
Better research software tools to
elevate the rate of scientific
discovery or why we need to
invest in research software
engineering

Joran Deschamps*, Damian Dalle Nogare and Florian Jug*

Fondazione Human Technopole, Milan, Italy

KEYWORDS

research software engineering, image analysis, image analysis software, community
support, opinion

Introduction

In the past decade, enormous progress has been made in advancing the state-of-the-art
in bioimage analysis—a young computational field that works in close collaboration with the
life sciences on the quantitative analysis of scientific image data. In many cases, tremendous
effort has been spent to package these new advances into useable software tools and, as a
result, users can nowadays routinely apply cutting-edge methods to their analysis problems
using software tools such as ilastik (Berg et al., 2019), cellprofiler (McQuin et al., 2018), Fiji/
ImageJ2 (Schindelin et al., 2012; Rueden et al., 2017) and its many modern plugins that build
on the BigDataViewer ecosystem (Pietzsch et al., 2015), andmany others. Such software tools
have now become part of a critical infrastructure for science (Hettrick, 2014).

Unfortunately, overshadowed by the few exceptions that have had long-lasting impact,
many other potentially useful tools fail to find their way into the hands of users. While there
are many reasons for this, we believe that at least some of the underlying problems, which we
discuss in more detail below, can be mitigated. In this opinion piece, we specifically argue
that embedding teams of research software engineers (RSEs) within imaging and image
analysis core facilities would be a major step towards sustainable bioimage analysis software.

Themaintenance problem and its technical and social
causes

Two major determinants for the widespread adoption of a tool are its usability and its
maintenance over time (Carpenter et al., 2012; Milewicz and Rodeghero, 2019). The first case
is perhaps the more obvious: tools that are difficult to install or use are often neglected by the
community of life scientists who could most benefit from them. The second case is perhaps
more overlooked, although no less important. Modern bioimage analysis methods are
complex, and even the simplest software implementations may depend on dozens of other
pieces of scientific software (typically referred to as dependencies). This intricate web of
interdependent software packages is, regrettably, extremely brittle, and changes in any one
dependency can cause significant changes to be required for existing software tools to
continue working properly. Over time, the probability that unmaintained tools are able to
still function in up-to-date environments becomes quickly smaller and smaller. Even worse,

OPEN ACCESS

EDITED BY

Daniel Sage,
Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland

REVIEWED BY

Beth A. Cimini,
Broad Institute, United States

*CORRESPONDENCE

Joran Deschamps,
joran.deschamps@fht.org

Florian Jug,
florian.jug@fht.org

RECEIVED 08 July 2023
ACCEPTED 25 July 2023
PUBLISHED 04 August 2023

CITATION

Deschamps J, Dalle Nogare D and Jug F
(2023), Better research software tools to
elevate the rate of scientific discovery or
why we need to invest in research
software engineering.
Front. Bioinform. 3:1255159.
doi: 10.3389/fbinf.2023.1255159

COPYRIGHT

© 2023 Deschamps, Dalle Nogare and
Jug. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Opinion
PUBLISHED 04 August 2023
DOI 10.3389/fbinf.2023.1255159

https://www.frontiersin.org/articles/10.3389/fbinf.2023.1255159/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1255159/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1255159/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1255159/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1255159/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2023.1255159&domain=pdf&date_stamp=2023-08-04
mailto:joran.deschamps@fht.org
mailto:joran.deschamps@fht.org
mailto:florian.jug@fht.org
mailto:florian.jug@fht.org
https://doi.org/10.3389/fbinf.2023.1255159
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2023.1255159


the time and technical knowledge required to update bioimage
analysis software tools is enormous (Nowogrodzki, 2019), and
few people have the know-how to do so.

In a perfect world, all software tools that find active users
would be continuously maintained. Unfortunately, there are
many reasons why even published software tools with an
active user-base are not. Compared to publishing new
methods and tools, the maintenance of existing tools typically
does not provide much in terms of career advancement for the
maintainer. At best, an existing publication might get cited more
often, but the advantage of this pales in comparison with a new
paper being published. Additionally, the person working on the
maintenance of a software tool might not even be an author on
the original publication, leaving this important work completely
unrewarded by commonly used scientific performance
indicators. Finally, maintaining software requires continuity of
expertise, which is too easily lost when a main developer switches
between labs or moves on to their next career stage. Incentive
structures are therefore not aligned with the long-term
commitment required to maintain open research software
(Anzt et al., 2020), leading to most tools being maintained
only for a limited period of time (Hasselbring et al., 2020).

Another difficulty in maintaining existing software tools is that
funding for this kind of work is rare. While there exist both public
and private funding mechanisms to support open source projects in
general, a recent EU analysis (Arora, 2022) found that the majority
of this funding was dedicated to new projects, with comparatively
little funding for long-term maintenance of existing ones. There are
only a few notable exceptions we know of, where funding bodies
have dedicated specific calls to software sustainability [e.g., the
Chan-Zuckerberg Initiative (Chan-Zuckerberg Initiative, 2019),
the DFG (DFG, 2016) and BMBF (de.NBI), the Virtual Institute
of Scientific Software (Matthews, 2022), or the Software
Sustainability Institute (Crouch et al., 2013)]. Still, such funding
is currently not available at the level required to build user friendly
and better maintained software tools (Anzt et al., 2020).

Currently, not only are we unable to achieve these important
goals, we struggle even to keep our best research software engineers
employed and offer them a stable career or adequate income. It is
therefore not surprising that many of the software engineering
activities in academia are carried out by personnel in limited-
term positions, such as PhD students, post-docs, or early-career
RSEs on short term staff positions. Since experienced RSEs are
highly qualified experts that are also in high demand outside
academia, we regularly see talented people leave to work in
industry. This makes the previously discussed software
maintenance dilemma even more problematic: once such
developers run out of time or funding, development is halted,
maintenance is abandoned, and the expertise in which the
hosting group and institute has invested is lost.

Could the existing academic technology transfer infrastructure
be a solution for this problem? Instead of talented RSEs leaving to
pursue a career in mainstream technology companies, they could be
offered the chance to continue the development and maintenance of
research software in the context of a newly incubated startup or
spin-off company. There are successful examples, such as Cytomine
(Cytomine, 2023) or KNIME (Berthold et al., 2009), where this has
worked, but also many other instances where it has not. The idea of

useful software receiving funding by selling licenses is obvious and
clean, however it unfortunately often fails due to some combination
of the following reasons: 1) it is hard to find investors for open
software, but closing the code base removes community engagement
and slows development and interoperability, 2) the existing codebase
is released under a license that makes it hard to commercialize it, 3)
many users would rather switch to alternate software tools rather
than pay money for licenses. The last point is critical: scientific
analysis software is highly specialized and the number of users is, in
absolute terms, limited. While some commercial software tools
create value by enabling faster, more reproducible, more
quantitative, and less biased academic research, the scientists and
research groups in the user base may not have the money for
software licenses. In addition, analyses performed in commercial
software require other research groups to obtain similar licenses to
replicate them, creating additional barriers to reproducibility and
the dissemination of open science. We therefore believe that
research software development should be supported by science
funders and institutions.

Despite the undeniable importance of software tools in life
science research, being a research software engineer has not yet
become a common career path. Individuals that do choose to
become RSEs are likely to suffer from job insecurity and will in
many cases earn well below equally skilled colleagues working in
industry.

But not all hope is lost. There are research groups and scientific
institutes that are increasingly investing in their RSEs (a very
incomplete set of examples are LOCI at the University of
Wisconsin, the EMBL in Heidelberg or Hinxton, the MPI-CBG
in Dresden, the Allen Institute in Seattle, or the Human Technopole
in Italy).

Research software engineering in
image analysis facilities

We believe that institutes and funding agencies have the
power to elevate the usability and sustainability of bioimage
analysis software by providing better career opportunities for
RSEs. Such change would have a profound impact on the rate
of scientific progress even beyond the field of bioimage
analysis. More concretely, we postulate that image analysis
facilities (or image analysis teams within imaging facilities) are
an ideal place for RSEs to conduct their work and foster this
potential.

Historically, bioimage analysis has often found fertile ground
within imaging facilities, which have naturally been the first to
see how important and tightly coupled adequate analysis
methods and workflows are to the microscopy work conducted
in those facilities. More recently this has led to increased hiring of
skilled bioimage analysts in such facilities and even to the
creation of dedicated core facilities focused on image analysis
[examples can be found, among other places, at Institut Pasteur
(Institut Pasteur, 2023), Institut Curie (Institut Curie, 2023),
EMBL Heidelberg (EMBL, 2023), Human Technopole (Human
Technopole, 2023), or the TU-Dresden (PoL, 2023)].

Key performance indicators (KPI) of image analysis facilities or
image analysis teams within imaging facilities are typically metrics

Frontiers in Bioinformatics frontiersin.org02

Deschamps et al. 10.3389/fbinf.2023.1255159

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1255159


like 1) the number of interactions with users, 2) the level of
satisfaction those users report, 3) the number of completed
analysis projects, or 4) the tally of co-authorships or other
acknowledgements in resulting publications. The imperative to
demonstrate usefulness using such KPIs can, however, leave little
space for research software engineering activities. As a consequence,
efforts spent on developing new methods and approaches remain
circumscribed to the needs of the facility’s own users and too rarely
impact users more globally. It is up to individual bioimage analysts
to devote the extra time required to package an analysis pipeline into
a useful tool and release it to the public. There exist examples of
methods that were successfully translated into more generally
available and popular software tools, such as Trackmate (Tinevez
et al., 2017; Ershov et al., 2022), MoBIE (Pape et al., 2023), Labkit
(Arzt et al., 2022), CellPose (Pachitariu and Stringer, 2022), and
others, which are broadly used in life-science research. Despite this
success, these tools must now be maintained over time, bringing us
right back to the above discussion: the difficulty in finding the time,
money, and expertise to conduct software maintenance activities for
analysis tools that others rely on.

Giving core facilities a new mission

A tremendous increase in the quality of open research
software can be achieved 1) by making the development of
FAIR (Findability, Accessibility, Interoperability, and
Reusability) (Wilkinson et al., 2016; Barker et al., 2022) and
sustainable software a core mission of image analysis facilities (or
analysis teams within imaging facilities) (Soltwedel and Haase,
2023), 2) by adding stable RSE positions to teams of bioimage
analysts1, and 3) by facilitating networking activities between
such teams across different facilities. We believe this would lead
to more powerful and general-purpose core libraries that would
be developed, maintained, and used by a larger group of research
software engineers. As a consequence, users would have access to
a set of software tools that have a higher degree of stability,
interoperability and require less maintenance thanks to shared
maintenance efforts, rather than duplicated ones. Additionally,
this would mean that more RSEs would be involved in developing
such core libraries, which would in turn increase those libraries
bus-factor2 and thereby mitigate many of the software
maintenance problems arising from single individuals leaving
their jobs. All together, this would result in a more efficient
translation from new methods to useable tools that can benefit
bench scientists and therefore directly elevate the rate of scientific
discovery.

Still, increased hiring of research software engineers alone is not
a guarantee for success. It is also imperative to collaborate across

team and institute boundaries and to broadly establish modern
software development practices. At times, research software is
hastily written and “just good enough” to demonstrate a working
principle, but not of sufficient quality to easily reuse, share, or build
other components stably on top of it. The more general purpose a
library or software component is, the more important it is to invest
in a good design that enables its reuse. This also means to invest in
automated testing and good documentation. Such things take
additional time at first, but pay back the investment many times
over the lifetime of a software project. As coordinated exchange of
best-practices and peer-teaching will become important, we believe
that establishing specialized RSE networks within the existing
bioimage analysis community will be a key component to ensure
that global RSE work is as efficient as it can be.

If our argument to include such a network of RSE teams within
image analysis facilities is more broadly implemented, we believe that a
number of benefits will naturally and directly emerge. In particular, we
expect the following benefits to be a direct consequence:

User-driven requirement assessment: Bioimage analysts are
the interface to bench scientists and microscopists who generate raw
image data that needs to be analyzed. As such, they observe every
day which analyses are well supported by user-friendly tools, and
where gaps exist in the tool landscape. This knowledge, shared with
research software engineers and method developers, is key to
directing their attention to the most important problems that
need addressing.

Direct functionality and usability feedback throughout the
software development life-cycle: Bioimage analysts are often the
first to use new analysis tools and methods and they typically do so
in the context of multiple analysis projects, requiring a broader
spectrum of features. Last but not least, bioimage analysts not only
use software tools but also help others use them on their own. The
feedback of bioimage analysts on existing pain points for users can
therefore be invaluable for research software engineers who seek to
improve their tools. By embedding RSEs within image analysis
facilities, a constant feedback stream will help to steer
development efforts to where they are most needed and therefore
avoid wasting resources.

Long-term maintenance of software tools and components:
Close collaboration between analysts and RSEs ensures that
software tools and the libraries they depend on stay well
maintained and that functionality-impeding bugs will be
resolved quickly. Additionally, the distribution of knowledge
over multiple people will increase the above mentioned bus-
factor, enabling RSE teams to retain expertise even if some
members leave.

Software interoperability and deduplication of effort:
Bioimage analysis and imaging facilities are and need to remain
well networked. RSEs within such teams can use these networks to
synchronize and deduplicate efforts across teams and institutions.
As a consequence, once common libraries are developed and used,
software tools will become interoperable, even if not developed
collaboratively. This will reduce the cost of research software
development, free up much needed RSE time, and most
importantly, benefit users who need interoperable software tools
for their analyses (Carpenter et al., 2012; Levet et al., 2021).

Better software engineering and better career paths for RSEs:
Finally, housing RSE teams within imaging or analysis facilities will

1 While we distinguish bioimage analysts and research software engineers
throughout this manuscript, the distinction in the real world is often much
more blurry and many facility members serve in both roles.

2 The bus factor (Wikipedia, 2023) is a commonly used measurement of the
risk resulting from information and capabilities not being shared among
team members, or such team members not existing in the first place. It is
derived from the hypothetical question “How many team members have
to get hit by a bus before the project cannot persist?”

Frontiers in Bioinformatics frontiersin.org03

Deschamps et al. 10.3389/fbinf.2023.1255159

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1255159


foster the dissemination of modern software engineering skills
(Johanson and Hasselbring, 2018; Arvanitou et al., 2021).
Networked RSEs will naturally exchange best-practices. Not only
will RSEs themselves benefit from this accumulated knowledge,
these skills can also be shared with PhD students and post-docs
who develop computational methods and are therefore working at
the interface with software tool development. Additionally, more
places employing RSEs will automatically create an environment
where RSEs can switch between jobs, without having to leave
academia, and will create new career opportunities for RSE-
inclined students or post-docs (Cosden et al., 2022).

If these statements are so obvious, why are many funders
and institutions not investing in such ideas? We believe that
multiple factors come together. Software development methods
have improved tremendously over the past decades.
Dependency management, code versioning tools, test-driven
development, continuous integration, platforms such as Github,
etc. all contribute to making distributed software development
possible. Hence, our ideas would have been much harder to
realize in the 1990s than they are now. Additionally, the return
on investment is not easily quantifiable, at least not until enough
institutions commit to the interconnected research software
engineering and maintenance model we propose. Still, we now
benefit from the necessary infrastructure required to collect
useful KPIs regarding which software and libraries are
successful and widely used. For example: reporting the
number of new software versions being released each year,
their usage through download statistics, the number of users
interacting with the developers through public platforms such
as image.sc or Github, the number of forks or stars project
repositories receive, or more classical indicators such as
citations/mentions in the literature. Additional KPIs can be
collected based on teaching and consulting events and user
feedback, or by estimating the benefit of using certain software
tools in projects conducted within a facility (e.g., in terms of
enabled projects or estimated overhead time if the analysis was
conducted without those tools).

While this strategy should hopefully find application in
many places, we are currently implementing such a structure
at Human Technopole within NoBIAS, the National Bioimage
Analysis Service, which is part of the new National Facility for
Data Handling and Analysis. We firmly believe that a strong RSE
team is a key ingredient for a truly successful image analysis
facility that aims at serving many users in the context of
heterogeneous life science projects. As part of this
commitment, we have built our facility around a model which
integrates an RSE team as a core part of the facility. This team
has a broad mandate to support the activities of the facility,
including code review and optimization for our analysis
pipelines, casting new methods into user-friendly tools that

can then be used first by the analysis team and then later also
by the facility users and the scientific community. Another key
part of the NoBIAS RSEs mandate is the maintenance of
previously developed tools and contribution to open source
projects created by others. We are aiming at accelerating the
rate of scientific discovery not only for our users on campus and
within our national user base, but also for life science research
more globally. In addition to enhancing the ability of our facility
to serve our users, we hope that such a model will function as a
proof-of-concept for the ideas outlined in this opinion piece, and
as an example to other facilities of the advantages of integrating
RSEs into an image analysis facility.

Author contributions

JD: Conceptualization, Writing–original draft, Writing–review
and editing. DDN: Conceptualization, Writing–original draft,
Writing–review and editing. FJ: Conceptualization, Supervision,
Writing–original draft, Writing–review and editing.

Funding

This work was enabled by core funding of the group of FJ at
Human Technopole, Italy.

Acknowledgments

We would like to thank Talley Lambert (Harvard Medical) and
Eugenia Cammarota (Human Technopole) for valuable feedback on
the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., et al. (2020). An
environment for sustainable research software in Germany and beyond: Current state, open
challenges, and call for action. F1000Res 9, 295. doi:10.12688/f1000research.23224.1

Arora, S. S. (2022). Study: Public services need to nurture and sustain
vulnerable small projects. Available: https://joinup.ec.europa.eu/collection/
fosseps/news/funding-sustainability.

Frontiers in Bioinformatics frontiersin.org04

Deschamps et al. 10.3389/fbinf.2023.1255159

https://doi.org/10.12688/f1000research.23224.1
https://joinup.ec.europa.eu/collection/fosseps/news/funding-sustainability
https://joinup.ec.europa.eu/collection/fosseps/news/funding-sustainability
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1255159


Arvanitou, E-M., Ampatzoglou, A., Chatzigeorgiou, A., and Carver, J. C.
(2021). Software engineering practices for scientific software development: A
systematic mapping study. J. Syst. Softw. 172, 110848. doi:10.1016/j.jss.2020.
110848

Arzt, M., Deschamps, J., Schmied, C., Pietzsch, T., Schmidt, D., Tomancak, P., et al.
(2022). Labkit: Labeling and segmentation toolkit for big image data. Front. Comput. Sci.
4. doi:10.3389/fcomp.2022.777728

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A-L., Martinez-Ortiz, C.,
Psomopoulos, F., et al. (2022). Introducing the FAIR Principles for research software.
Sci. Data 9, 622. doi:10.1038/s41597-022-01710-x

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., et al.
(2019). ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16,
1226–1232. doi:10.1038/s41592-019-0582-9

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., et al. (2009).
Knime - the Konstanz information miner. ACM SIGKDD Explor. Newsl. 11, 26–31.
doi:10.1145/1656274.1656280

Carpenter, A. E., Kamentsky, L., and Eliceiri, K. W. (2012). A call for bioimaging
software usability. Nat. Methods 9, 666–670. doi:10.1038/nmeth.2073

Chan-Zuckerberg Initiative (2019). Essential Open Source Software for science.
Available: https://chanzuckerberg.com/eoss/.

Cosden, I. A., McHenry, K., and Katz, D. S. (2022). Research software engineers:
Career entry points and training gaps. Comput. Sci. Eng. 24, 14–21. doi:10.1109/mcse.
2023.3258630

Crouch, S., Hong, N. C., Hettrick, S., Jackson, M., Pawlik, A., Sufi, S., et al. (2013). The
software sustainability institute: Changing research software attitudes and practices.
Comput. Sci. Eng. 15, 74–80. doi:10.1109/mcse.2013.133

Cytomine (2023). An open-source rich internet application for collaborative analysis
of multi-gigapixel images. Available: https://cytomine.be/.

EMBL (2023). Centre for bioimage analysis. Available: https://bio-it.embl.de/
centres/cba/.

DFG (2016). Call for proposal research software sustainability. Available: https://
www.dfg.de/en/research_funding/programmes/infrastructure/lis/funding_
opportunities/call_proposal_software/.

Ershov, D., Phan, M-S., Pylvänäinen, J. W., Rigaud, S. U., Le Blanc, L., Charles-
Orszag, A., et al. (2022). TrackMate 7: Integrating state-of-the-art segmentation
algorithms into tracking pipelines. Nat. Methods 19, 829–832. doi:10.1038/s41592-
022-01507-1

Hasselbring, W., Carr, L., Hettrick, S., Packer, H., and Tiropanis, T. (2020). Open
source research software. Computer 53, 84–88. doi:10.1109/mc.2020.2998235

Hettrick, S. (2014). UK Research Software Survey 2014 [Data set]. Zenodo. doi:10.
5281/zenodo.14809

Human Technopole (2023) National facility for data handling and analysis. Available:
https://humantechnopole.it/en/facilities/national-facility-for-data-handling-analysis/.

Institut Curie (2023). Images processing and analysing. Available: https://institut-
curie.org/popin/images-processing-and-analysing.

Institut Pasteur (2023). Image Analysis Hub. Available: https://research.pasteur.fr/en/
team/image-analysis-hub/.

Johanson, A., and Hasselbring, W. (2018). Software engineering for
computational science: Past, present, future. Comput. Sci. Eng. 20, 1–109.
doi:10.1109/mcse.2018.108162940

Levet, F., Carpenter, A. E., Eliceiri, K. W., Kreshuk, A., Bankhead, P., and
Haase, R. (2021). Developing open-source software for bioimage analysis:
Opportunities and challenges. F1000Res 10, 302. doi:10.12688/f1000research.
52531.1

Matthews, D. (2022). Ex-Google chief’s venture aims to save neglected science
software. Nature 607, 410–411. doi:10.1038/d41586-022-01901-x

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs, K.
W., et al. (2018). CellProfiler 3.0: Next-generation image processing for biology. PLoS
Biol. 16, e2005970. doi:10.1371/journal.pbio.2005970

Milewicz, R., and Rodeghero, P. “Position paper: Towards usability as a first-class
quality of HPC scientific software,” in 2019 IEEE/ACM 14th International Workshop
on Software Engineering for Science (SE4Science), Montreal, Canada, May, 2019,
41–42.

Nowogrodzki, A. (2019). How to support open-source software and stay sane. Nature
571, 133–134. doi:10.1038/d41586-019-02046-0

Pachitariu, M., and Stringer, C. (2022). Cellpose 2.0: How to train your own model.
Nat. Methods 19, 1634–1641. doi:10.1038/s41592-022-01663-4

Pape, C., Meechan, K., Moreva, E., Schorb, M., Chiaruttini, N., Zinchenko, V., et al.
(2023). MoBIE: A Fiji plugin for sharing and exploration of multi-modal cloud-hosted
big image data. Nat. Methods 20, 475–476. doi:10.1038/s41592-023-01776-4

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). BigDataViewer:
Visualization and processing for large image data sets. Nat. Methods 12, 481–483.
doi:10.1038/nmeth.3392

PoL (2023). Physics of life. Available: https://physics-of-life.tu-dresden.de/research/
core-groups/bio-image-analysis.

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T.,
et al. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC
Bioinforma. 18, 529. doi:10.1186/s12859-017-1934-z

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
et al. (2012). Fiji: An open-source platform for biological-image analysis. Nat. Methods
9, 676–682. doi:10.1038/nmeth.2019

Soltwedel, J. R., and Haase, R. (2023). Challenges and opportunities for bio-image
analysis core-facilities. J. Microsc. doi:10.1111/jmi.13192

Tinevez, J-Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds, G. D., Laplantine, E.,
et al. (2017). TrackMate: An open and extensible platform for single-particle tracking.
Methods 115, 80–90. doi:10.1016/j.ymeth.2016.09.016

Wikipedia (2023). Bus factor. Available: https://en.wikipedia.org/wiki/Bus_factor.

Wilkinson, M. D., Dumontier, M., Ijj, Aalbersberg, Appleton, G., Axton, M., Baak, A.,
et al. (2016). The FAIR Guiding Principles for scientific data management and
stewardship. Sci. Data 3, 160018. doi:10.1038/sdata.2016.18

Frontiers in Bioinformatics frontiersin.org05

Deschamps et al. 10.3389/fbinf.2023.1255159

https://doi.org/10.1016/j.jss.2020.110848
https://doi.org/10.1016/j.jss.2020.110848
https://doi.org/10.3389/fcomp.2022.777728
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1038/nmeth.2073
https://chanzuckerberg.com/eoss/
https://doi.org/10.1109/mcse.2023.3258630
https://doi.org/10.1109/mcse.2023.3258630
https://doi.org/10.1109/mcse.2013.133
https://cytomine.be/
https://bio-it.embl.de/centres/cba/
https://bio-it.embl.de/centres/cba/
https://www.dfg.de/en/research_funding/programmes/infrastructure/lis/funding_opportunities/call_proposal_software/
https://www.dfg.de/en/research_funding/programmes/infrastructure/lis/funding_opportunities/call_proposal_software/
https://www.dfg.de/en/research_funding/programmes/infrastructure/lis/funding_opportunities/call_proposal_software/
https://doi.org/10.1038/s41592-022-01507-1
https://doi.org/10.1038/s41592-022-01507-1
https://doi.org/10.1109/mc.2020.2998235
https://doi.org/10.5281/zenodo.14809
https://doi.org/10.5281/zenodo.14809
https://humantechnopole.it/en/facilities/national-facility-for-data-handling-analysis/
https://institut-curie.org/popin/images-processing-and-analysing
https://institut-curie.org/popin/images-processing-and-analysing
https://research.pasteur.fr/en/team/image-analysis-hub/
https://research.pasteur.fr/en/team/image-analysis-hub/
https://doi.org/10.1109/mcse.2018.108162940
https://doi.org/10.12688/f1000research.52531.1
https://doi.org/10.12688/f1000research.52531.1
https://doi.org/10.1038/d41586-022-01901-x
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1038/d41586-019-02046-0
https://doi.org/10.1038/s41592-022-01663-4
https://doi.org/10.1038/s41592-023-01776-4
https://doi.org/10.1038/nmeth.3392
https://physics-of-life.tu-dresden.de/research/core-groups/bio-image-analysis
https://physics-of-life.tu-dresden.de/research/core-groups/bio-image-analysis
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1111/jmi.13192
https://doi.org/10.1016/j.ymeth.2016.09.016
https://en.wikipedia.org/wiki/Bus_factor
https://doi.org/10.1038/sdata.2016.18
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1255159

	Better research software tools to elevate the rate of scientific discovery or why we need to invest in research software en ...
	Introduction
	The maintenance problem and its technical and social causes
	Research software engineering in image analysis facilities
	Giving core facilities a new mission
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


