anxiety, improved sleep, and ‘time off’ 
from diabetes demands (43). While some studies report 
benefits in diabetes-specific quality of life measures 
assessed by validated questionnaires, these findings have 
not been consistent (44, 45, 46, 47, 48). User feedback 

Medtronic 
670G/770G/780G CamAPS FX

Tandem t:slim X2 with 
Control-IQ Diabeloop DBLG1 Insulet Omnipod 5

Adaptive 
learning

Yes – TDD estimated 
fasting glucose and 
plasma insulin

Yes – TDD, diurnal, 
meals

Yes – TDD tracked over 
time

Yes – TDD diurnal, 
meals

Yes – TDD

Automatic 
data upload 
for remote 
monitoring

No – 670G Yes – Diasend/
Glooko once hourly

Hourly via t:connect 
mobile app (USA only)

Glucose data via 
Dexcom follow

Yes – Glooko once 
hourly

Yes – Carelink (770G/ 
780G)

Real-time monitoring 
with Companion 
app and SMS

Glucose data via 
Dexcom follow

CE mark, Conformity Europeenne mark; CGM, continuous glucose monitoring; FDA, United States Food and Drug Administration; MPC, model predictive 
control; PID, proportional integral derivative; TDD, total daily dose of insulin.

Table 1 Continued.
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makes it clear that the benefits of AID are balanced by 
challenges including variable levels of trust in the system,  
physical bulk of devices, alarm burden and connectivity 
problems (43, 46).

Arguably the greatest quality-of-life benefits of 
closed-loop systems have been reported in the caregivers 
of young children with T1D, who have the highest 
burden of diabetes management (49). Caregivers of very 
young children using the CamAPS FX system reported 
less anxiety knowing that the system would help keep 
glucose in range, better sleep, increased confidence to 
leave their child with others, and being able to resume 
normal activities including in some cases return to 
full-time employment (50). Similarly, the use of the 
Control-IQ AID system in children with TID significantly 
improved sleep and psychosocial measures in parent poor 
sleepers (51), and the use of open-source AID systems  
has been associated with improved quality of life and 
sleep in children and caregivers (52).

Lived experience has been directly compared between 
the MiniMed 670G and second-generation MiniMed 
780G systems (53). While there was no difference in 
diabetes distress or hypoglycaemia confidence, the 780G 
system was associated with improved glucose monitoring 
satisfaction. The Omnipod 5 is the first commercially 
available tubeless on-body AID system, and data from 
the recent pivotal trial showed improvements in diabetes 
distress, hypoglycaemia confidence, and diabetes 
treatment satisfaction after 3 months of system use (44).

Users without previous experience of HCL can have 
unrealistically high expectations of the technology, with 
terms like ‘artificial pancreas’ and ‘closed-loop system’ 
being potentially misleading in suggesting that no user 
input is required (54). Managing expectations of HCL 
systems clearly at the outset is important in avoiding 
disappointment and promoting long-term usage and 
optimal outcomes (55).

Real-world outcomes

As more people use AID systems, there is increasing 
real-world data on utility and glycaemic outcomes. A 
prospective observational study of Medtronic Minimed 
670G users showed that AID utilisation correlated 
with improved glycaemic control, but there was a high 
discontinuation rate, with 33% stopping closed-loop by 
12 months (56). Promisingly, real-world data on large 
numbers of users of the second-generation MiniMed 
780G AID system (57) as well as the Tandem control-IQ 

(58), Diabeloop DBLG1 (59), and Loop DIY system (60) all 
show a median of over 80% time spent using closed-loop, 
and a sustained time in the range of over 70% at the end 
of the observation period.

Real-world data are now available across the age 
groups. Data from over 10,000 MiniMed 780G system 
users show that children aged 15 years or younger 
(n = 3211) achieve similar glycaemic outcomes to those 
older than 15 years (n = 8874), with over 75% achieving 
>70% time in range (61). Real-world data from 48 older 
adults (mean age 70 ± 4 years) showed that starting 
the Control-IQ AID system led to improved glycaemic  
control and reduced time in hypoglycaemia compared 
with prior therapy (62).

In the United Kingdom, National Health Service 
England recently conducted a real-world pilot to collect 
data on a range of HCL systems. Across 300 person-years 
of AID observations, time in range increased by 28.5 
percentage points in adults with suboptimal control 
(HbA1c > 70 mmol/mol, 8.5%), and 14.3 percentage 
points in children, with a decrease in hypoglycaemia in 
both cohorts (63, 64).

Future: emerging directions in automated 
insulin delivery

Simplified meal announcements

All currently available HCL systems require users to 
count carbohydrates and manually bolus before meals 
for optimal glycaemic outcomes. Accurate carbohydrate 
counting is frequently challenging, requires a level of 
numeracy and literacy that can be a barrier for some, and 
adds significantly to the burden of day-to-day diabetes 
management (65).

One approach to reducing the burden of carbohydrate 
counting is through simplified, meal announcements. In 
the iLet Bionic Pancreas (Beta Bionics) algorithm, meals 
are announced in terms of size (usual, more, or less) 
relative to other meals of the same type (i.e. breakfast, 
lunch, dinner). In 165 children and adolescents with 
T1D, those randomised to use the closed-loop system 
increased time in range by 10 percentage points over 
13 weeks compared with standard care (66). In an RCT 
of the MiniMed 780G system, adolescents achieved 
an average of 73.5% time in range with simplified meal 
announcements (choosing one of three personalised  
fixed carbohydrate amounts), though carbohydrate 
counting further improved outcomes to 80.3% (67).
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Fully closed-loop systems with ultra-rapid insulin

The ultimate goal for AID technology is a fully closed-
loop system, where the algorithm automatically 
determines both basal and bolus insulin requirements, 
with no user input required. The main barrier to a fully 
closed loop is the delayed action of subcutaneously 
administered rapid-acting insulin analogues, which 
results in post-prandial glucose excursions in the absence 
of pre-meal boluses. New faster acting insulin analogues 
such as Fiasp (Novo Nordisk) and Lyumjev (Eli Lilly) 
are now available. While these have only shown small 
overall benefits over standard insulin analogues when 
applied in HCL systems (68, 69), there is evidence of 
reduced postprandial hyperglycaemia, particularly after 
a missed meal bolus (70). A recent randomised crossover 
study using AndroidAPS with Fiasp in 16 adolescents 
found no significant difference between fully closed- 
loop (with no meal announcements) and HCL glucose 
control over 3 days in a controlled camp setting, with 
time in the range of 81 and 83%, respectively (71). 
Longer outpatient studies comparing the CamAPS HX 
fully closed-loop system using ultra-rapid insulin to SAP 
therapy are currently underway in adults (NCT04977908) 
and adolescents (NCT05653050) with suboptimal 
glycaemic control.

Bihormonal fully closed-loop systems

In addition to insulin, the secretion of glucagon and 
amylin is impaired in people with T1D (22). Both 
hormones are important in glycaemic control; glucagon 
reduces hypoglycaemia by stimulating hepatic glucose 
release in response to falling glucose levels, and amylin 
reduces post-prandial hyperglycaemia by delaying gastric 
emptying. An alternative approach to achieve a fully-
closed loop system includes incorporating one of these 
hormones alongside insulin.

Glucagon and insulin dual-hormone systems, 
without meal announcements (72) or with simple 
meal announcements (73), have been found to reduce 
both hyperglycaemia and hypoglycaemia compared 
to conventional insulin pump therapy. One of these 
systems, Inreda (Inreda Diabetic, Goor, the Netherlands) 
is the first CE-marked bi-hormonal AID system and 
has around 125 users in the Netherlands (72). A major 
drawback is the unstable liquid formulation of glucagon, 
which requires daily replacement and the need for two 
separate pump systems. Chemically stable synthetic 
glucagon analogues, for example, dasiglucagon, have 

been recently developed, and preliminary results from a 
trial of the dual-hormone iLet system are promising (74).

Pramlintide and insulin dual-hormone systems have 
been found to improve post-prandial hyperglycaemia 
when compared to an insulin-only HCL system (75). 
In a supervised inpatient study, participants using a 
pramlintide and Fiasp fully closed-loop system spent 
74.3% of time in target range, although this was still 
lower than with the Fiasp alone HCL system (76). 
Current challenges of using pramlintide in a longer-term 
outpatient setting include gastrointestinal side effects, 
and the need for a separate pramlintide infusion pump; 
however, an insulin-pramlintide coformulation is under 
development (65).

Automated insulin delivery with adjunct therapies

Other adjunctive therapies have been evaluated to 
optimise glycaemic control and potentially reduce 
the need for carbohydrate counting. Sodium-glucose 
cotransporter-2 (SGLT2) inhibitors lower plasma glucose 
by blocking renal reabsorption and increasing the 
excretion of glucose in the urine. Their use in T1D is limited 
due to an increased risk of euglycaemic ketoacidosis (77). 
In outpatient crossover RCTs utilising the iPancreas AID 
system, 25 mg empagliflozin daily with HCL led to an 
increase in time in range compared to HCL alone (78), and 
25 mg empagliflozin with simple meal announcements 
was non-inferior to HCL alone (79). However, in both 
studies, there was an increase in ketone levels associated 
with the use of empagliflozin. A follow-up outpatient 
randomised crossover study evaluated a ten times lower 
dose of empagliflozin as an adjunct to HCL in adults with 
T1D and suboptimal control (HbA1c 7–10.5%, and time in 
range <70% after 2 weeks on HCL) and found that 2.5 mg 
of empagliflozin increased time in range by 13 percentage 
points (from 59.0 to 71.6%), with no difference in mean 
ketone levels compared with HCL alone (80).

Glucagon-like peptide-1 (GLP-1) analogues increase 
satiety, slow gastric emptying, and suppress glucagon 
release. Small inpatient studies of GLP-1 agonists with 
fully closed-loop therapy seem promising (81), and a 
longer outpatient study looking at weekly subcutaneous 
semaglutide as an adjunct to closed-loop therapy is 
currently underway (NCT05205928).

Advances in hardware

Pump and sensor hardware can impact the user  
experience of AID systems as much as the algorithm 
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itself. The newest CGM devices do not require finger  
stick calibration and are rapidly decreasing in size; with 
the Freestyle Libre 3 CGM the size of two stacked UK 
pennies (https://www.freestyle.abbott/uk-en/products/
freestyle-libre-3.html). Conventionally, insulin pump 
users have to change infusion sets every 2–3 days, but 
extended wear sets are now available. The Medtronic  
7-day insulin infusion set has recently been shown to 
be safe and associated with high user satisfaction when 
used with an HCL system (82). Combining extended 
wear infusion sets with a CGM as a single device has 
the potential to further reduce device burden; however, 
the interference of nearby insulin delivery with glucose 
sensing continues to present a challenge (83).

Advances in hardware may also allow for additional 
device integration to optimise AID algorithms. Meal 
announcements could be simplified through the use of 
a smartwatch application capable of detecting eating 
behaviour (84), while exercise could be automatically 
recognised and adjusted for through the integration of 
heart rate, skin temperature, and accelerometer data 
(85). Continuous ketone monitors used in combination 
with AID could reduce the incidence of DKA and would 
be particularly useful for those taking adjunctive SGLT2 
inhibitor therapy (86).

Improved access to AID systems

Arguably far more important than technological 
advances in AID systems is improving access to these 
technologies for all those who could benefit. Closed-
loop therapy is associated with significant upfront and 
ongoing costs compared with standard insulin therapy, 
and whilst health economic analyses from a range of 
countries are favourable (87, 88, 89), reimbursement 
remains varied between and within territories. A lack of 
equitable access to AID technology is likely to increase 
disparities in the management of TID; particularly 
as those from lower socio-economic backgrounds are 
more likely to have suboptimal glycaemic control 
(90), and therefore have the most to gain from these 
systems. With national and international guidance  
and consensus statements being updated, there is hope 
that reimbursement will soon be more widely available 
(64, 91).

Another barrier to wider access closed-loop 
systems is clinical inertia, linked to concerns from 
healthcare professionals around the additional 
need for staff training and user support, as well as 
geographical variations in technological experience (92).  

Healthcare systems are increasingly stretched, but 
manufacturers and technology experts can help by 
creating online resources for both professionals and 
system users.

Conclusion

The landscape of AID in the management of TID 
has evolved rapidly over the past few decades. Initial 
bulky prototypes have evolved into a range of refined 
algorithms and compact hardware options, which are 
being gradually embedded into routine clinical practice. 
Given growing clinical trials and real-world data showing 
glucose control and quality of life benefits across a range 
of populations, it is likely that HCL therapy will become 
the standard of care for many people with TID in the near 
future. Future directions include fully closed-loop and 
dual-hormone systems, adjunct therapy and additional 
hardware integration. Equally important is ensuring 
access to these technologies to all those who could 
benefit, through equitable reimbursement strategies and 
healthcare provider training.
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