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Gut microbiome and
reproductive endocrine diseases:
a Mendelian randomization study

Ye Liang, Weihong Zeng, Tao Hou, Haikun Yang, Boming Wu,
Ru Pan and Lishan Huang*

Department of Gynecology, Meizhou People’s Hospital, Meizhou, Guangdong, China
Background: Observation studies have confirmed the association between the

gut microbiome and reproductive endocrine diseases (REDs), namely, polycystic

ovary syndrome (PCOS), endometriosis, and female infertility. However, their

association has never been confirmed by a two-sample Mendelian

randomization (MR) analysis.

Methods: We conducted a two-sample MR analysis to evaluate the relationship

between the gut microbiome and the three aforementioned REDs. In order to

get more comprehensive results, two different thresholds were adopted to select

instrumental variables (IVs): one was a locus-wide significance threshold

(P <1.0×10–5) and the other was a genome-wide significance level (P< 5×10-8).

Summary-level statistics for the gut microbiome and REDs were collected from

public databases. Inverse-variance weighted (IVW) was the main method used to

estimate causality, and sensitivity analyses were conducted to validate the

MR results.

Results: At the locus-wide significance level, we identified that the genera

Streptococcus (OR=1.52, 95%CI: 1.13-2.06, P=0.006) and RuminococcaceaeUCG005

(OR=1.39, 95%CI: 1.04-1.86, P=0.028) were associated with a high risk of PCOS, while

Sellimonas (OR= 0.69, 95%CI: 0.58-0.83, P=0.0001) and RuminococcaceaeUCG011

(OR=0.76, 95%CI: 0.60-0.95, P=0.017) were linked to a low PCOS risk. The genus

Coprococcus2 (OR=1.20, 95%CI: 1.01-1.43, P=0.039) was correlated with an increased

risk of female infertility, while Ruminococcus torques (OR=0.69, 95%CI: 0.54-0.88,

P=0.002) were negatively associated with the risk of female infertility. The genera

Olsenella (OR= 1.11, 95%CI: 1.01-1.22, P=0.036), Anaerotruncus (OR= 1.25, 95%CI: 1.03-

1.53, P=0.025), and Oscillospira (OR= 1.21, 95%CI: 1.01-1.46, P=0.035) were linked to a

high riskof endometriosis.However, the results showed that thegutmicrobiomedidnot

possess a causal link with REDs risk based on the genome-wide significance level.

Sensitivity analyses further confirmed the robustness of the MR results.

Conclusion: Our study provides evidence that gut microbiome is closely related

with REDs. Subsequent studies should be conducted to promote microbiome-

orientated therapeutic strategies for managing REDs.

KEYWORDS

Mendelian randomization, polycystic ovary syndrome, gut microbiome, endometriosis,
female infertility
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1 Introduction

The homeostasis of sex hormones plays a significant role in the

reproductive endocrine system throughout the lifetime of a female.

Disturbance in sex hormones may lead to reproductive endocrine

diseases (REDs) such as polycystic ovary syndrome (PCOS),

endometriosis, and infertility that have bothered female people of

reproductive age for many years. PCOS is one of the most prevalent

endocrine and metabolic disorders in reproductive-aged female

people. Female people presenting PCOS have a high prevalence of

endocrine–metabolic dysfunction, including obesity, insulin

resistance, hyperinsulinemia, and dyslipidemia, resulting in a

significantly increased risk for mood disorders, type 2 diabetes

mellitus, infertility, metabolic disorders, cardiovascular disorders,

and the development of cancer (1–3). Infertility is defined as the

failure to conceive after 12 months of regular unprotected sexual

intercourse. The causes of infertility include male factors, female

factors, and unknown factors. It has become a major public health

problem affecting 8-12% of reproductive-aged couple (4).

Endometriosis is a disease characterized by endometrial tissue

outside the uterus, which affects 10% of reproductive-aged female

people worldwide and leads to chronic painful symptoms and

infertility in severe cases (5). Due to the health, economic, and

social burdens caused by these diseases, it is urgent to understand

the underlying mechanisms and obtain an adequate treatment

for them.

Growing evidence has revealed the relationship between the gut

microbiome and REDs. The gut microbiome is considered to be an

endocrine organ and plays a major role in the reproductive

endocrine system by affecting the fluctuation of sex hormones.

The gut microbiome can affect estrogen levels by modulating the

secretion of b-glucuronidase. The dysbiosis and reduction of gut

microbiota diversity can decrease or increase b-glucuronidase
activity and result in the fluctuation of circulating estrogens,

which may lead to obesity, metabolic syndrome, cancer,

endometrial hyperplasia, endometriosis, PCOS, and infertility (6,

7). The gut microbiome can also affect the level of circulating

testosterone. The gut microbiota can synthesize and transform

androgens by expressing the enzymes and are involved in the

degradation of testosterone via microbial processes (8). For

example, Proteobacteria can degrade androgen (9), and

Clostridium scindens has a high potential to convert

glucocorticoids into androgens (10). A combination of signs and

symptoms of hyperandrogenism is a typical feature of PCOS.

Previous studies found that the gut microbiome and its

metabolites played an important role in the regulation of PCOS-

associated ovarian dysfunction and insulin resistance (11). Obesity

and PCOS also have a reverse effect on changing the gut

microbiome composition, which may disrupt the ovarian

function, damage oocyte quality, and cause chronic inflammation,

hence further deteriorating fertility (12). Thus, the gut microbiome

may have an impact on PCOS pathogenesis through a variety

of mechanisms.

The majority of instances of female infertility can be explained

in terms of ovulation disorders, uterine or cervical issues, tubal
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alterations, endometriosis, immune factors, and/or pelvic

infections. However, approximately 30% of cases cannot be

explained, and these are defined as “unexplained infertility” (13).

Growing evidence has confirmed that gut microbiota dysbiosis has

an indispensable impact on inflammatory conditions that affect

male and female fertility (14, 15). An observational study found that

female infertility showed a different bacterial richness and ratio, and

an increasing level of inflammation comparing with the fertile

group (15). A systematic review demonstrated that many

autoantibodies, such as thyroid-related autoantibodies, anti-

phospholipid antibodies, and anti-nuclear antibodies, impede the

chances of a successful in vitro fertilization cycle (16). Therefore, we

concluded that gut microbiome may have a close relationship with

female infertility.

The understanding of the etiology of endometriosis is still

lacking. Recently, studies have shown that the gut microbiome

may be closely associated with the onset and progression of

endometriosis due to its influence on the estrogen metabolism

and inflammation. The increasing level of circulating estrogen

derived by gut microbiome dysbiosis may stimulate the growth

and cyclic bleeding of endometriotic lesions (8). Another reason is

that dysbiosis in the gut microbiome disrupts the immune function,

leading to the elevation of inflammatory cytokines and alteration of

immune cell profiles. Over time, a chronic state of inflammation is

developed to create an environment conducive to increased

adhesion and angiogenesis, which may drive endometriosis onset

and progression (17). The gut microbiome also contributes to the

chronic pain of endometriosis by regulating microglia, astrocytes,

and immune cells, and gut microbiome dysbiosis could lead to

incorrect immune responses (18).

These above observations indicate there is a close link between

the gut microbiome and the pathogenesis and progression of REDs;

however, a Mendelian randomization (MR) analysis about their

associations is still lacking. It is necessary to establish a causal

relationship analysis to further understand the gut microbiome-

derived mechanism and provide new insights into microbiome-

orientated therapeutic strategies. Hence, we conducted a two-

sample MR analysis to evaluate the relationship between gut

microbiome composition and REDs. MR is an effective method to

infer causality between exposures and outcomes by using genetic

variations strongly associated with exposures as instrumental

variables (IVs). MR can be regarded as a natural randomized

controlled trial (RCT), which is not easily disturbed by

confounding factors and has a high level of evidence.
2 Materials and methods

2.1 Data sources

Genome-wide association studies (GWAS) data sources for the

gut microbiome and PCOS, pregnancy loss, female infertility, and

endometriosis were compiled and made publicly available online

(Table 1). Single-nucleotide polymorphisms (SNPs) associated with

the composition of the human gut microbiome were selected as IVs.
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Ethics approval was not required, since the data used were obtained

from published studies or public databases.

2.1.1 Gut microbiome
GWAS summary statistics for the human gut microbiome were

obtained from the MiBioGen study, which is a large-scale,

multiethnic GWAS study recruiting 18, 473 individuals (24

cohorts) from various countries with 122,110 loci of variation

(19). Most of the participants had European ancestry (n = 13,

266). A total of 211 taxa were categorized by five biological

categories, including 9 phyla, 16 classes, 20 orders, 35 families,

and 131 genera. As the genus was the smallest and most precise

taxonomic level among all the category criteria, we performed

subsequent analyses at the genus level only. Therefore, a total of

119 specific genera were included in the current analysis after

removing 12 unknown genera out of 131 genera.
2.1.2 PCOS
GWAS data for PCOS were taken from Apollo (https://doi.org/

10.17863/CAM.27720), which includes 10,074 PCOS cases and 103,

164 controls of European ancestry (20). Cases were either diagnosed

according to the National Institutes of Health (NIH) or Rotterdam

criteria or self‐reported history of PCOS.
2.1.3 Female infertility
Summary-level data for female infertility were also derived from

the FinnGen consortium (104,225 female participants recruited,

including 9, 831cases and 94,394 controls) (21).

2.1.4 Endometriosis
The GWAS summary datasets for endometriosis were accessed

through the OpenGWAS database (22). The diagnostic criterion of

endometriosis based on the International Classification of Diseases

10th code and GWAS ID is finn-b-N14_ENDOMETRIOSIS, with

77, 257 female participants recruited, including 8,288 cases and 68,

969 controls.
2.2 Selection of IVs

In this study, several steps were conducted to select eligible

SNPs as IVs from the exposure data. First, SNPs strongly associated

with the gut microbiome were selected. In order to obtain more

comprehensive results, two different thresholds were adopted to
Frontiers in Endocrinology 03
select IVs: (1) SNPs at the locus-wide significance threshold (P <

1.0×10–5) were selected as potential IVs; (2) SNPs at the genome-

wide significance level (P< 5 × 10-8) were selected as potential IVs.

Second, to ensure that IVs used for the gut microbiome were

independent, we excluded SNPs that had the linkage

disequilibrium (LD) effect (r2 < 0.001, clumping window =

10,000kb). Third, SNPs related to confounders and risk factors

for outcome were removed from the analysis by using the online

database “PhenoScanner” (http://www.phenoscanner.medschl.cam.

ac.uk/) with the filtration of r 2 > 0.8 and p < 1 × 10−5. The IVs of the

gut microbiome identified above were extracted from each outcome

dataset. Proxy SNPs were not sought by default when specific SNPs

were absent in the outcome GWAS. Palindromic SNPs were also

excluded. Afterwards, the exposure data and the outcome data were

harmonized, which means that the effect of the SNP on the exposure

was reconciled with the effect on the outcome in terms of the same

allele. The strength of the included IVs was assessed with the F-

statistics and R2. R2 reflects the degree to which the IV explains the

exposure and is calculated as formula R2 = 2 × EAF × (1 −

EAF) ×b2/[2 × EAF × (1 − EAF) × b2 + 2 × EAF × (1 −

EAF)×N × se2] (EAF: effect allele frequency, se: the standard

error for effect size, b: the effect size, N: the sample size) (23).The

F-statistic was calculated by the formula F = R2 × (N − 2)/(1 − R2)

(N:the sample size), where weak instrument bias is relatively low

with an F-statistic over 10 (24).
2.3 MR analysis

An MR analysis was performed to determine if there is a causal

relationship between the gut microbiome and the risk of REDs by

using inverse-variance weighted (IVW) as the main method and

other methods too, including MR-Egger, weighted median, and

weighted mode. IVW was conducted to estimate the causality of

each SNP with the assumption of no pleiotropy in these SNPs (25).

Comparing with IVW, the MR-Egger not only allows the presence

of pleiotropy in > 50% of IVs, but also detects horizontal pleiotropy

in term of its intercept with a y-axis (26, 27). There is horizontal

pleiotropy when the intercept is not zero. Point estimates from IVW

MR are close to that of the MR-Egger when the intercept is close to

zero. The weighted median was performed when the presence of

pleiotropy was < 50% in IVs (28). The weighted mode method had

less power to detect causal effects than the IVW and weighted

median methods, but it was larger than that of MR-Egger and

presented less bias than the above methods (29).
TABLE 1 Summary of genome-wide association studies (GWAS) datasets in our study.

Phenotype Type of trait Source Ethnicity Sample Size No.of cases No. of SNPs References

Gut Microbiome Genus MiBioGen Multi-ancestry 18,473 – 122,110 (19)

PCOS Binary Day et al. European 113,238 10,074 9,295,102 (20)

Female Infertility Binary FinnGen European 104,225 9,831 16,381,204 (21)

Endometriosis Binary OpenGWAS European 77,257 8,288 16,377,306 (22)
"-" The group of cases were not set in the GWAS study of gut microbiome.
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2.4 Sensitivity analysis

Cochran’s Q test was used to access heterogeneity (30). The

MR-Egger regression test was performed to detect pleiotropy. There

was horizontal pleiotropy when the intercept was not zero (26).

MR-PRESSO was performed to reduce horizontal pleiotropy by

detecting and removing final outliers (31). The leave-one-out

sensitivity analysis was implemented to validate the robustness of

the results by removing a single SNP each time.

A reverse MR analysis was not performed due to the lack of

SNPs (related to REDs). All statistical analyses were performed

using the package “TwoSampleMR” and “MR-PRESSO” in the R

software (Version 4.2.0). Considering multiple-testing correction,

FDR correction (Q-value) was performed using the Benjamini–

Hochberg method.
3 Results

3.1 Instrumental variables selection

Initially, a total of 7098 SNPs categorized by 119 genera were

extracted under the threshold of the locus-wide statistical

significance (P< 1× 10-5). There was no genus containing only

one SNP for each outcome dataset. In the present study, the F-

statistic of IVs were all over 10, indicating no evidence of weak

instrument bias. Detailed information including effect allele, other

allele, Beta, SE, P-value, and F-statistics in IVs is shown in

Supplementary Tables 1A–C. We evaluated the causal effect of

each genus on the outcome data.

A total of 396 SNPs were extracted under the threshold of

genome-wide statistical significance (P<5×10-8). After a series of

quality control steps, a total of 12 independent SNPs were identified

as IVs for PCOS, 11 independent SNPs for female infertility, and 11

independent SNPs for endometriosis. There was no weak

instrument bias, as the F-statistics of IVs were all greater than 10.

Detailed information including effect allele, other allele, Beta, SE,

and P-value on IVs is shown in Supplementary Table 4A. Due to the

limited number of IVs that met the requirements and each IV

representing different genera, we took them as a whole to identify

the gut microbiome to estimate its causal effect on outcome data.
3.2 Two-sample MR analysis(locus-wide
significance level, P<1×10-5)

We conducted an MR analysis to evaluate the causal

relationship between each genus and PCOS, female infertility, and

endometriosis. The comprehensive results are shown in

Supplementary Tables 2A–C. Streptococcus, Sellimonas,

RuminococcaceaeUCG011, and RuminococcaceaeUCG005 were

found to be associated with PCOS when evaluated by IVW. The

IVW estimate suggested that the genera Streptococcus (OR:1.52,

95% confidence interval (CI):1.13-2.06, P=0.006) and

RuminococcaceaeUCG005(OR:1.39, 95%CI:1.04-1.86, P=0.028)
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are positively associated with PCOS risk, while Sellimonas

(OR:0.69,95%CI: 0.58-0.83, P=0.0001) and Ruminococcaceae

UCG011(OR:0.76, 95%CI: 0.60-0.95, P=0.017) are negatively

associated with PCOS risk (Table 2). However, only Sellimonas

was still significant after FDR correction (Q-value= 0.015)

(Supplementary Table 3). Ruminococcus torques and

Coprococcus2 were found to be associated with female infertility

when evaluated by IVW. The IVW estimate suggests that the genus

Coprococcus2 (OR:1.20, 95%CI:1.01-1.43, P=0.039) is associated

with an increased risk of female infertility, while Ruminococcus

torques (OR:0.69, 95%CI:0.54-0.88, P=0.002) is associated with a

decreased risk of female infertility (Table 2). However, no causal

association of these genera with female infertility was supported

after FDR correction (Supplementary Table 3). Olsenella,

Anaerotruncus, and Oscillospira were found to be associated with

endometriosis when evaluated by IVW. The IVW estimate

suggested that the genera Olsenella (OR:1.11, 95%CI: 1.01-1.22,

P=0.036), Anaerotruncus (OR:1.25, 95%CI: 1.03-1.53, P=0.025),

and Oscillospira (OR:1.21,95%CI: 1.01-1.46, P=0.035) are

associated with an increased risk of endometriosis (Table 2),

while these associations were no longer significant after FDR

correction (Supplementary Table 3).

The results of Cochran’s Q test evaluated by the IVW test and

MR-Egger showed no significant heterogeneity between the gut

microbiome and PCOS, female infertility, and endometriosis. There

was no evidence of horizontal pleiotropy according to the results of

the MR-Egger regression analysis. In addition, MR-PRESSO

analysis did not find any significant outliers (Table 2). The leave-

one-out results further validated data robustness (Figure 1).
3.3 Two-sample MR analysis(genome-wide
significance level, P<5×10-8)

Considering the gutmicrobiome as awhole, the results of theMR

analysis evaluated by IVW(OR=1.06, 95%CI 0.87-1.30,P=0.58) did

not show a significant causal relationship between the gut

microbiome and PCOS. The other methods showed directionally

consistent results (SupplementaryTable 4B).We also could notfind a

causal link between the gut microbiome and female infertility (IVW:

OR = 0.98, 95% CI 0.86-1.13, P =0.82) and endometriosis (IVW: OR

= 0.96, 95% CI 0.86-1.09, P =0.56). Cochran’s Q statistics of the IVW

test and theMR-Egger regression, respectively, showedno significant

heterogeneity between gut the microbiome and PCOS and

endometriosis. However, there was heterogeneity between the gut

microbiome and female infertility; in this case, we applied the result

of the weighted median as main MR result to evaluate the

causal association between the gut microbiome and female

infertility (OR =1.06, 95% CI 0.93-1.22, P=0.36). The MR-Egger

regression results showed that there was no horizontal pleiotropy

between the gut microbiome and PCOS, female infertility, and

endometriosis. The MR-PRESSO analysis showed that there were

no outliers in the analysis (Supplementary Table 4B). Moreover, the

leave-one-out results further validated the data robustness

(Supplementary Figure 1).
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TABLE 2 Causal links between gut microbiota and REDs in the MR analysis. (P<1×10-5).

Bacterial genera
(exposure)

Outcomes nSNPs Methods OR
(95%
CI)

Beta Se P
value

Horizontal pleiotropy Heterogeneity MR-
PRESSO

Egger
intercept

SE P
value

Cochran’s
Q

P
value

P
value

Streptococcus PCOS 15 MR Egger 2.36
(0.80-
6.96)

0.86 0.55 0.145 -0.03 0.04 0.43 6.61 0.92 0.97

IVW 1.52
(1.13-
2.06)

0.42 0.15 0.006 7.28 0.92

Weighted
median

1.62
(1.07-
2.46)

0.48 0.21 0.023

Weighted
mode

1.70
(0.89-
3.25)

0.53 0.34 0.128

Sellimonas PCOS 9 MR Egger 1.14
(0.38-
3.43)

0.13 0.56 0.826 -0.07 0.08 0.41 3.93 0.79 0.50

IVW 0.69
(0.58-
0.83)

-0.36 0.09 0.0001 4.72 0.79

Weighted
median

0.69
(0.54-
0.88)

-0.37 0.13 0.003

Weighted
mode

0.70
(0.47-
1.05)

-0.35 0.21 0.123

RuminococcaceaeUCG011 PCOS 8 MR Egger 0.32
(0.11-
0.91)

-1.13 0.53 0.077 0.11 0.07 0.15 6.51 0.37 0.275

IVW 0.76
(0.60-
0.95)

-0.28 0.12 0.017 9.40 0.23

Weighted
median

0.75
(0.57-
0.95)

-0.28 0.14 0.049

Weighted
mode

0.61
(0.37-
1.02)

0.19 0.42 0.117

RuminococcaceaeUCG005 PCOS 14 MR Egger 1.20
(0.53-
2.72)

0.19 0.42 0.664 0.01 0.03 0.72 11.91 0.45 0.35

IVW 1.39
(1.04-
1.86)

0.33 0.15 0.028 12.04 0.52

Weighted
median

1.33
(0.89-
1.89)

0.28 0.20 0.164

Weighted
mode

1.23
(0.65-
2.31)

0.20 0.32 0.541

Ruminococcustorques Female
infertily

7 MR Egger 1.15
(0.56-
2.35)

0.14 0.36 0.716 -0.04 0.02 0.19 1.99 0.85 0.21

IVW 0.69
(0.54-
0.88)

-0.38 0.12 0.002 4.27 0.64

(Continued)
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TABLE 2 Continued

Bacterial genera
(exposure)

Outcomes nSNPs Methods OR
(95%
CI)

Beta Se P
value

Horizontal pleiotropy Heterogeneity MR-
PRESSO

Egger
intercept

SE P
value

Cochran’s
Q

P
value

P
value

Weighted
median

0.80
(0.59-
1.10)

-0.22 0.16 0.168

Weighted
mode

0.86
(0.54-
1.36)

-0.15 0.24 0.542

Coprococcus2 Female
infertily

8 MR Egger 1.09
(0.28-
4.27)

0.09 0.70 0.903 0.01 0.05 0.90 5.01 0.54 0.07

IVW 1.20
(1.01-
1.43)

0.18 0.09 0.039 5.03 0.66

Weighted
median

1.15
(0.91-
1.45)

0.14 0.12 0.222

Weighted
mode

1.15
(0.79-
1.68)

0.14 0.19 0.492

Olsenella Endometriosis 8 MR Egger 1.03
(0.75-
1.40)

0.03 0.16 0.863 0.01 0.02 0.63 7.12 0.52 0.61

IVW 1.11
(1.01-
1.22)

0.10 0.05 0.036 7.37 0.60

Weighted
median

1.11
(0.97-
1.27)

0.10 0.07 0.146

Weighted
mode

1.04
(0.85-
1.26)

0.04 0.10 0.715

Anaerotruncus Endometriosis 13 MR Egger 0.85
(0.49-
1.47)

-0.17 0.28 0.566 0.03 0.02 0.17 11.47 0.41 0.329

IVW 1.25
(1.03-
1.53)

0.23 0.10 0.025 13.76 0.32

Weighted
median

1.24
(0.97-
1.60)

0.22 0.13 0.091

Weighted
mode

1.20
(0.86-
1.67)

0.18 0.17 0.299

Oscillospira Endometriosis MR Egger 0.96
(0.45-
2.06)

-0.04 0.39 0.918 0.02 0.04 0.55 2.88 0.82 0.742

IVW 1.21
(1.01-
1.46)

0.19 0.09 0.035 3.27 0.86

Weighted
median

1.17
(0.93-
1.47)

0.15 0.12 0.188

Weighted
mode

1.12
(0.78-
1.60)

0.11 0.18 0.553
F
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nSNPs, the number of SNPs being used as IVs; OR, odds ratio; I VW, inverse-variance weighted; PCOS, polycystic ovary syndrome; REDs, reproductive endocrine diseases;
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4 Discussion

In the current study, we conducted MR analyses to evaluate the

potential causality between the gut microbiota and REDs. Based on

the locus-wide significance level, we identified that the genera

Streptococcus and RuminococcaceaeUCG005 were associated

w i th a h i gh r i s k o f PCOS , wh i l e S e l l imona s and

RuminococcaceaeUCG011were linked to a low PCOS risk. The

genus Coprococcus2 was associated with an increased risk of female

infertility, while Ruminococcus torques was negatively associated

with the risk of female infertility. Genus Olsenella, Anaerotruncus,

and Oscillospira were linked to a high risk of endometriosis.

However, the results showed that gut microbiome did not have a

causal link with REDs risk based on the genome-wide statistical

significance level.

There are many previous studies on the relationship between

the gut microbiome and PCOS, with Ruminococcaceae among

them (32, 33). RuminococcaceaeUCG005 is a member of the

Ruminococcaceae family and is viewed as a harmful bacterium in

high-fat diet (HFD)-fed rats, and it correlates with oxidative stress,

metabolism genes, and body weight (34). Prior evidence indicated

that increased oxidative stress and elevated inflammatory status

contribute to the progression of PCOS (35, 36), and weight loss is an

important part of PCOS treatment (37, 38), which might partly

explain why RuminococcaceaeUCG005 is associated with a high

risk of PCOS. Female people presenting PCOS characterized by a

combination of signs and symptoms of androgen excess have a high

prevalence of obesity, insulin resistance, and dyslipidemia.
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Streptococcus, considered “bad bacteria”, was previously shown to

be associated with obesity and significantly higher in obese and

PCOS adults (39–42). Streptococcus was positively correlated with

insulin resistance, testosterone, and BMI (33, 43–45). It was also

found to be involved with carbohydrate metabolism and positively

associated with insulin, connecting peptide, lipopolysaccharide, and

pro-inflammatory indicators (42, 46, 47).However, it was negatively

correlated with short-chain fatty acids (SCFAs) (42). SCFAs, the

microbial fermentation end-products, may help suppress the levels

of pro-inflammation cytokines, reduce inflammation in the

intestine, and maintain the homeostasis of the intestinal

environment (48).SCFAs are associated with insulin releasing and

blood glucose levels by supporting the health of beta cells in the

pancreas, and they stimulate the secretion of glucagon-like peptide-

1 (GLP-1) (49, 50). Additionally, SCFA acetate may help people

control weight and support healthy weight maintenance in terms of

regulating hormones (such as GLP-1), increasing metabolism, and

inhibiting appetite (51). Research showed that acetate could protect

ovarian function by supporting normal follicles growth and

enhancing circulating 17-b estradiol through the inhibition of

histone deacetylase in the rat model of PCOS (52). Additionally,

it has been found that probiotics and SCFAs administration, as part

of anti-obesity and diabetes interventions, could involve the

modification of microbiota, the upregulation of GLP-1 production

and related SCFAs, such as acetate, and increasing fasting fat

oxidation and resting energy expenditure (53–55). Zhang et al.

found that probiotics impact the gut microbiota and sex hormones

of PCOS patients by significantly decreasing the levels of luteinizing
FIGURE 1

The leave-one-out sensitivity analysis assessed the associations between genera and REDs by removing a single SNP each time (P<1×10-5).
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hormone (LH) and LH/follicle-stimulating hormone (LH/FSH) and

markedly increasing SCFAs (56). The above evidence implies

probiotics or SCFAs administration can be beneficial as part of

the treatment of female disorders. Sellimonas was considered a

potential biomarker of gut homeostasis recovery, as studies found

that Sellimonas intestinalis was increased in patients with colorectal

cancer who recovered their intestinal homeostasis following

dysbiosis caused by radical surgery combined with chemotherapy

(57)and in patients with liver cirrhosis who underwent therapeutic

splenectomy (58). Studies on the association between Sellimonas

and PCOS are limited. We speculated Sellimonas may contribute to

the recovery of intestinal homeostasis in patients with PCOS.

RuminococcaceaeUCG011 was negatively correlated with the

serum and hepatic lipid profiles and was significantly increased

after hypoglycemic and hypolipidemic intervention in type 2

diabetic mice (59). As Ruminococcaceae UCG011 was shown to

be inversely correlated with the serum levels of triglyceride (TG),

cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and

the hepatic levels of TC, TG, non-esterified fatty acids (NEFA), and

bile acids (BAs) (59), it may show a protective effect in PCOS, as in

other metabolic diseases, which is consistent with our findings.

A great deal of evidence supports the role of the gutmicrobiome in

female infertility. Coprococcus2, associated with an increased risk of

female infertility in our study, was previously found to be the

characteristic genus of obese patients with PCOS (60, 61).

Coprococcus2 was also found to be indirectly associated with

chronic low-grade systemic inflammation induced by diets and

ectopic fat in the Multiethnic Cohort-Adiposity Phenotype Study

(62). Increasing evidence suggests that infertility is related to chronic

low-grade inflammation characterized by increased inflammatory

markers, such as C-reactive protein (CRP), IL-18, TNF-a, and IL-6

(63, 64). Diets with a marked anti-inflammatory signature have been

proposed in the nutritional management of infertile patients (65). For

the first time, our finding has implied the relationship between

Coprococcus2 and female infertility. This may provide new insights

into improving fertility through diets that could decrease the

abundance of Coprococcus2. Ruminococcus torques, negatively

associated with the risk of female infertility in our study, was found

to be negatively correlated with pre-pregnancy body weight in a

previous study (66). Several studies have shown both underweight

(BMI < 19 kg/m2) and overweight (BMI 25–29.9 kg/m2) affect

infertility (67, 68). A cohort study with 9232 participants from

Denmark found that overweight and obese mothers with a body

mass index (BMI) >25 kg/m2 may harm the fertility of fetuses, and

especially, sons born to overweight mothers have higher odds of

infertility. However, the study did not find an association between

maternal overweight and infertility in daughters (69). Tang et al. found

that being underweight with BMI < 18.5 kg/m2 is linked to reduced

implantation rates, clinical pregnancy rates, and ongoing pregnancy.

Rates ofmiscarriage weremarkedly increased in the overweight group

relative to the normal weight group (70). We speculated that

Ruminococcus torques may affect fertility through its impact on pre-

pregnancy body weight. Wen at el. found that Ruminococcus torques

was generated after a high-cellulose diet in a mouse model of asthma.

They speculated Ruminococcus torques is closely correlated with lipid

metabolism in vivo (71).Wang et al. discovered that the abundance of
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Ruminococcus torqueswas relativelyhigher aftermitigation treatment

of colonic inflammation in colitis. Previous studies have revealed the

protective role of Ruminococcus torques in other diseases, but further

studies need to reveal their protective role in female infertility.

In previous studies, many researchers have revealed the

relationship between the gut microbiome and endometriosis. As

we know, endometriosis development is influenced by estrogen

metabolism and inflammation. The abundance of Olsenella has

been found to be associated with the exacerbation of inflammation.

The low-abundance and pathogenic bacterium Olsenella

proliferates when inflammatory hyperthermia causes host gut

microbiota disorders, which further exacerbates the inflammatory

response (72), whereas the downregulation of Olsenella can reduce

the possibility of inflammation in the rumen epithelium and the

organism (73). The abundance of Olsenella is positively correlated

with the IL-10 levels (74). IL-10 family proteins, as the main

members of Th2 anti-inflammatory cytokines, have been

considered a critical factor for the development of endometriosis.

Accumulating evidence has demonstrated that IL-10 is sharply

increased in the ectopic endometrium and peritoneal fluid of

female people with endometriosis, particularly in cases of

advanced endometriosis (75–78). Previous research demonstrated

that IL-10 from infiltrated plasmacytoid dendritic cells may

suppress immunity against endometrial implants to contribute to

the development of endometriosis (78) and promote angiogenesis

in the early stage of endometriosis (79). Therefore, Olsenella may be

involved in the development of endometriosis by modulating the

level of IL-10. Moreover, N-acetylserotonin (NAS), an endogenous

metabolite, was significantly negatively correlated with Olsenella

(72). It has been proposed that the NAS/melatonin ratio is linked to

endometriosis pathophysiology. Endometriosis, as an estrogen-

dependent condition, is usually mitigated by lowering the

estrogen effects. Melatonin inhibits the ERa (80), which

modulates the stage transition in endometriosis (81), suggesting

that melatonin inhibits ERa-driven pathophysiology in

endometriosis. Endometriosis risk is also correlated with CYP1B1

SNPs (82), which increases the backward conversion of melatonin

to NAS (83). Further analysis is needed to evaluate the relationships

between the NAS/melatonin ratio, Olsenella, and endometriosis.

The second genus we found to have a positive association with

endometriosis is Oscillospira. Oscillospira was found to associated

with adiposity and metabolic dysfunction and gut inflammation and

serum triglycerides in mice and humans, respectively (84).Chen et al.

discovered thatOscillospira is closely related to humanhealth, because

its abundance is positively correlated with high-density lipoprotein,

microbial diversity, and sleep time and is inversely correlated with

bloodpressure, fastingbloodglucose, uric acid, triglyceride, andBristol

stool type (85). Jae-Kwon Jo found that Oscillospira was significantly

higher in theHFDmice than that those in the control group, producing

SCFAs such as acetate, propionate, and butyrate (86). SCFAs butyrate

supplement was found to alleviate the symptoms caused by low

estrogen, such as excessive osteoclastogenesis and bone loss in

estrogen-deficient mice due to ovariectomy (OVX) (87, 88).The

association between Oscillospira and host health, SCFAs production,

and the estrogen level needs further comprehensive exploration. We

speculate that Oscillospira may be involved in endometriosis etiology
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when gut dysbiosis and estrogen imbalance occur. Anaerotruncus was

the last genuswe found to positively relate to endometriosis, and it was

found to associated with inflammation and obesity in previous studies

(89). Li et al. confirmed that the relative abundance of Anaerotruncus

decreased when anti-inflammation treatment reduced psoriasis-like

inflammation in mice (90). Kong et al. found that Anaerotruncus, as a

conditional pathogenic bacterium, increased in a mouse model fed by

HFD and high-sucrose diets (HCDs) (91). Anaerotruncus has been

positively associatedwith glucose intolerance andgut permeability and

is involved in the pathogenesis of diabetes (92). However, the studies

about the mechanism of Anaerotruncus in endometriosis etiology

still lack.

Our study has several advantages. To our knowledge, this is the first

MR analysis to evaluate the causal relationship between the gut

microbiome and REDs. The MR design has the advantage of

preventing disturbance from residual confounding and might be more

convincing than observational studies. However, as the exact biological

functionofmanygenetic variants is still unknown,wecannot completely

avoid the impact of horizontal pleiotropy. Thus, the results should be

interpretedwith caution.Moreover,we analyzed the causal effect of each

taxon on REDs primarily from the genus level. This provides new

insights for understanding the gut microbiome-derived mechanisms

and microbiome-orientated therapeutic strategies. Several limitations

should be mentioned. First, our study was unable to count the

participants overlapping between the exposure and outcome GWAS,

whichmay lead to an overestimation of the results.Wewere also unable

to identify a reverse causal relationship between them due to the lack of

an adequate number of IVs for REDs. Second, our study used gut

microbiome data, including multiethnic male and female participants,

whereas studies about REDs were conducted on female Europeans,

whichmayhave also influenced our results.However, wewere unable to

avoid this bias by conducting the sexor race subgroup analysis due to the

lack of demographic data in the original research. Third, the sample size

of each genus from the gut microbiome GWAS was relatively small

compared with that for the REDs. Therefore, not enough IVs were

identified for certainbacterial features at thegenus level. Fourth,multiple

statistical corrections are too rigorous and conservative, which may

neglect potential genera that have a causal relationship with REDs.

Therefore, we did not take the multiple testing results into account.

Future studies need to plan to address these limitations.

In conclusion, we comprehensively evaluated the potential

association between the gut microbiome and REDs. These strains

may provide candidate biomarkers and new insights into the

treatment for subsequent studies.
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