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Introduction: Glutamatergic neurometabolites play important roles in the basal 
ganglia, a hub of the brain networks involved in musical rhythm processing. We 
aimed to investigate the relationship between rhythm processing abilities and 
glutamatergic neurometabolites in the caudate.

Methods: We aquired Glutamatergic function in healthy individuals employing 
proton magnetic resonance spectroscopy. We targeted the right caudate and the 
dorsal anterior cingulate cortex (dACC) as a control region. Rhythm processing 
ability was assessed by the Harvard Beat Assessment Test (H-BAT).

Results: We found negative correlations between the production part of the Beat 
Saliency Test in the H-BAT and glutamate and glutamine levels in the caudate 
(r  =  −0.693, p  =  0.002) whereas there was no such association in the dACC.

Conclusion: These results suggest that higher glutamatergic neurometabolite 
levels in the caudate may contribute to rhythm processing, especially the ability 
to produce meter in music precisely.
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1. Introduction

Music contains rhythm, which configures patterns of time intervals. Previous studies noted 
that dopamine plays an important role in auditory rhythm processing (Grahn, 2009; Koshimori 
et  al., 2019). According to a neuropharmacological study, the glutamatergic system may 
be involved in time perception by interacting with the dopaminergic system (Cheng et al., 2007). 
For example, an animal study reported that inhibiting glutamatergic function enhanced 
dopaminergic function, resulting in altered time perception (Cheng et al., 2007). These findings 
suggest that glutamatergic function may be related to music rhythm processing.

However, few animal studies reported the relationship between music and glutamatergic 
function. One study showed that exposing musical stimuli induced the expression of the 
glutamatergic AMPA receptor in mice (Xu et al., 2007). In addition, listening to music during 
childhood induced the expression of the glutamatergic NMDA receptor subunit NR2B protein 
in the auditory cortex, which enhanced the development of auditory functions (Xu et al., 
2009). Another study reported that glutamatergic neurometabolite concentrations in the 
striatum were decreased with sad music called “Shange,” which is one of the Chinese traditional 
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music therapy, and joyful and powerful music called “Zhi” and 
“Gong” increased its concentrations (Hao et al., 2020). However, 
these previous studies have the following limitations: (1) they were 
performed for only rodent models, and (2) they used musical stimuli 
which include changes not only in rhythm but also in melody, 
harmony, and timbre to assess the relationship between music and 
glutamatergic function. Therefore, the relationship between musical 
rhythm processing and glutamatergic neuro-systems remains unclear.

The striatum has been shown to be closely linked to the perception 
and production of musical rhythms (Grahn, 2009; Grahn and Rowe, 
2013). Previous reports have demonstrated that the striato-thalamo-
cortical network is particularly activated when processing beat-based 
rhythms in music (Grahn, 2009; Grahn and Brett, 2009; Teki et al., 
2011a,b). Grahn and Rowe et al. have established that activity in the basal 
ganglia increases during the processing of musical rhythms (Grahn and 
Brett, 2009), and patients with Parkinson’s disease who have dopamine 
dysfunction exhibit impairments in their rhythm perception (Grahn and 
Rowe, 2009). Additionally, the striatum has been identified as a central 
region where the dopamine and excitatory-inhibitory systems (glutamate 
– gamma-aminobutyric acid functions) interact (Agnoli et al., 2013).

Based on these findings, we hypothesized that glutamate levels in 
the striatum may be  related to musical rhythm perception and 
production. Hence, the present study sought to investigate whether 
glutamatergic neurometabolite levels in the striatum relate to the 
rhythm processing ability in humans.

In this study, we quantified the concentrations of glutamatergic 
neurometabolites in the caudate as a region of interest employing 
proton magnetic resonance spectroscopy (1H-MRS). As a control 
region, the dorsal anterior cingulate cortex (dACC) was selected from 
our previous study in an exploratory fashion (Tarumi et al., 2020). 
Tarumi et al. (2020) compared Glx levels in the caudate and dACC 
among patients with treatment-resistant schizophrenia, patients with 
treatment-responsive schizophrenia, and healthy controls. For the 
present study, we analyzed the data acquired from the same healthy 
subjects as in Tarumi et  al. (2020). Given that the ACC plays an 
important role in global executive function, we hypothesized that 
we could not discern music-specific functions from this region. Thus, 
we set the dACC as a positive control ROI.

2. Methods

2.1. Participants

The study was approved by the ethics committees at Komagino 
Hospital, Keio University School of Medicine, and Keio University 
Shonan Fujisawa Campus. All methods were carried out in 
accordance with the relevant guidelines and regulations expressed in 
the Declaration of Helsinki. All participants provided written 
informed consent prior to enrollment. Thirty-three healthy 
individuals participated in this study via a private committee for 
recruitment (Table 1). All participants were screened by qualified 
psychiatrists (R.T., Y. N, and S.N.) based on the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). The 
exclusion criteria of participants were a history of psychiatric 
disorders, neurological, or significant medical disorders. All 
experiments were performed at Komagino Hospital. All MRI images 
were shared with Tarumi et al. (2020).

2.2. Magnetic resonance imaging

All images were acquired by a 3T GE Signa HDxt scanner with an 
eight-channel head coil. We assessed a three-dimensional inversion 
recovery prepared T1-weighted magnetic resonance imaging (MRI) 
scan (Axial MRI 3D brain volume (BRAVO), echo time (TE) = 2.8, 
repetition time (TR) = 6.4, inversion time (TI) = 650 ms, flip angle = 8°, 
field of view (FOV) = 230 mm, 256 × 256 matrix, slice 
thickness = 0.9 mm). MR scanning as described in Tarumi et al. (2020).

2.3. Acquisition of glutamatergic levels and 
data processing

We acquired glutamatergic neurometabolite levels using 1H-
MRS. The scanning parameters were as follows: PRESS, TE = 35 ms, 
TR = 2000 ms, spectral width = 5000 Hz, 4096 data points, 128 water-
suppressed, 16 water-unsuppressed averages, and 8 numbers of 
excitation. The locations of the 1H-MRS voxels, and representative 
spectra are provided in Figures 1, 2. The voxels were placed on the right 
caudate (voxel size = 7.5 mL) and bilateral dACC (voxel size = 9.0 mL), 
based on the aims of another project (Tarumi et al., 2020). In this study, 
we used Glx levels, a combination of glutamate and glutamine. It is 
because the molecular structures and molecular weights of Glu and 
Gln are similar, and the spectrum peaks overlap, making it difficult to 
discriminate between them using 3T MRI. We  employed the 
FID-Appliance for pre-processing of spectra, primarily for estimation 
and correction of frequency and phase drifts1 (Simpson et al., 2017). 
Subsequently, we estimated neurometabolite levels utilizing a basis set, 
and extracted values that were normalized to the unsuppressed water 
signal from LCModel outputs with institutional units. The authors 
visually inspected all spectra exported from LCModel. Furthermore, 

1 https://github.com/CIC-methods/FID-A

TABLE 1 Demographic information.

Measures (mean  ±  SD)

Number of participants 33

Number of participants for analyses
Caudate 22

dACC 27

Age, years 43.233±11.849

Number of females 13

Duration of music training, years 5.032±7.468

Averages of H-BAT measures

Beat Interval Test (BIT), log2ms
Perception –1.568±1.501

Production –2.784±1.218

Beat Finding and Interval Test (BFIT), log2ms
Perception –1.232±1.377

Production –2.029±1.903

Beat Saliency Test (BST), log2dB
Perception 0.823±1.128

Production 1.615±1.488

The number of participants, Mean and standard deviation (SD) of age, number of females, 
and duration of musical training in years are shown.
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we established criteria for spectra quality and excluded spectra that 
failed to meet the following criteria: signal-to-noise ratios (SNR) ≤10, 
full-width at half maximum (FWHM) ≥10 Hz, or %SD values ≥20%. 
To correct for voxel tissue composition, we segmented the T1-weighted 
image into gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) using FSL (FMRIB Software Library v5.0, Oxford, UK). 
Subsequently, we  generated individual masks that contained 

information about voxel size and location on the segmented 
T1-weighted images using GANNET.2 To acquire the observed 
metabolite concentrations with respect to a relatively and fully relaxed 

2 http://www.gabamrs.com

FIGURE 1

Voxel locations of MRS. (A) The voxel location of the caudate (voxel size: 7.5  mL [2.5  ×  1.5  ×  2.0  cm3]). (B) The voxel location of the dorsal anterior 
cingulate cortex (dACC) (voxel size: 9.0  mL [3.0  ×  2.0  ×  1.5  cm3]).

FIGURE 2

Representative spectra. (A) The caudate 1H-MRS spectra. (B) The dACC 1H-MRS spectra.
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water peak from tissue [M], we took into account the effects of volume 
fractions, water relaxation times (T1, T2), and water concentrations for 
the three compartments (WM, GM, and CSF). We  performed 
calculations that considered LCModel operations as follows:

 

[ [ ) ( )

(

[(M] M]WS fCSF RCSF fGM RGM

fWM RW

= +

+

∗ ∗ ∗ ∗ ∗

∗ ∗
55556 43300

35880 MM FLC fCSF)] / ( ( ))∗ −1

Where [M] WS is water-scaled data from LCModel. And FLC is 
an LCModel factor that is used to undo the assumptions used by 
LCModel [i.e., FLC = WCONC*ATT20; WCONC = 35880 and 
ATT20 = 0.7 = exp(−30/80)].

 RT TR T T TE T T= − −( ) ∗ −( )( )1 1 2exp . / exp . /

where, fT and RT are the volume fraction and water relaxation 
parameters of tissue T (T = GM, WM, and CSF of the voxel), 
respectively. Relaxation times and relative water tissue content values 
are outlined in Supplementary Table 1. And, spectrum qualities and 
tissue heterogeneity values are shown in Supplementary Table 2.

2.4. Assessments for rhythm perception 
and production abilities

Rhythm perception and production abilities were assessed with 
the Harvard Beat Assessment Test (H-BAT) (16). The H-BAT 
consists of three subtests. (1) Beat Interval Test (BIT) in which the 
participants were discriminated if the tempo of a metronome was 
getting faster or slower (BIT perception), then tap in synchrony 
with the tempo-changing metronome without discrimination of 
temporal changes (BIT production). (2) Beat Finding and Interval 
Test (BFIT) in which the participants discriminated if the tempo of 
a rhythm pattern was getting faster or slower (BFIT perception), 
then tap the quarter-note beat with the tempo-changing rhythm 
pattern without discrimination of temporal changes (BFIT 
production). (3) Beat Saliency Test (BST) in which the participants 
discriminated if a sequence of accented quarter-notes was a duple 
or triple meter (BST perception), then produce the meter by 
changing the tap amplitudes without discrimination which meter 
they heard (BST production). In brief, BIT and BFIT assess the 
sensitivity to temporal change in non-isochronous tone sequences 
while BST assesses the sensitivity to amplitude change in 
isochronous tone sequences (Fujii and Schlaug, 2013). Each of the 
perception subtests assess the sensory process while that of 
production subtests assess the sensorimotor process.

The performance of BIT, BFIT, and BST in the H-BAT was 
quantified with perception and production thresholds. The lower the 
thresholds, the more precisely the participant perceives and produces 
the rhythms. The thresholds were normalized by log transformation 
with the base of two based on the previous study (Fujii and Schlaug, 
2013; Paquette et  al., 2017). For more details about the tests and 
analyses on the H-BAT, see the previous studies (Fujii and Schlaug, 
2013; Paquette et al., 2017).

2.5. Statistical analysis

Statistical analyses were carried out using IBM SPSS Statistics 
version 26 (IBM Corporation, Armonk, NY). To account for the effect 
of music training, we calculated the standard division (SD) of the 
duration of music training for all participants. If the duration of music 
training exceeded ±2SD, the participant was excluded as an outlier 
from subsequent analyses. First, we performed partial correlation 
analyses by Pearson’s method to examine the relationship between the 
H-BAT measures and glutamatergic levels in dACC and caudate using 
age and sex as covariates. Second, partial correlation analyses were 
performed to examine the effect of the duration of music training. All 
results of partial correlation analyses are also adjusted by the 
Bonferroni method. The significance level was p < 0.004 (p < 0.05/n 
where n equals the number of ROIs and tests).

3. Results

Demographic information is shown in Table 1. Sixteen individuals 
have musical training imparted by professionals, excluding education 
in mandatory school. The breakdown of instruments is as follows: 
piano, 12; organ, 1; flute, 1; saxophone, 1; erhu, 1. A total of 22 and 27 
participants’ data were used for the analyses of the caudate and dACC, 
respectively. At the time of acquisition, we excluded 2 HCs who did not 
complete scans and 2 HCs with incidental brain anomalies. Further, the 
data of 2 participants were missing because of a technical issue with the 
H-BAT application. Regarding statistical analyses, 4 participants’ data 
on the caudate were excluded due to low SNR values, and 1 participant 
was rejected through the preprocessing for the spectrum. If the 
duration of music training exceeded ±2SD, the participant was excluded 
as an outlier from subsequent analyses (see Supplementary Figure 1).

Partial correlation analyses using age and sex as covariates showed 
significant correlations between H-BAT subscores and Glx levels in 
the caudate or the dACC. Table 2 shows the correlation between the 
H-BAT measures and Glx levels in the caudate and dACC using age, 
sex, and the duration of musical training. There was a significant 
correlation between the BST production threshold and Glx levels in 
the caudate (Figure 3), while no association was found in the other 
H-BAT measures. We conducted the correlation analyses including 
the outlier data as a sensitivity analysis. We  still had a significant 
correlation between BST perception and Glx levels in the caudate. On 
the other hand, in the ACC, no significant relationship was found 
between Glx levels and any of the H-BAT measures.

4. Discussion

This is the first 1H-MRS study to examine the relationship between 
rhythm perception and production abilities measured with the H-BAT 
and glutamatergic levels in the caudate of healthy individuals. 
We found a negative relationship between BST production thresholds 
and Glx levels in the caudate in healthy individuals. On the other 
hand, no association was detected between the other H-BAT measures 
and Glx levels in the caudate, or between any H-BAT measures and 
Glx levels in the dACC (a control region). These results suggest that 
higher Glx levels in the caudate may specifically reflect the ability to 
produce a more precise isochronous meter.

https://doi.org/10.3389/fnins.2023.1196805
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What is the role of glutamatergic function in time processing? 
The dopaminergic function in the striatum has been shown to play 
an important role in time processing while the glutamatergic 
function in time processing remains unclear. Cheng et al. (2007) 
performed a pharmacological study in rats using cocaine, a 
dopamine transporter blocker, and ketamine, a glutamate receptor 
antagonist. They showed that cocaine disrupted time perception and 
ketamine augmented the time disruption modulated by cocaine. This 
animal study suggests that the dopamine and glutamate pathways 
may interact with each other to process time (Cheng et al., 2007). In 
humans, it was noted that time perception was distorted in patients 
with schizophrenia where the dopamine and glutamate systems are 
impaired (Carroll et al., 2008). The dopamine dysfunction in the 
dorsal striatum, one of the pathological hypotheses for schizophrenia, 
may be  caused by glutamatergic dysfunction in patients with 
schizophrenia (Flagstad et al., 2004; Wada et al., 2022). This study 
adds evidence to support the relationship between striatal glutamate 
levels and rhythm processing mechanisms in humans in vivo.

Why was the correlation found only in BST production but not in 
the other H-BAT measures? This correlation may be attributed to the 
specific characteristics of BST stimuli. Unlike BIT and BFIT, which use 
non-isochronous time intervals in their stimuli, BST uses isochronous 
time intervals. Specifically, the sound stimulus in BST consisted of a tone 
sequence of 500-msec isochronous time intervals with accented and 
unaccented tones (Fujii and Schlaug, 2013). To perform BST, participants 
had to encode the relative-intensity difference between the accented and 
unaccented tones precisely overtime to process the duple or triple meter 
precisely. Namely, it is crucial to encode the meter or an organization of 
sound intensity over time in isochronous intervals in BST. On the other 
hand, BIT and BFIT use non-isochronous time intervals without any 
accents. Both BIT and BFIT include gradual changes in time intervals 
to create a faster or slower tempo (Fujii and Schlaug, 2013). In BIT and 
BFIT, each interval in the stimuli is different, and therefore, encoding of 
the absolute duration of time intervals is considered to be important. A 
previous study noted that there was a difference in neural circuits in the 
brain when we process absolute and relative time intervals (Grube et al., 
2010a,b; Teki et al., 2011a,b). The absolute, duration-based time intervals 
are considered to be processed in the olivocerebellar network, while the 
relative, beat-based time intervals are considered to be processed in the 
striato-thalamo-cortical network (Teki et al., 2011a,b). Considering the 
results of this study and these separated mechanisms of rhythm 
processing in the brain, we  assume that BIT and BFIT may assess 
relatively olivocerebellar-based rhythm ability, while BST may assess 
striato-thalamo-cortical-based rhythm ability. In fact, our previous 
study showed that the gray-matter volume in the cerebellum was 
correlated with the BIT and BFIT scores but not with the BST score in 
the H-BAT in healthy individuals (Paquette et al., 2017). Therefore, these 
findings suggest that glutamatergic neurometabolite levels in the 
striatum may contribute to the processing of meter or temporal 
organization in isochronous time intervals.

Why does this effect appear in the production test but not in the 
perception test? This discrepancy may be attributed to the role of the 
striatum in motor output and auditory-motor interaction. Mounting 
evidence suggests that the cortico-striatal network has an important 
role in encoding and retrieving motor information; and also see a 
review by Miyachi et al. (1997), Matsumoto (1999), and Kotz et al. 
(2009). To perform BST production, participants are required to 
encode the pattern of accented and unaccented tones precisely as well 
as produce the meter as motor output by modulating their tapping 
amplitudes. Conversely, the perception test does not require the same 
level of motor output, such as the physical articulation of rhythm 
sequences. Hence, our results suggest that Glx levels in the caudate 
contribute to the encoding of auditory meter information, the 
auditory-motor transformation of the meter, and the significant role of 
motor output. On the other hand, in light of the statistical power of this 
study, we may not rule out the potential of other rhythm components 
which relate to glutamatergic function in the caudate. We need to 
consider differences in the relationship between various types of 
rhythm components and glutamatergic function in future studies.

We did not find any significant relationship between the H-BAT 
measures and glutamatergic neurometabolite levels in the 
dACC. Previous studies reported that both regions play important roles 
in cognitive monitoring, motor control, and association of perception-
production (Bush et al., 2002; Maes et al., 2014; Brockett et al., 2020) and 
there are structural and functional connectivities between the dACC 
and striatum (Beckmann et al., 2009). However, our findings suggest 

TABLE 2 Results of correlation between H-BAT scores and Glx levels in 
the caudate and the dACC.

Caudate dACC

Beat 

Interval 

Test

Perception
Coefficient −0.285 −0.003

p value 0.268 0.989

Production
Coefficient −0.533 0.238

p value 0.028 0.299

Beat 

Finding 

and 

Interval 

Test

Perception
Coefficient −0.556 0.121

p value 0.020 0.602

Production
Coefficient 0.231 0.465

p value 0.373 0.034

Beat 

Saliency 

Test

Perception
Coefficient 0.157 0.055

p value 0.548 0.814

Production
Coefficient −0.693 0.301

p value 0.002* 0.184

* significant correlations (Bonferroni corrected, p < 0.004).

FIGURE 3

A scatter plot of a correlation between Glx levels in the caudate and 
BST production scores.
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that Glx levels in the striatum are more directly related to rhythm or 
meter processing compared to those in the dACC. Further research is 
needed to examine the interaction between glutamatergic functions in 
the dACC and caudate and its relationship to rhythm processing.

There are several limitations to this study. Firstly, our acquisition 
was solely based on a resting-state quantitative 1H MRS, averaged 
over time rather than functional MRS employing beat processing 
tasks Secondly, our research did not measure the voxel in another 
basal ganglia region. Previous reports have suggested distinct roles of 
the putamen and caudate in rhythm processing (Coull et al., 2011; 
Grahn and Rowe, 2013). Consequently, our study was unable to 
determine whether glutamate levels in each striatal subregion are 
different or the same in their relation to rhythm processing. Thirdly, 
we were unable to discern the precise origin of the glutamatergic 
signal, i.e., whether it was inside or outside the cells. The limitation 
of MRS only allowed for identifying an averaged glutamatergic signal 
from all receptors within the placed voxel, given the absence of 
pharmacological tracers.

5. Conclusion

In conclusion, we found that glutamatergic neurometabolite levels 
in the caudate were associated with the ability to produce rhythm or 
meter in healthy individuals. This result suggests that the 
neurometabilite levels measured with 1H-MRS contribute to further 
understanding of musical rhythm processing. We  propose that a 
multimodal measurement approach would be efficacious in furthering 
our understanding of the neurometabolite mechanisms underlying 
musical rhythm processing in humans.
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