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Mesoscale eddies play a significant role in marine energy and matter

transportation. Due to their huge impact on the ocean, mesoscale eddy

detection has been studied for many years. However, existing methods mainly

use single-modal data, such as the sea surface height (SSH), to detect mesoscale

eddies, resulting in inaccurate detection results. In this paper, we propose an

end-to-end mesoscale eddy detection method based upon multi-modal data

fusion. Particularly, we don’t only use SSH, but also add data of other twomodals,

i.e., the sea surface temperature (SST) and the velocity of flow, which are closely

related to mesoscale eddy detection. Moreover, we design a novel network

named SymmetricNet, which is able to achieve multi-modal data fusion in

mesoscale eddy detection. The proposed SymmetricNet mainly contains a

downsampling pathway and an upsampling pathway, where the low-level

feature maps from the downsampling pathway and the high-level feature

maps from the upsampling pathway are merged through lateral connections.

In addition, we apply dilated convolutions to the network structure to increase

the receptive field without sacrificing resolution. Experiments on multi-modal

mesoscale eddy dataset demonstrate the advantages of the proposed method

over previous approaches for mesoscale eddy detection.

KEYWORDS

deep learning, mesoscale eddy detect ion, mult i-modal , data fus ion,
dilated convolutions
1 Introduction

With the development of deep learning (LeCun et al., 2015), many practical problems,

such as those in the fields of pattern recognition and computer vision, have been tackled

with breakthrough results (Krizhevsky et al., 2012; Sermanet et al., 2014). Among others,

semantic segmentation as an important branch of computer vision (Mottaghi et al., 2014;

Cordts et al., 2016; Caesar et al., 2018), has benefited from the powerful deep learning

models (Everingham et al., 2015). Since fully convolutional networks achieved the state-of-
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the-art performance on semantic segmentation (Long et al., 2015), a

variety of deep learning approaches have been proposed for

semantic segmentation (Chen et al., 2015; Ronneberger et al.,

2015; He et al., 2017). Specifically, in this work, we model the

mesoscale eddy detection problem from the perspective of

semantic segmentation.

Mesoscale eddies (also known as weather-type ocean eddies)

refer to ocean eddies with a diameter of 100-300 km and a life span

of 2-10 months (Wyrtki et al., 1976; Chelton et al., 2007). They are

generally divided into two categories, namely cyclonic eddies

(counterclockwise rotation in the northern hemisphere) and anti-

cyclonic eddies (counterclockwise rotation in the southern

hemisphere). Mesoscale eddies not only play an important role in

the transport of energy and particles in the ocean, but also have

great effects on the oceanic biological environment. In consequence,

there are many pieces of work on mesoscale eddy detection in the

literature. Concretely, mesoscale eddy detection is to label the areas

in an image where mesoscale eddies exist. However, it is very

challenging to build a suitable detection method which can

accurately detect the irregular shape of mesoscale eddies.

In the early days, traditional methods based on manual

annotation, mathematical or physical knowledge and image

processing techniques were used to detect mesoscale eddies.

Nichol uses computers to search regions connected by the same

gray level value in gray level images (Nichol, 1987), attempting to

extract a similar eddy structure from the relationship diagram

generated by these regions. Peckinpaugh and Holyer propose a

method for eddy detection, which uses the Hough transformation

method (Illingworth and Kittler, 1988) based on the edge detection

in the remote sensing images (Peckinpaugh and Holyer, 1994). Due

to the irregular shape of mesoscale eddies, Ji et al. use ellipse

detection to detect mesoscale eddies (Ji et al., 2002). With the

inspiration of ellipse detection, Fernandes proposes a new eddy

detector which is capable offinding several eddies per satellite image

(Fernandes, 2009). With the enrichment of satellite remote sensing

data, a number of mesoscale eddy detection methods based on

diverse data have been proposed. These mesoscale eddy detection

methods can be divided into those using Eulerian data and those

using Lagrangian data. For Eulerian data, the main methods are

edge detection methods (Canny, 1986), Okubo-Weiss parameter

value methods (Isern-Fontanet et al., 2003; Penven et al., 2005;

Chelton et al., 2007), wavelet analysis methods based on the

vorticity (Doglioli et al., 2007), wind angle methods based on

geometric or kinematic characteristics of the flow field

(Chaigneau et al., 2008), methods by using sea surface height

variation (Chelton et al., 2011; Faghmous et al., 2012) and so on.

For Lagrangian data, there are mainly Lagrangian stochastic

methods (Lankhorst, 2006), rotation methods (Griffa et al., 2008),

spiral trajectory search methods based on geometric features of

trajectories (Dong et al., 2011a) and so on. However, these

traditional methods have some defects in computational time and

detection performance.

In recent years, the success of deep learning in various fields has

provided a new paradigm for mesoscale eddy detection (Santana

et al., 2022; Yu et al., 2022). Compared with traditional methods, deep

learning based methods can extract rich feature information to
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improve the accuracy of mesoscale eddy detection. Unfortunately,

there are not many deep learning based mesoscale eddy detection

methods. Among them, Lguensat et al. propose EddyNet on SSH data

for pixel-wise classification of eddies (Lguensat et al., 2018), which is a

simple network architecture based on the U-Net (Ronneberger et al.,

2015). Subsequently, Du et al. propose DeepEddy based on the

principal component analysis network (PCANet) (Chan et al.,

2015) and spatial pyramid pooling (SPP) (He et al., 2015),

achieving a classification of SAR images (Du et al., 2019). Recently,

Xu et al. adapt the PSPNet to mesoscale eddy detection (Xu et al.,

2019), which is an architecture for semantic segmentation. Duo et al.

use bounding boxes to achieve an object detection task for mesoscale

eddy detection only based on sea level anomaly (SLA) data, not

locating mesoscale eddies accurately by classifying each pixel (Duo

et al., 2019). Similar to EddyNet, Santana et al. apply the U-Net model

to mesoscale eddy detection based on SSH and SLA (Santana et al.,

2020). Moschos et al. propose a deep learning method on SST, only

completing a classification task on mesoscale eddy detection similar

to DeepEddy (Moschos et al., 2020). Li et al. (2022) proposes a

mesoscale detection network based on the extraction of eddy-related

spatiotemporal information from multisource remote sensing data.

However, there are some drawbacks in these approaches. There is no

approach to detect mesoscale eddies using multi-modal data yet. In

addition, some tasks such as classification and object detection are

not suitable for mesoscale eddy detection, not segmenting mesoscale

eddies with irregular shapes. Therefore, we model mesoscale eddy

detection as a semantic segmentation problem in this paper.

Specifically, we design an end-to-end deep network to detect

mesoscale eddies by fusing multi-modal data, leading to improved

accuracy over the previous methods.

Except for the methodology, a major challenge in mesoscale eddy

detection lies in the fact that there are very few labeled datasets

available. To address this problem, we build a multi-modal mesoscale

eddy dataset. Specifically, we download the multi-modal data from

the same sea area at the same time from the Copernicus Marine

Environment Monitoring Service (CMEMS)1. The multi-modal data

contain the sea surface height (SSH), the sea surface temperature

(SST) and the velocity of flow, which can be used for mesoscale eddy

detection, either independently or synthetically (Voorhis et al., 1976;

Fu et al., 2010; Dong et al., 2011b; Mason et al., 2014). It should be

noted that the flow velocity data contains two directions, namely

zonal and meridional velocity, because the velocity vector at a certain

point in the ocean is decomposed into the east/west direction (zonal)

and the north/south direction (meridional). Hence, different from the

SSH and SST data which include only one channel, the velocity of

flow has two channels. Additionally, due to the extensive use of the

SSH data for mesoscale eddies detection, we asked the experts to label

the ground truth on the SSH images base on semantic segmentation

tool so that it is easy to compare with previous mesoscale eddy

detection approaches.

The multi-modal dataset we collected contains different

variables affecting mesoscale eddies in the same sea area, so we

concatenate four channels occupied by these three multi-modal
frontiersin.org

https://doi.org/10.3389/fmars.2023.1174818
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2023.1174818
data and input them into the network together for feature learning.

In order to fuse multi-modal data for mesoscale eddy detection and

reduce the loss of information during feature extraction, we propose

a novel deep architecture dubbed SymmetricNet. SymmetricNet

mainly consists of a downsampling pathway and an upsampling

pathway. Particularly, we combine the low-level feature maps of

high resolution from the downsampling pathway and the high-level

feature maps with rich semantic information from the upsampling

pathway via lateral connections. We use element-by-element

addition to achieve the fusion of the feature maps, replacing the

concatenation of feature maps which is widely used to merge feature

maps in previous semantic segmentation approaches. Furthermore,

considering that convolutional operations reduce resolution and

tend to lose fine-grained information, dilated convolutions (Yu and

Koltun, 2016) are used in the upsampling pathway, which can

increase the receptive field and aggregate multi-scale contextual

information without losing resolution. As a result, the final feature

map of our model has not only rich semantics, but also rich

contextual information. In contrast to EddyNet and PSPNet, our

method makes use of multi-modal data fusion for mesoscale eddy

detection. In contrast to DeepEddy, SymmetricNet can locate

multiple mesoscale eddies in a sea area, and classify them as

cyclonic eddies or anti-cyclonic eddies.

In summary, the main contributions of our work are:
Fron
• We construct a mesoscale eddy multi-modal dataset

containing the SSH, SST and the velocity of flow. It is

annotated by experts based on the SSH images from dataset;

• We propose a novel end-to-end SymmetricNet, which can

achieve multi-modal data fusion and mesoscale eddy

detection. SymmetricNet is composed mainly of a

downsampling pathway and an upsampling pathway,

which fuses low- leve l fea ture maps from the

downsampling pathway with high-level feature maps from

the upsampling pathway via lateral connections. In

addition, we employ dilated convolutions in an effort to

increase the receptive field and to obtain more contextual

information without losing resolution;

• Our approach outperforms previous methods, achieving

excellent performance for mesoscale eddy detection on the

multi-modal dataset collected by us.
The rest of this paper is organized as follows. In Section 2, due

to the lack of related work, we describe directly the structure of our

proposed SymmetricNet and the loss function. In Section 3, we

present the constructed multi-modal dataset, the parameter settings

used to train our network, and three comparative experiments. In

Section 4, we discuss the results of comparative experiments.

Section 5 concludes this paper.
2 Materials and methods

In this section, we first introduce the structure of our proposed

network dubbed SymmetricNet, which is a symmetric network as
tiers in Marine Science 03
shown in Figure 1. We then introduce lateral connections and

dilated convolutions applied to SymmetricNet. We use lateral

connections to fuse low-level feature maps with high-level feature

maps, which replace the concatenation in previous methods with an

element-by-element addition. In addition, dilated convolutions are

used to increase the receptive field and obtain contextual

information. Finally, we describe the loss function for the

optimization of SymmetricNet.
2.1 Network architecture

2.1.1 SymmetricNet
Recent semantic segmentation methods usually use the

encoder-decoder structure due to its great successes in many

applications (Chen et al., 2018). The SymmetricNet is also a

symmetric encoder-decoder architecture. As shown in Figure 1,

SymmetricNet is composed of a downsampling pathway (left side),

an upsampling pathway (right side) and a transition block (in the

middle). As can be seen in Figure 1, there are four downsampling

blocks in the downsampling pathway and four upsampling blocks

in the upsampling pathway. Thus, the architecture of SymmetricNet

is symmetric.

In the downsampling pathway, each downsampling block

mainly consists of two layers of 3×3 convolution, each followed

by a batch normalization (BN) layer and a rectified linear unit

(ReLU). Next, a 2 × 2 max pooling operation with a stride of two is

employed to each block for downsampling. Furthermore, in order

to avoid over-fitting in our network, a dropout layer is applied to the

fourth downsampling block. Particularly, the number of channels is

doubled when performing a downsampling block. The

downsampling pathway can be viewed as that the length and

width of the feature maps are halved and the number of channels

is doubled when passing a downsampling block. Similarly, in the

upsampling pathway, each upsampling block consists of a

deconvolutional operation, a lateral connection and a 3×3 dilated

convolution with a rate of four. The deconvolutional operation in

each upsampling block can double the length and width of the

feature maps and halve the number of channels. The lateral

connection fuses low-level feature maps from the downsampling

pathway with high-level feature maps from the upsampling

pathway. Thus, the effect of the upsampling pathway can be

viewed as that the length and width of the feature maps are

doubled, and the number of channels is halved when passing a

upsampling block. Except for these four downsampling blocks and

four upsampling blocks, there is a transition block following the

fourth downsampling block, which consists of two layers of 3×3

convolution, each followed by a BN layer and an ReLU layer.

Similar to the fourth downsampling block, there is a dropout

layer at the end of the transition block to avoid over-fitting

in SymmetricNet.

In the end, we take the output of the last upsampling block as

input into the final softmax layer to achieve pixel-level classification,

and finally attain the segmentation results for mesoscale

eddy detection.
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2.1.2 Lateral connections and
dilated convolutions

In recent years, convolution has become an increasing popular

method in deep learning thanks to its effectiveness in extracting rich

semantic information from feature maps. However, fine-grained

information can be lost by continuously convolutional operations.

Although the resolution of feature maps increases when they are

upsampled, some important details may be difficult to recover by

the deconvolutional operation. Therefore, in SymmetricNet, the

low-level feature maps of high resolution are fused with the high-

level feature maps to capture fine-grained information lost in the

downsampling pathway.

Additionally, dilated convolutions are adopted in our network

to replace conventional convolutions so as to avoid the massive loss

of contextual information as in conventional convolutional

networks. Dilated convolution introduces the dilation rate in an

attempt to increase the receptive field at a single pixel, and obtain

more contextual information. Figure 2 illustrates the difference

between a conventional convolutional kernel and two dilated

convolutional kernels. Figure 2A shows the 3×3 convolutional

kernel of conventional convolution, whereas Figure 2B and

Figure 2C show the 3×3 convolutional kernels of dilated

convolutions with a rate of two and four, respectively. The orange

areas represent the non-zero parameters of the convolutional

kernel, while the white areas represent the parameters filled

with zero. There is a gap between the nonzero parameters of

the dilated convolutional kernel, which is equal to the dilated

rate minus one. It is obvious that the receptive field becomes
Frontiers in Marine Science 04
larger due to the expansion of the convolutional kernel, and the

increase of the receptive field results in enriched contextual

information. However, the major drawback of dilated convolution

lies in its excessive computational complexity and large memory

requirement as the size of the dilated convolutional kernel

increases. Therefore, we only apply dilated convolutions to the

upsampling pathway.

Figure 3 illustrates a lateral connection of the low-level feature

maps from the downsampling pathway and the high-level feature

maps from the upsampling pathway in detail. Firstly, the high-level

feature maps output from the transition block or upsampling blocks

are upsampled by a deconvolutional operation. Next, we select the

corresponding low-level feature maps in the downsampling

pathway according to the size of the high-level feature maps,

because the sizes of the feature maps that need to be added must

be the same. Then, we apply a 3×3 dilated convolution with a rate of

four to the low-level feature maps of high resolution, performing

semantic extraction without reducing the resolution. In this case, we

can mitigate the disadvantage that the low-level feature maps have

weak semantic information. Subsequently, the low-level feature

maps of high resolution and the high-level feature maps with rich

semantic information are added in an element-by-element manner.

Ultimately, a 3×3 dilated convolution with a rate of four is applied

to the fused feature maps in an effort to gain multi-scale contextual

information, while maintaining the resolution.

The lateral connections between the low-level feature maps of

high resolution from the downsampling pathway and the high-level

feature maps with rich semantic information from the upsampling
FIGURE 1

Schematics of the proposed SymmetricNet.
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pathway achieve feature maps fusion, resulting in the feature maps

with fine-grained and rich semantic information.
2.2 Loss function

In our work, we use a loss function which combines the dice loss

function and the cross-entropy loss function for the optimization of

SymmetricNet. It is defined as

L(P,G) = −log(1 − DL(P,G)) + Llog(P,G), (1)

where DL(P,G) the dice loss function, and Llog(P,G) is the cross-

entropy loss function.

We regard the mesoscale eddy detection problem as a semantic

segmentation problem, which is essentially a pixel-level

classification problem. The dice loss function is a popular loss
Frontiers in Marine Science 05
function for training pixel-level classification networks, which is a

similarity measure function used to calculate the similarity of two

samples. Dice loss function is helpful to address the problem of class

imbalance in semantic segmentation. Dice loss function combined

with cross-entropy loss function can improve the stability of model

training. Let us first introduce the dice coefficient which describes

the similarity between the prediction and the ground truth. Denote

by P the prediction and by G the ground truth. |P| and |G| represent

the sums of elements in P and G respectively. Then, the dice

coefficient function is defined as

DC(P,G) =
2 P ∩  Gj j
Pj j + Gj j : (2)

According to the above formula, the prediction and the ground

truth are exactly the same when the dice coefficient is one, and the

segmentation result is optimal. By contrast, a dice coefficient of 0
FIGURE 3

Illustration of a lateral connection.
B

C

A

FIGURE 2

Comparison between a conventional convolutional kernel and two dilated convolutional kernels. (A) The 3×3 convolutional kernel of conventional
convolution; (B) The 3×3 convolutional kernel of dilated convolution with a rate of 2; (C) The 3×3 convolutional kernel of dilated convolution with a
rate of 4.
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refers to a completely erroneous segmentation result, implying that

the prediction and the ground truth do not match at all. In other

words, the larger the dice coefficient, the better the performance. As

a result, we define the dice loss function as follows:

DL(P,G) = 1 − DC(P,G) = 1 −
2 P ∩  Gj j
Pj j + Gj j (3)

However, there is a disadvantage in the dice loss function. The

gradient of the dice loss function mainly depends on the sum of the

elements in the prediction and the ground truth. The gradient will

change sharply if it is too small, making the training difficult.

Besides, mesoscale eddy detection is actually a 3-class

classification problem, i.e., the cyclonic eddies, anti-cyclonic

eddies and background classes. Therefore, the cross-entropy loss

function can reduce the training difficulty of the network, which is

the most commonly used loss function for multi-class

classification problems.

In the end, we use the loss function in Eq.(1) to train our

network, achieving excellent performance for mesoscale

eddy detection.
3 Results

In this section, we first explain the details of the collected

dataset. Then, we introduce parameter settings for training the

proposed SymmetricNet. Finally, we demonstrate that our method

is superior to other methods for mesoscale eddy detection in three

aspects, i.e., the comparisons on different modals of data, different

networks and different loss functions.
3.1 Dataset

So far, there are very few public datasets available for mesoscale

eddy detection. Therefore, it is necessary to build a reliable dataset

as the first step. In most papers on mesoscale eddy detection to date,

the authors rely mainly on the SSH data for detection, lacking the

data of other modals closely related to mesoscale eddy detection.

Motivated by this observation, we construct a multi-modal dataset,

which is composed of the SSH, SST and the velocity of flow.

Firstly, we download the SSH, SST and the velocity of flow for a

total of ten years from January, 2000 to December, 2009 on the

website of CMEMS. Specifically, the SSH, SST and the velocity of

flow of our dataset are downloaded from the GLOBAL OCEAN

ENSEMBLE PHYSICS REANALYSIS product, where the spatial

resolution is 0.25 degree × 0.25 degree. The dimension of these

three-modal data is 681 × 1440, where 681 is the dimension of the

latitude, and 1440 is the dimension of the longitude. There is one

datum for each month, such that there are 120 data coming from

120 consecutive months. h/south direction (meridional). Then, we

choose the data of 40 months for a three-month interval of totally

120 months in order to make the data to be diverse. Lastly, we

randomly select the data of these three modals from multiple

regions with the size of 128 × 128, ensuring that the
Frontiers in Marine Science 06
corresponding positions of the SSH, SST and the velocity of flow

are the same.

In this case, the multi-modal data have four channels, where the

first channel corresponds to the SSH, the second channel

corresponds to the SST, the third and fourth channels correspond

to the velocity of flow. Figure 4 shows examples of the SSH, SST and

the velocity of flow corresponding to the channels. Considering that

previous methods only use the SSH data, experts are invited to label

the SSH images as the ground truth to make it easy to conduct

comparison. In labeling, the cyclonic eddies are annotated as -1, the

anti-cyclonic eddies are annotated as 1, and the background is

annotated as 0. The SSH image and the ground truth in a certain sea

area are shown in Figure 5. Figure 5A shows the SSH image, while

Figure 5B shows the ground truth, where the yellow areas represent

the anti-cyclonic eddies, the dark blue areas represent the cyclonic

eddies, and the light blue areas represent the area without eddies. In

the end, we randomly select 512 and 256 samples as the training and

test sets, respectively.
3.2 Parameter settings

In our network, we adopted 8, 16, 32, 64 and 128 convolutional

kernels for the 3×3 convolution applied to each downsampling

block and intermediate transition block. Symmetrically, the

numbers of all convolutional kernels of each upsampling block

were taken as 64, 32, 16, and 8, respectively. The dropout in the last

downsampling block and the transition block were set to 0.3 and

0.5, respectively. We trained our network using the Adam

optimizer, which had an initial learning rate of 1.0 × 10-3 and a

minimum learning rate of 1.0 × 10-30. Additionally, the batch size

was set to 8 and the number of epochs was set to 50.
3.3 Comparative experiments

In this section, in order to validate the effectiveness of our

constructed multi-modal dataset, our proposed network, and our

combined loss function, we conducted comparative experiments on

different modals of data, different networks, and different loss

functions, respectively.

3.3.1 Results on different modals of data
To study the significance of our constructed multi-modal

dataset, we selected the SSH, SST and the velocity of flow

separately from the corresponding channel of the multi-modal

dataset. Then we trained and tested our network on these three

modals of data and multi-modal data. There was no validation set

because the amount of the collected data was not very large. Thus,

we firstly compared the loss and accuracy on the training set to

make an optimistic evaluation of the network. Figure 6 shows the

learning curves on three modals of data and multi-modal data of

training set, where the green, orange, blue and red curves represent

the learning curves by using the SSH, SST, the velocity of flow and

multi-modal data, respectively. As can be seen from Figure 6A, the
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https://doi.org/10.3389/fmars.2023.1174818
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2023.1174818
losses gradually decrease and the loss using the multi-modal data is

lower than that using other three modals of data as the training

epoch increases. Similarly, it is observed in Figure 6B that the

accuracy gradually increase and the accuracy using the multi-modal

data is higher than that using other three modals of data as the

training epoch increases.

Moreover, the loss and accuracy on three modals of data and

multi-modal data after training 50 epochs are shown in Table 1,

where the cross-entropy loss, dice loss and our loss combining the

cross-entropy loss and the dice loss are shown, respectively. As can

be seen from the table, the multi-modal data deliver the best results.
Frontiers in Marine Science 07
We tested our network using three modals of data and multi-

modal data of the same test set. In addition to the measure of global

accuracy shown in Table 1, we added four evaluation indexes to

further prove the effectiveness of our collected multi-modal data, i.e.,

the pixel precision of cyclonic eddies, anti-cyclonic eddies,

background classes and the mean precision of these three classes.

Table 2 shows the detection results on three modals of data and

multi-modal data, which demonstrate the significance of the multi-

modal data. Through these experiments on the training and test sets,

we can clearly see that the method based on the multi-modal data

outperforms the methods based on the other three modals of data.
B

C D

A

FIGURE 4

Examples of the SSH, SST and the velocity of flow corresponding to the channels of a multi-modal remote sensing image. (A) The SSH channel; (B) The SST
channel; (C) The zonal velocity; (D) The meridional velocity.
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BA

FIGURE 5

Example of the SSH image and the ground truth in a certain sea area. (A) Two examples of the SSH images; (B) The ground truth labeled by experts
according to the SSH images.
BA

FIGURE 6

Loss and accuracy curves obtained by using our model on three modals of data and multi-modal data. (A) Loss curve (B) Accuracy curve.
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In order to visually demonstrate the advantage of our multi-

modal data over three single-modal of data, the examples of eddy

detection results using three modals of data and multi-modal data

of test set are shown in Figure 7. Through comparing with the

ground truth, we can see that mesoscale eddy detection results

based on multi-modal data are closest to ground truth.

3.3.2 Results on different networks
The result using the proposed network is compared with those

of other networks with the objective of verifying the effectiveness of

our framework. As mentioned in Section 1, there are few

representative mesoscale eddy detection methods based on deep

learning. Among them, DeepEddy, Duo et al. (2019) and Moschos

et al. (2020) perform tasks of classification and object detection, and

they cannot segment mesoscale eddies from remote sensing images.

For methods using pixel-wise classification for mesoscale eddy

detection, there are EddyNet, PSPNet and Santana et al. (2020).

Considering that both the structure of EddyNet and Santana et al.

(2020) rely on the U-Net, we select EddyNet as the representative of

them. Hence, we choose to compare EddyNet and PSPNet with our

proposed network. Besides, the SymmetricNet without dilated

convolution is another compared network to prove the

effectiveness of our network, which can also be viewed as an

ablation study. Figure 8 shows the learning curves of these

compared networks using the multi-modal training set, where the

blue, orange, green and red curves represent the learning curves of

EddyNet, PSPNet, SymmetricNet without dilated convolution and

the proposed network, respectively. Figure 8A shows that the losses

of all the models gradually decrease and the loss of our network is

lower than that using the other networks as the training epoch

increases. Similarly, it is observed from Figure 8B that the accuracy

of all the models gradually increase and the accuracy of our network

is higher than that using the other networks as the training

epoch increases.
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Similar to the preceding subsection, we also give detection

performances by using the compared networks on the multi-modal

training and test sets in Tables 3, 4, respectively. As can be observed

from the tables, our proposed network yields best results among

compared networks. Examples of eddy detection using the compared

networks on the multi-modal test set are shown in Figure 9.

To demonstrate the advantage of the proposed network using

our constructed multi-modal dataset more convincingly, the

accuracy results obtained by using SymmetricNet and the

compared networks on three modals of data and multi-modal

data are shown in Table 5. The performance by using the

proposed SymmetricNet on our constructed multi-modal data is

the best.

3.3.3 Results on different loss functions
In this work, we trained our network with a loss function that

combines the dice loss function and the cross-entropy loss function.

The dice loss function is popular in semantic segmentation, and the

cross-entropy loss function has been widely used on classification

problems. In our experiments, we used different loss functions when

training the proposed SymmetricNet on the multi-modal dataset to

validate the effectiveness of our loss function.

The comparison among the cross-entropy loss function, dice

loss function and our combined loss function is shown in Tables 6,

7. As can be seen from the tables, in terms of loss, precision and

accuracy, our loss function achieves the best performance.
4 Discussion

In this section, we discuss the results of the comparative

experiments in Section 3.3. We show the results of comparative

experiments from three aspects, i.e., results on different modals of

data, results on different networks and results on different loss
TABLE 2 Detection results obtained by using our model on three modals of data and multi-modal data of test set.

Dataset Pixel precision Mean Global accuracy

Anti-cyclonic Cyclonic Non eddy

SSH 83.56% 90.16% 97.67% 90.46% 96.69%

SST 74.37% 69.51% 92.70% 78.86% 91.64%

Velocity of flow 82.41% 89.42% 97.63% 89.82% 96.50%

Multi-modal data 87.85% 91.51% 98.14% 92.5% 97.06%
The best results are highlighted in boldface.
TABLE 1 Loss and accuracy obtained by using our model on three modals of data and multi-modal data of training set.

Dataset Cross-entropy loss Dice loss Our loss Global accuracy

SSH 0.0935 0.1314 0.2351 96.77%

SST 0.2144 0.2889 0.5565 93.16%

Velocity of flow 0.0940 0.1341 0.2381 96.50%

Multi-modal data 0.0763 0.1076 0.1902 97.32%
The best results are highlighted in boldface.
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functions. Here, we firstly discuss the results from two aspects, i.e., the

effect of different modals of data, the effect of different networks. The

analysis of loss function is introduced in Section 2.2, thus there is no

further discussion in this section. Lastly, we discuss future research.
4.1 The effect of different modals of data

In Section 3.3.1, we show results on different modals of data.

Firstly, we show the learning curves on three modals of data
Frontiers in Marine Science 10
respectively and multi-modal data in Figure 6, and show the loss

and accuracy on three modals of data and multi-modal data after

training 50 epochs in Table 1. From Figure 6 and Table 1, we can see

that the results based on multi-modal data are significantly better

than those based on the three single-modal data. Additionally, one

can clearly see the influence of the three modals of data on

mesoscale eddy detection. It is evident that the SSH is the most

important among the three modals, which has been widely studied

in the literature. The velocity of flow also plays a significant role in

the research of mesoscale eddy detection. Not only is the
B

C D

E F

A

FIGURE 7

Eddy detection results obtained by using the proposed model on three modals of data and multi-modal data of test set. (A) Original SSH image in a
region of sea; (B–E) Eddy detection results from the same region of sea using the SSH, SST, the velocity of flow and the multi-modal data,
respectively; (F) Ground truth labeled by experts in the same region of sea according to the SSH image.
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characteristics of the velocity of flow closely related to mesoscale

eddies, but it occupies two of the four channels of multi-modal data.

In addition, because a large fraction of the ocean satisfies the

geotropic balance, the velocity of flow also directly links to the

gradient of SSH. Therefore, both of these two modals of data have

similar effects on mesoscale eddy detection. In comparison, the

effect of SST on mesoscale eddy detection is not as evident as its

counterparts. However, because SST can represent mesoscale eddies

to a certain extent, it also has a certain positive influence on the

mesoscale eddy detection. Therefore, multi-modal data can more

comprehensively characterize mesoscale eddies during training,

which is beneficial to the improvement of mesoscale eddy

detection performance.

After the training, we show comparison results on the test set. In

addition to the global accuracy shown in Table 1, we add the

precision to further verify the experimental results. Precision refers

to the proportion of the number of correctly classified pixels in a

category to the number of all pixels predicted to be in this category,

which is suitable for mesoscale eddy pixel-by-pixel classification

task. Table 2 shows the precision of the three categories, i.e.,

cyclonic eddies, anti-cyclonic eddies and background. At the same

time, we also calculate the mean precision of these three categories

to verify the effectiveness of SymmetricNet. Regardless of the

precision of a single category, the mean precision or the global

accuracy, the results of SymmetricNet on the multi-modal data test

set are higher than the results on other single-modal data. For
Frontiers in Marine Science 11
cyclonic eddies and anti-cyclonic eddies which are difficult to detect,

SymmetricNet achieved 91.51% and 87.85% precision on the multi-

modal test set, which has great improvement compared with the

results based on the other three single-modal data.

Lastly, we show Figure 7 to verify the validity of multi-modal

data qualitatively. It is clear that the detection result using the SST

data misses many eddies and the detection result using the velocity

of flow data detects some ‘fake’ eddies erroneously. Although the

detection results based on the SSH data and our multi-modal data

are similar, one can assert that the detection result based on our

multi-modal data is more accurate than that based on the SSH data

in terms of detection details.
4.2 The effect of different networks

In order to prove that SymmetricNet proposed is superior to the

current existing methods in mesoscale eddy detection, this paper

applies multi-modal data to different networks models to conduct

comparative experiments. In this paper, we carry out mesoscale

eddy detection from the perspective of semantic segmentation.

Thus, the compared methods chosen are EddyNet and PSPNet,

which use pixel-by-pixel classification to achieve mesoscale eddy

detection. EddyNet and the network proposed by Santana are

implemented based on U-Net, the network structures of the two

are roughly the same. Therefore, this paper selects EddyNet as the
BA

FIGURE 8

Loss and accuracy curves obtained by using different networks on the multi-modal training set. (A) Loss curve (B) Accuracy curve.
TABLE 3 Loss and accuracy obtained by using different networks on the multi-modal training set.

Method Cross-entropy loss Dice loss Our loss Global accuracy

Eddynet 0.1636 0.2168 0.4083 94.58%

PSPNet 0.1015 0.1461 0.2595 96.27%

SymmetricNet (LC) 0.0867 0.1182 0.2126 97.04%

SymmetricNet (LC+Dilated) 0.0763 0.1076 0.1902 97.32%
The best results are highlighted in boldface.
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TABLE 4 Detection results obtained by using different networks on the multi-modal test set.

Method Pixel precision Mean Global accuracy

Anti-cyclonic Cyclonic Non eddy

Eddynet 75.48% 80.41% 94.44% 83.44% 93.77%

PSPNet 84.51% 84.44% 97.57% 88.84% 96.25%

SymmetricNet (LC) 87.07% 86.76% 98.01% 90.61% 96.72%

SymmetricNet (LC+Dilated) 87.85% 91.51% 98.14% 92.5% 97.06%
F
rontiers in Marine Science
 12
The best results is highlighted in boldface.
B
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FIGURE 9

Eddy detection results obtained by using different networks on the multi-modal test set. (A) SSH image in a region of sea; (B–E) Eddy detection
results from the same region of sea using the compared networks; (F) Ground truth labeled by experts in the same region of sea according to the
SSH image.
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representative of the two. In addition, this paper replaces the dilated

convolutions in SymmetricNet with the traditional convolutions,

and uses it as a compared network to verify the effectiveness of

dilated convolutions. Figure 8 shows loss and global accuracy curves

of different networks on the multi-modal training set, Table 3 shows

loss and global accuracy of different networks after training

50 epochs on multi-modal data. Global accuracy, precision of

different categories and average precision of different networks

on the multi-modal test set are shown in Table 4. We can see

that the results of mesoscale eddy detection based on SymmetricNet

are better than those obtained based on other comparative

networks no matter in the process of training or testing. The

number of convolutional layers of EddyNet is relatively shallow,

which leads to insufficient feature extraction. Although the number

of network layers of PSPNet are relatively deep, the downsampling

scale of the pyramid pooling module in the network is large,

resulting in serious information loss. Additionally, dilated

convolutions can expand the receptive field to obtain more

contextual information. Therefore, these comparative networks

have poor performance on mesoscale eddy detection compared

with SymmetricNet.

In addition to using quantitative indicators to verify the

effectiveness of SymmetricNet proposed in this study, Figure 9

compares the results of mesoscale eddy detection based on different

networks from a qualitative perspective. Apparently, the detection

result of our method is the closest to the ground truth. However,

EddyNet misses a lot of eddies, PSPNet locates eddies inaccurately,

and SymmetricNet without dilated convolution detects some

‘fake’ eddies.

Table 5 shows the global accuracy of different networks based

on different modals of data, further proving that the multi-modal

data and SymmetricNet improve the mesoscale eddy detection

performance. As can be seen from the table, our method is better

than the others for all the data used, and the results obtained on our

constructed multi-modal data are better than those tested on the

individual modals of data for all the networks.
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4.3 Future research

In this paper, we collect a multi-modal dataset and design

SymmetricNet to detect mesoscale eddies, improving the accuracy

of the mesoscale eddy detection. However, there are some

shortcomings in this study, which need further improvement and

perfection in future research. In this subsection, future research will

be discussed in the following three aspects:
• To solve the problem that only single-modal data are mainly

used for mesoscale eddy detection, a multi-modal dataset

containing the SSH, SST and the velocity of flow is

constructed. In the future study, we will continue to

consider other modals of data affecting mesoscale eddies

and expand the multi-modal data. In addition, in order to

make the network have strong generalization ability, we will

also increase the number of samples in the dataset in the

future. Furthermore, in the process of data labeling, this study

only uses SSH images for annotation. Although the

annotation based on the SSH images is helpful for

comparison with existing methods only using SSH, this

study cannot output suitable fused feature maps for

labeling. Therefore, the future research will find a suitable

multi-modal data fused feature map, completing the

annotation on the multi-modal data, and make the data

match the ground truth.

• In response to the inaccuracy of the mesoscale eddy

detection method, this study designs a deep network

named SymmetricNet. Although SymmetricNet has

achieved relatively good results, there is still room for

improvement. The future work will continue to optimize

the network. In this paper, we detect mesoscale eddies by

pixel-by-pixel classification of ocean remote sensing images.

Consequently, in the future research, we will learn ideas

from current excellent work in semantic segmentation and

improve existing networks to obtain better results.
TABLE 5 Accuracy obtained by using different networks on three modals of data and multi-modal data of test set.

Method SSH SST Velocity of flow Multi-modal data

Eddynet 93.66% 89.59% 93.55% 93.77%

PSPNet 96.15% 89.80% 95.77% 96.25%

SymmetricNet (LC) 96.37% 89.83% 95.90% 96.72%

SymmetricNet (LC+Dilated) 96.69% 91.64% 96.50% 97.06%
The best result is highlighted in boldface.
TABLE 6 Loss and accuracy obtained by using different loss functions on the training set.

Method Crossentropy loss Dice loss Our loss Global accuracy

Only crossentropy loss 0.0922 – – 96.31%

Only dice loss – 0.1149 – 96.69%

Our loss 0.0763 0.1076 0.1902 97.32%
The best results are highlighted in boldface.
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• Considering the lifetime of mesoscale eddies, we will detect

the eddies trajectories following its path until its

disappearance in the future. We think it would be

significant to discuss the mesoscale eddy detection from

this perspective.
5 Conclusions

In this paper, we construct a multi-modal dataset for mesoscale

eddy detection, which contains the SSH, SST and velocity of flow

data. Additionally, a new network termed SymmetricNet is proposed,

which is capable of fusing multi-modal data to boost the mesoscale

eddy detection accuracy. SymmetricNet is capable of fusing low-level

feature maps from the downsampling pathway and high-level feature

maps from the upsampling pathway via lateral connections. In

addition, dilated convolution is employed in our proposed network

to obtain rich contextual information without losing resolution. To

evaluate the constructed multi-modal dataset, our proposed network

and the combined loss function, we conduct extensive experiments

on different modals of data, different networks and different loss

functions. It was demonstrated that the proposed method using our

constructed multi-modal dataset outperforms the state-of-the-art

existing approaches on mesoscale eddy detection.
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