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Embryo implantation and placentation play pivotal roles in pregnancy by

facilitating crucial maternal-fetal interactions. These dynamic processes involve

significant alterations in gene expression profiles within the endometrium and

trophoblast lineages. Epigenetics regulatory mechanisms, such as DNA

methylation, histone modification, chromatin remodeling, and microRNA

expression, act as regulatory switches to modulate gene activity, and have

been implicated in establishing a successful pregnancy. Exploring the

alterations in these epigenetic modifications can provide valuable insights for

the development of therapeutic strategies targeting complications related to

pregnancy. However, our current understanding of these mechanisms during

key gestational stages remains incomplete. This review focuses on recent

advancements in the study of histone modifications during embryo

implantation and placentation, while also highlighting future research

directions in this field.
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Introduction

The journey of new life begins with the formation of an embryo, which must be

implanted in the uterus to establish a functional interaction between mother and fetus in

mammals (1). Embryo implantation and placentation are key steps in the establishment of

this communication and are required for a successful pregnancy. As the blastocyst acquires

implantation competency, the endometrium differentiates to become receptive to the

embryos under the regulation of estrogen (E2) and progesterone (P4) (2). Upon

completion of implantation, the outer trophectoderm (TE) of the blastocyst begins to

differentiate and forms the placenta, a transient organ that acts as a barrier between the

mother and fetus (3). The placenta facilitates the exchange of nutrients and oxygen while

protecting the fetus from harmful substances (4). Disturbance to implantation and
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placentation may lead to pregnancy-related complications, such as

recurrent pregnancy loss, infertility, pre-eclampsia, fetal growth

restriction, preterm birth, and stillbirth (5). Thus, a better

understanding of the underlying molecular networks of embryo

implantation and placentation will help to advance our

understanding of the causes of pregnancy complications.

Epigenetic control is the process by which gene expression is

regulated by chemical modifications to DNA and its associated

proteins, without altering the underlying genetic code (6). These

modifications act like switches, turning genes on or off, and allowing

cells to respond to changing environmental signals, and have been

implicated in a wide range of biological processes, including

development, aging, and disease (7). It includes a range of

chemical changes, such as DNA methylation, non-coding RNA

(ncRNA) expression, and histone modification we aimed at in this

review. Histones can be modified in a variety of ways, including

methylation, acetylation, phosphorylation, ubiquitylation and poly

(ADP)-ribosylation (8). These histone modifications affect

chromatin compaction and accessibility of transcription factors or

cofactors, thereby regulating gene transcriptional activation or

silencing. The enzymes involved in catalyzing this histone

modification can be classified as "writer" and "eraser". "Writer"

refers to the enzymes that add histone modifications to histones,

such as histone methyltransferases, histone acetyltransferases, and

so on. “Eraser” removes specific modifications, including histone

demethylases and histone deacetylases (9). The study of histone

modification has been a rapidly growing field in recent years, and

have discovered that changes in histone modification patterns are

associated with a range of diseases, including cancer, cardiovascular

disease, and neurodevelopmental disorders (10, 11).

Recent studies have revealed that histone modifications play

critical roles in determining the success of embryo implantation and

placenta development, providing valuable insights into the

underlying molecular mechanisms. In this review, we present the

current findings of implantation and placentation events in various

model systems and in humans, primarily focusing on the impact of

histone modifications on the embryo-uterus dialogues during

gestation (Figure 1). A better understanding of the roles of

histone modification in these processes may reveal new predictive

and therapeutic targets for pregnancy-related complications.
Histone modifications in implantation

The process of embryo implantation in both humans and mice

involves a series of pivotal events, including 1) the establishment of

receptivity in the uterine cavity; 2) the attachment reaction between

the trophoblast and endometrial epithelium; 3) the interplay

between trophoblast cells, endometrial epithelium, and stromal

cells during the invasion of trophoblast cells and initiation of

decidualization (12). Despite variations in the manner of

blastocyst invasion into the endometrial lining among different

species, many features of the implantation and decidualization

process exhibit a commonality. Consequently, the molecular

regulation of implantation and decidualization holds many

similarities between humans and model organisms (1). Due to
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of human implantation still relies predominantly on animal models,

particularly the mouse. The Cre-loxP system represents a potent

investigative tool for discerning the physiological functions of genes

across various organs (13). To conduct effective targeted knockout

studies, it is necessary to utilize tissue-specific promoters to drive

the expression of Cre recombinase (Table 1). Utilizing genetically

modified mouse models and human clinical tissues, epigenetic

regulations have been proven important in regulating the

establishment of endometrial receptivity, blastocyst attachment

and subsequent decidualization in recent years.
Histone methylation

H3K27me3 exerts a repressive effect on gene transcription (21).

To investigate the importance of H3K27me3 in decidualization,

researchers isolated primary endometrial stromal cells (ESCs) from

human endometrial tissues and induced decidualization in vitro.

Transcriptome and epigenome profiles of the cells were obtained,

revealing certain alterations in H3K27ac and H3K27me3 at the

promoter regions of genes critical for decidualization, such as

WNT4, ZBTB16, PROK1, and GREB1. This finding suggests the

significance of H3K27me3 in the decidualization process (22).

Brosens’s group has reported a significant decrease in the level of

H3K27 methylation at the promoter distal end of decidual markers

PRL and IGFBP-1, during the process of endometrial stroma-decidua

transformation in human endometrium (23). Furthermore, studies

have established that the generation and erasure of H3K27me3 in

decidual stromal cells during pregnancy plays a critical role in the

maintenance of gestation (24). The transcriptional silencing of

specific gene targets by H3K27me3 helps to maintain uterine

quiescence and prevents decidual expression of parturition-

inducing hormone receptors, manifesting type 1 immunity and

generating myofibroblasts for wound-healing responses. On the

other hand, genome-wide H3K27 demethylation in late gestation

allows for target gene upregulation and decidual activation, leading to

labor entry (24).

Polycomb repressive complex 2 subunit (Ezh2), a core

component of polycomb repressive complexes 2, is a histone

methyltransferase that catalyzes mono-, di-, and tri-methylates

histone H3 at lysine 27 (25). Given the extensive function of

H3K27me3 in the process of implantation, researchers use Pgr-cre

mouse model to conditional delete Ezh2 in the uterus in order to

further explore the roles of H3K27me3 in implantation (26–29).

Osokine et al. provide evidence of the critical role of Ezh2 in the

regulation of wound healing responses in the decidual stromal cells

during early pregnancy. They demonstrated that Ezh2 confers

resistance to TGF-b-mediated wound healing signals in the

decidual cells. Conversely, the loss of EZH2 from the decidua

leads to fibroblast activation, the induction of TGF-b target genes,

and ultimately, pregnancy failure (28). H3K27me3-related gene

silencing is canceled after EZH2 deletion, leading to dysregulated

cell-cycle regulators expression, causing severe epithelial and

stromal differentiation defects and failed embryo invasion (29).

Unlike those studies using Pgr-Cre to conditional knockout Ezh2,
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deletion of Ezh2 using Amhr2-Cre leads to marked defects in uterine

adenogenesis. The deficient uterine adenogenesis was accompanied

by impaired uterine function and pregnancy loss (30). These
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findings confirm the essential roles of Ezh2-mediated H3K27me3

in implantation.

The H3K4me3 modification can be methylated by the mixed-

lineage leukemia MLL1/2 complex and is predominantly located in

the gene transcription start region, where it functions as a

transcriptional activator (31). Menin, as a crucial component of

the MLL complex, can regulate gene transcription through

H3K4me3 (32). Liu et al. utilized a combination of genetic,

biochemical, and pharmacological approaches to prove that Men1

conditional knockout in uterus disrupts the appropriated

differentiation of decidual stromal cells through regulating the

expression of Ptx3 in an H3K4me3 dependent manner. The

reduction in Ptx3 expression subsequent to Men1 ablation leads

to the aberrant activation of ERK1/2, resulting in a decrease in

BMP2 induction and impaired decidualization (33). Pr-set7, as a

methyltransferase of H4K20me1, has been reported to have a
TABLE 1 Mouse models expressing cre recombinase in the uterus.

Cre model Expression References

Pgr Epithelium, stroma, gland, myometrium (14)

Ltf Epithelium (15)

Sprr2f Epithelium (16)

Wnt7a Epithelium (17)

Amhr2 Stroma, myometrium (18)

Smmhc Myometrium (19)

Sm22 Myometrium (20)
FIGURE 1

Histone modifications required for mouse embryo implantation and placentation. The upper panel illustrates the crucial writers and erasers involved
in histone methylation (EZH2, Menin, and PR-Set7), histone acetylation (Hdac3, Sirt1 and P300), and histone ubiquitination (PRC1) during mouse
embryo implantation. These modifications contribute to stroma decidualization by regulating critical gene expression (e.g., Wnt4, Ccnd2, Cola1/2,
Ptx3, and IGFBP1). In the lower panel, histone modifications, including methylation and acetylation, are shown to be essential for placentation.
Changes in histone methylation by writers (EED/EZH2, Suv39h1/2) or erasers (Kdm3a/4c/5b, LSD1) control gene expression required for trophoblast
stemness, self-renew, invasion and differentiation. Acetylation regulators, including histone acetylases (CBP/P300) and deacetylases (Hdac1/2/6), are
involved in TSC epithelial-to-mesenchymal transition (EMT) and differentiation.
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crucial role in regulating gland development of uterus and

promoting the maintenance of pregnancy (34).
Histone acetylation

As early as the 1970s, scholars had confirmed that treatment

with E2 in the mouse and rat uterus resulted in an increase in

histone acetylation levels (35, 36). Histone deacetylase blockers and

HDAC inhibitors enhance proliferative and morphogenetic effects

of E2 on the mouse uterus (37, 38). Moreover, H3K27ac is

upregulated during decidualization and is significantly enriched at

the distal promoter of the decidualization marker IGFBP1 (39),

These findings suggest that histone acetylation plays a crucial role in

regulating uterine receptivity and decidualization during

implantation, possibly through modulation of ER and PR in

response to E2 and P4.

Hdac3 is a class I histone deacetylases (Hdac) family, which is

dependent on Zn2+ and responsible for transferring the acetyl group

from acetylated histone proteins (40). Conditional ablation of

Hdac3 using Pgr-cre mouse model resulted in infertility caused by

impaired implantation and decidualization. The loss of HDAC3

caused decidualization defects due to abnormal activation of Col1a1

and Col1a2 genes, and this regulatory mechanism is conserved in

human endometrium (41). In addition, the application of HDAC

inhibitors to endometrial stromal cells enhances the histone

acetylation levels of the TIMP-1 and TIMP-3 promoter regions,

promoting gene transcription and suppressing the invasion of

trophoblast (42).

Sirtuin1 (SIRT1) is a member of the sirtuin family of Class III

histone deacetylases which has been reported to be involved in the

regulation of cellular senescence and aging (43). Sirt1 mediates the

deacetylation of histones and non-histone proteins in an NAD+-

dependent manner (44). Regarding histones, SIRT1 exhibits the

ability to deacetylate several lysine residues, including lysine 26 of

histone H1 (H1K26), lysine 9, 14, 18, and 56 of histone H3 (H3K9,

H3K14, H3K18, and H3K56), and lysine 6, 12, and 16 of histone H4

(H4K6, H4K12, and H4K16). By modulating the acetylation status of

these specific lysine sites, SIRT1 plays a crucial role in regulating the

transcription of relevant genes (45, 46). In addition to its impact on

histones, SIRT1 also targets numerous non-histone proteins,

including various transcription factors and co-factors. Notable

examples include p53, HSF1, HIF-1a, NF-kB, p300, and KAT5.

Through deacetylation, SIRT1 directly influences the functions of

these proteins, thereby exerting broader effects on cellular processes

(47–51). Recent studies using the Pgr-cre mouse model have

confirmed that deletion of Sirt1 resulted in impaired

decidualization and pregnancy failure (52, 53). Moreover, the

uterus exhibits signs of premature aging after Sirt1 deletion (52).

Interestingly, utilizing Pgr-cre to achieve uterine Sirt1 overexpression

also caused decidualization abnormalities and pregnancy failure (54).

SIRT1 overexpression in endometriotic lesions worsens

endometriosis development, but the application of Sirt1 inhibitor

EX527 shows improvement (54). Although EX527 has already

undergone a clinical trial for Huntington's disease and its safety

was validated (55), the safety of EX527 for a developing embryo or
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fetus is a major concern. Therefore, further verification is needed to

determine whether EX527 can be a promising drug for patients with

pregnancy failure caused by decidualization abnormalities.

The process of human decidualization is associated with a

significant increase in histone acetylation levels in the promoter

regions of decidualization markers, such as IGFBP-1 and PRL. This

increase makes transcriptional factors more accessible, thus

promoting transcription (56, 57). Further research revealed that

during decidualization, C/EBP and FOXO1 bind to the enhancer

region of IGFBP-1, promoting its expression and increasing

H3K27ac levels with the help of C/EBP's recruitment of p300

(39). Application of histone acetylation inhibitors in the uterine

endometrial cells promoted the expression of glycodelin, a secretory

protein that is induced by progesterone exposure during the early

secretory phase following ovulation and remains present until the

start of menstruation or the establishment of pregnancy (38, 58).

HOXA10 is a crucial transcription factor that regulates uterine

receptivity during implantation (59). HOXA10 can be acetylated by

PCAF at K338 and K339 sites, which subsequently suppresses the

expression of ITGB3 in endometrial epithelium, hindering

embryonic implantation (60).
Histone ubiquitination

The Polycomb Repressive Complex 1 (PRC1) is an essential

chromatin-based repressor of gene transcription which catalyzes

monoubiquitination of histone H2A (H2AK119ub1) and stabilizes

H3K27me3 modification. The PRC1’s catalytic center is comprised

of the RING1A or RING1B protein and one of the six PCGF

proteins (61). Inhibition of H2AK119ub1 disrupted the normal

progression of decidualization, confirming the critical role of

H2AK119ub1 mediated by PRC1 in decidualization (62). Xin

et al. also reported that BMI1, a crucial component of PRC1,

interacts with PR and the E3 ubiquitin ligase E6AP in a manner

independent of PRC1, and mediates PR ubiquitination, allowing the

uterus to respond to P4 during the establishment of uterine

receptivity. Additionally, aberrantly low expression of BMI1 was

observed in endometrial samples of patients with recurrent

implantation failure, providing a potential target for the treatment

of recurrent-implantation-failure (63).
Histone lactylation

Lactylation modification is a novel protein post-translational

modification type induced by lactate that was first reported in 2019,

and studies have shown that lactylation modification plays an

important role in cancer, immunity, and other fields (64–66).

Yang et al. found that during the pregnancy of sheep, the lactate

content in the endometrial tissue and embryo significantly

increased, as well as the H3K18la modification. The target genes

regulated by H3K18la are mainly related to GSH metabolism and

function. Moreover, the application of inhibitors to block glycolysis

leads to a decrease in implantation capability in mice, while the

application of lactate significantly rescued implantation capability.
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These findings suggest that histone lactylation plays an important

role in the implantation process (67).
Histone modifications in placentation

As the blastomeres proceed with development, the initial

determination of cell fate commences, culminating in the gradual

formation of the inside cells and outside cells, ultimately giving rise

to two distinct lineages, the ICM and TE (68). During this period,

cells from both lineages undergo loss of totipotency and are

constrained to their respective lineage differentiation trajectories

(69). In this fate-determining process, covalent histone

modifications play critical roles. In vitro and in vivo experiments

have demonstrated that deletion of SETDB1, a H3K9

methyltransferase, in mouse embryonic stem cells (mESCs)

induces their differentiation towards the TE lineage (70, 71).

SUV39H1, another H3K9 methyltransferase, also suppresses

ICM-associated gene expression during TE lineage development

(72, 73). These studies indicated that the commitment of ICM

versus TE is precisely regulated by the incorporation of H3K9me3

a t spec ific chromat in domains by d i s t inc t h i s tone

methyltransferases. In addition to H3K9me3, H3K27me3, as a

transcriptional repressive-associated histone modification, also

plays a critical role in TE and ICM lineage differentiation (72,

73). There is a significant difference in the global H3K27me3 level

between ICM and TE. In the ICM lineage, promoter regions of TE-

associated genes are enriched with H3K27me3 modification, while

H3K27me3 enrichment on Cdx2 and Gata3 genes gradually

decreases during TE lineage differentiation and development (72,

73). These findings suggest the importance of H3K27me3 in cell fate

determination. Interestingly, Hdac1 binds to self-renewal-related

genes Oct4, Sox2, and Nanog in the ICM lineage, and to lineage-

regulating genes Cdx2, Elf5, and Eomes in the TE lineage,

accompanied by transcriptional activation-associated modification

H3 acetylation (74). These findings suggest that although the two

lineages have differences, they also share similarities, such as Hdac1

binding to target genes in different lineages to maintain their

respective self-renewal abilities (74).

The development of the placenta starts with contact between the

blastocyst TE and the endometrial epithelium in both humans and

mice. The blastocyst penetrates the endometrium via its

trophoblastic cells and embeds deeply, accompanied by an

abundance of proliferation and differentiation of these cells,

which constitutes the primary placenta structure (3). Although

both mouse and human placentas share a hemochorial nature,

they exhibit distinct variations in their overall morphology (75).

In humans, upon contact with the decidual, a portion of

trophoblastic cells undergo fusion to form primary syncytium,

which penetrates the decidual layer and embeds deeply (4, 76).

The trophoblasts with stemness undergo differentiation to form

functional trophoblast subtypes, including cytotrophoblasts (CTB),

syncytiotrophoblasts (STB), and extravillous trophoblasts (EVT) to

fulfill the placental functions (77). These cells gradually form a

villous-like structure, composed of fetal vessels and mesenchymal

stroma. The CTB and STB which are located at the outer layer of the
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placental villi, absorb nutrients from the maternal blood and form

the maternal-fetal barrier that provides protection for the fetus (77,

78). Meanwhile, the EVT migrates and invades the decidual layer

and even the myometrium to anchor the placenta firmly in the

uterus and remodel the spiral arteries of the uterus to establish

maternal-fetal blood circulation (76–78).

In mice, TE continues to proliferate to form extraembryonic

ectoderm (EXE) and the ectoplacental cone (EPC). The

extraembryonic mesoderm appears at E6.5 and gives rise to the

allantois and the extraembryonic mesodermal layers of the amnion

and chorion (3, 79). At E8.5, the fusion of the allantois with the

chorion constitutes a key event in placenta maturation. The fusion

facilitates the invagination of blood vessels derived from the

extraembryonic mesoderm into the trophoblastic layer of the

chorion, forming the key structure of the placenta-the labyrinth

layer (79). As the labyrinth layer of the placenta expands, the

trophoblasts differentiate into syncytiotrophoblasts (STB) and

sinusoidal trophoblast giant cells (TGC) to fulfill their respective

roles in placental function (3).

Although mice and humans have different placental structures

and key developmental genes, conditional knockout mice remain

the main model for investigating placental development due to their

shared classification as hemochorial placentas and the convenience

of genetic manipulation (4). The mouse models that express Cre

specifically in different trophoblast cell types are used to investigate

the function and potential mechanisms of different genes (Table 2).
Histone methylation

During embryonic development, cells undergo the first lineage

specification event, leading to the formation of either the embryonic

or extra-embryonic lineage, the latter of which will develop into the

placenta. In this process, there is a widespread loss of H3K27me3 in

promoter regions, followed by rapid dynamics during the morula to

blastocyst transition. (87, 88). Yang et al. reported that H3K27me3

and DNA methylation regulates key developmental genes in

embryonic and extra-embryonic cells. This helps to maintain the

highly regulated developmental plasticity in the embryonic cells, as

well as restricting the developmental potential of the extra-

embryonic cells (89). During pluripotent cell development, many
TABLE 2 Mouse models expressing cre recombinase in the trophoblast.

Cre model Expression References

Elf5 All subtype (80)

Tpbpa Tpbpa-lineage (81)

Gcm1 STB (82)

Cyp19 All subtype (83)

Tpbpar/Adaf-AdaP All subtype (84)

Plf TGC (85)

Pl1 TGC (85)

Tat All subtype (86)
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genes bound by PRC2 have both the repressive H3K27me3 mark

and the activating H3K4me3 mark. The H3K4me3/H3K27me3

bivalent state is absent in developmental genes until lineage

differentiation initiates, and most bivalent genes are repressed

(90). This regulatory mechanism allows genes to be silenced as

key developmental regulators while being primed for future

activation (or repression), and thus generally transition to

monovalent configurations upon differentiation. In the embryonic

lineage, PRC1 and poised RNAP are not recruited to the PRC2-

bound genes. However, in the extra-embryonic lineage, bivalent

genes are selectively targeted by Suv39h1-mediated H3K9me3

repression, which determines the initial fate (72).

Maternal H3K27me3-mediated imprinting can mediate gene

silencing in DNA hypomethylated regions during embryonic

development (88). In trophoblast, the paternal imprinting of the

Kcnq1 and IC2 domain on the distal end of mouse chromosome 7 is

mainly achieved through H3K27me3 and H3K9me2 mediated by

Polycomb complex, rather than relying on DNA methylation (91–

93). Moreover, oocyte-derived H3K27me3 also plays a vital role in

maintaining non-canonical gene imprinting in extraembryonic

lineage cells (94). The significance of Polycomb complex in gene

imprinting has been demonstrated through the whole-body

knockout mouse model and triploid compensation experiments,

which revealed that Eed knockout resulted in abnormal expression

of the paternal imprinting gene Mash2 (95). Animal cloning can be

achieved through somatic cell nuclear transfer (SCNT), but the

success rate is relatively low and often results in abnormal placental

development. H3K27me3-mediated gene imprinting may be a key

factor (96). Additionally, aberrant upregulation of H3K27me3-

mediated clustered miRNAs from Sfmbt2 has been identified as

the major cause of abnormal placental hyperplasia in SCNT

mice (97).

During the process of placenta maturation until the end of

pregnancy, there are substantial changes in the epigenome of

cytotrophoblasts. Lv et al. have reported that in trophoblast,

EZH2 suppresses CDX1 expression to regulate its invasion

through an H3K27me3-dependent manner (98). To further

investigate the impact of EZH2 on placental development, Nugent

et al. used Cyp19-cre to conditionally knockout Ezh2 in the placenta.

After EZH2 deletion, female fetuses became more vulnerable to

prenatal stress. But the placental morphology and function changes

after EZH2 knockout remain obscure (99).

H3K9 methylation is a histone modification associated with

transcriptional repression and is reported to regulate the function of

trophoblast (100, 101). Kdm3a is a demethylase that specifically

targets H3K9 methylation. Chakraborty et al. have demonstrated

that under hypoxic conditions, HIF downregulates H3K9

methylation at the Mmp12 promoter through Kdm3a, which

promotes transcriptional expression of MMP9 and enhances

trophoblast invasion (100). Meanwhile, methyltransferase

Suv39h2 regulates H3K9 methylation and is involved in the

pluripotency and differentiation of mTSC. Knockout of SUV39H2

in mTSC leads to significant changes in the landscape of H3K9

methylation and triggers differentiation (101).

H3K4me3 is predominantly enriched at the transcription start

site of active genes to activate transcription (102). KDM5B, as a
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demethylase of H3K4me3, regulates the self-renewal and H3K4

methylome in mTSC (103). Lsd1 can erase out monomethyl and

dimethyl groups from H3K4me2/3 or H3K9me2/3 to activate or

silence gene transcription (104, 105). Knockout of Lsd1 leads to

abnormal development of EXE and ultimately embryo death (106).

It has been demonstrated that Lsd1 directly suppresses the

expression of Ovol2 to maintain proper development of the EXE

(106). Lsd1 also regulates mitochondrial homeostasis in mTSC

through the target gene Sirt4 (107). Furthermore, Lsd1 forms a

complex with Jdjm2b and Tfap2c at critical gene promoters to

activate transcription and safeguard the identity of mTSC (108).

The abnormal H3K4me3 in the extraembryonic lineage caused by

assisted reproductive technology (ART) procedures also results in

developmental abnormalities. Knocking down the modifying

enzyme Kmt2e can restore the expression of the corresponding

genes and promote embryonic development (109). Besides,

H3K4me3 expression is also found downregulated in human

preeclampsia placenta (110).

A recent study reported that human iPSCs can be induced to

differentiate into trophoblast-like stem cells (111), which has

important implications for both basic research and potential

clinical applications. Interestingly, Yu et al. found that H3K36me2

modification plays a critical role in regulating the induction of pig

iPSCs into trophoblast-like stem cells. Kdm4c, as a demethylase of

H3K36me3/2, activates the expression of Cdx2 to promote this

trans-differentiation process (112).
Histone acetylation

The establishment of a model using human trophoblast stem

cells (hTSC) is of great importance for investigating the processes of

trophoblast proliferation and differentiation during human

placental development (113). In this context, the addition of the

histone deacetylase inhibitor VPA proved to be particularly effective

in promoting hTSC proliferation during the establishment phase,

while other inhibitors like SAHA or TSA showed similar effects.

These findings underscore the significance of histone acetylation in

maintaining the pluripotency and proliferation of hTSCs, although

the precise underlying mechanism remains unclear. During the

differentiation of primary cytotrophoblasts, significant decreases in

H3K27ac, H3K14ac, and H3ac are detected. This observation has

been further validated in the Bewo, an epithelial cell line isolated

from the placenta of a patient with choriocarcinoma (114).

Moreover, the examination of placental tissues from pregnancy-

related diseases revealed alterations in H3K8ac, H3K27ac, H3K9ac,

and the histone deacetylase SIRT1 to varying extents, indicating a

potential involvement of histone acetylation in the pathological

mechanisms underlying placental diseases (110, 115–118).

Using Sirt1-null embryos and established mTSC, it was

discovered that mTSC were unable to differentiate properly

following Sirt1 knockout (119). Similarly, Xiong et al. achieved

trophoblast-specific knockout of Sirt1 using Elf5-cre and observed

the same phenotype, indicating that Sirt1 knockout might activate

key genes in trophoblasts and disrupt their developmental

trajectory (120). In addition, Histone deacetylase 1 and 2 have
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been found critical in driving hTSC differentiation by controlling

the expression of TEAD4, TP63, OVOL1 and CGB (114).

Additionally, HDAC6 has been proven required for trophoblast

stem cell differentiation via directly deacetylates histones on the

epithelial gene promoters such as Claudin 6 and Occludin during

epithelial-to-mesenchymal transition (EMT) of TS cells (121).

Besides deacetylases, histone acetyltransferases have also been

found important in trophoblast. Cbp is widely expressed and

capable of acetylating both histone and non-histone proteins

(122). Abell and colleagues discovered that the absence of

Map3k4 in mTSC leads to EMT, through a mechanism in which

the knockout of Map3k4 prevents the direct phosphorylation of

Cbp by JNK, thereby promoting the acetylation of histone proteins

H2A and H2B and facilitating the transcription of relevant genes

(123). P300 is an originally identified coactivator of CBP. It plays a

crucial role in acetylation of H3K9 and K3K27 associated with 11b-
HSD2 expression in syncytiotrophoblasts (124).
Other histone modification

Citrullination is a post-translational modification (PTM) that is

catalyzed by the peptidyl arginine deiminase (PAD) enzyme family,

which includes PADI1-4 and PADI6 (125). Recent findings shed

light on the significance of histone citrullination. Ballasy et al

reported that Padi2 and Padi3, the most widely expressed

members of the PAD enzyme family in mTSCs, play a crucial

role in regulating differentiation. Knockout of Padi2 and Padi3

resulted in decreased expression of CDX2 and SOX2, leading to a

bias towards trophoblast giant cell (TGC) differentiation.

Additionally, deletion of Padi2 and Padi3 had a substantial

impact on the epigenomic landscape of mTSC, resulting in a

reduction in H3K9me3 and DNA methylation. Further

investigation showed that decreased DNA methylation of

differentiation genes, such as Gata3, Peg3, Socs3, and Hand1, was

the main cause of their increased expression during differentiation

(126). Furthermore, histone lactylation has also been found to play

a regulatory role in trophoblast cells. In patient with preeclampsia,

the placenta showed a significant increase in the H3K18la

modification compared to the control group. The activation of

target genes FN1 and SERPINE1 by H3K18la promotes placental

fibrosis (127), indicating the functional significance of histone

lactylation in placental pathology.
Concluding remarks

In recent years, emerging evidence has underscored the

significance of epigenetic regulations during embryo implantation

and placentation, highlighting their crucial role in these processes.

Here, we focused specifically on histone modifications and

summarized the key findings in this field. Despite increased

knowledge on the topic, there are still many unknowns regarding

the molecular basis of histone modifications and their roles in the

interaction between the embryo and the uterus during gestation.

Specifically, while considerable attention has been given to histone
Frontiers in Endocrinology 07
methylation and acetylation in the context of embryo implantation

and placentation, further investigations are required to fully unravel

the complexities of the epigenetic regulatory network involved,

encompassing other types of modifications as well. In addition,

despite the increasing studies of various histone modification

factors at the maternal-fetal interface, comprehending the

physiological and pathological functions, as well as the underlying

mechanisms of these factors, remain major challenges in this field.

Moreover, the existing models used in relevant research have

certain limitations, primarily relying on traditional cell lines and

conditional knockout mouse models. Unfortunately, many essential

genes crucial for implantation and placentation cannot be

thoroughly studied, as their knockout often leads to embryonic

lethality or developmental defects. Hence, there is an urgent need to

develop inducible Cre systems with uterus/placenta-specific gene

promoters, enabling a more precise assessment of histone

modifications throughout different stages of pregnancy.

Additionally, considering the disparities between mice and

humans, it is imperative to develop more diverse models, such as

organoids and cell chips, to overcome the current limitations and

effectively identify therapeutic targets for diseases such as

implantation failure, preeclampsia, and fetal growth restriction.
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