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A clinical evaluation of the
performance of five commercial
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Purpose/objective(s): Auto-segmentation with artificial intelligence (AI) offers an

opportunity to reduce inter- and intra-observer variability in contouring, to

improve the quality of contours, as well as to reduce the time taken to

conduct this manual task. In this work we benchmark the AI auto-

segmentation contours produced by five commercial vendors against a

common dataset.

Methods and materials: The organ at risk (OAR) contours generated by five

commercial AI auto-segmentation solutions (Mirada (Mir), MVision (MV),

Radformation (Rad), RayStation (Ray) and TheraPanacea (Ther)) were compared

to manually-drawn expert contours from 20 breast, 20 head and neck, 20 lung

and 20 prostate patients. Comparisons were made using geometric similarity

metrics including volumetric and surface Dice similarity coefficient (vDSC and

sDSC), Hausdorff distance (HD) and Added Path Length (APL). To assess the time

saved, the time taken tomanually draw the expert contours, as well as the time to

correct the AI contours, were recorded.

Results: There are differences in the number of CT contours offered by each AI

auto-segmentation solution at the time of the study (Mir 99; MV 143; Rad 83; Ray

67; Ther 86), with all offering contours of some lymph node levels as well as

OARs. Averaged across all structures, the median vDSCs were good for all

systems and compared favorably with existing literature: Mir 0.82; MV 0.88;

Rad 0.86; Ray 0.87; Ther 0.88. All systems offer substantial time savings, ranging

between: breast 14-20 mins; head and neck 74-93 mins; lung 20-26 mins;

prostate 35-42 mins. The time saved, averaged across all structures, was similar

for all systems: Mir 39.8 mins; MV 43.6 mins; Rad 36.6 min; Ray 43.2 mins; Ther

45.2 mins.
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Conclusions: All five commercial AI auto-segmentation solutions evaluated in

this work offer high quality contours in significantly reduced time compared to

manual contouring, and could be used to render the radiotherapy workflow

more efficient and standardized.
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1 Introduction

In radiation treatment planning, contouring (also called

segmentation or delineation) of organs-at-risk (OARs) and target

volumes is a vital part of the radiation therapy treatment chain (1, 2).

These contours are usually generated manually by a radiation

oncologist or radiotherapy technologist (RTT), but the process is

subjective and thus dependent on the user’s experience (3–5) as well

as the imagingmodalities available to inform the process (6). Contour

inconsistencies lead to variations in the quality of the plan and,

ultimately, patient outcomes, and it has been reported that worse

disease control and increased toxicity can be attributed to poor

contouring (7–9). Despite a vast array of contouring guidelines (10,

11), inter-observer, and even intra-observer, variations remain an

issue. Auto-segmentation has been long proposed as a solution to

reduce such variations and to reduce the time spent on this manual

task (12–14), with artificial intelligence and deep-learning algorithms

showing great promise (15–17).

Time savings are always considered valuable as they allow the

radiation oncologist to spend more time on other activities, such as

patient contact or peer review. However, it is vital that artificial

intelligence (AI) contours are critically reviewed prior to their use in

the clinic. The AI solutions are generated based on a specific training

dataset, which can vary between hundreds to thousands of patients.

Individual patient anatomies can easily differ from thesemodel training

datasets, however, with anatomical variations, surgical removal of

tissue, presence of non-biological materials and different imaging

protocols leading to minor (boundary miss) or major (missing slices)

segmentation errors (18). As such, it is recommended that every output

of an auto-segmentation application should be reviewed, corrected if

needed, and approved prior to clinical use (18). If the time to correct to

the AI contours becomes comparable to the time required to draw the

contours manually, the user should question whether there is any use

for the AI model.

A plethora of commercial deep learning segmentation solutions

is available for a center that wishes to standardize and speed up their

contour generation. While there have been several benchmarking

studies demonstrating the high quality of contours generated, the

authors are not aware of any publications explicitly comparing the

contours produced by different AI-segmentation commercial

vendors to a common dataset. Other similar works include the

AAPM Grand Challenges at the 2017 (19) and 2019 (20) meetings
02
(on thoracic CT auto-segmentation and head and neck MRI

segmentations, respectively), however competition entries did not

have to be an approved commercial product. In our work we

compare the contours produced by five commercial AI auto-

segmentation solutions, Mirada, MVision, Radformation,

RayStation and TheraPanacea, for a set of 80 patients (20 breast,

20 head and neck, 20 lung, 20 prostate).

In evaluating the performance of these auto-segmentation

solutions, the goals of using such a system should be considered. As

stated previously, auto-segmentation solutions offer the opportunity

for more consistent contours and a reduction in contouring time (21–

24). As such, in this study assessments are made using geometric

scoring, which assess the variability of contours, and time-based

scoring, which allows for an understanding of the impact on clinical

workflow. It is hoped that such an assessment will provide additional

information to the procurement process for radiation therapy centers

and will encourage further improvements to the standards of auto-

segmentation solutions.
2 Material and methods

2.1 Clinical contours

A total of 80 patients were assessed that were previously treated

in our clinic: 20 from each of four anatomical sites (breast, head and

neck, lung, and prostate). Selection was random, based on the date

of treatment but it was confirmed that the sample size was

sufficiently large that it provided a robust dataset to ensure

sufficient stress-testing of the algorithm, which has been shown to

be an important consideration when testing auto-contouring

solutions (25). For instance, the breast cases were balanced

between 11 right and 10 left (one case was bilateral), 5 thoracic

wall, 5 involving supra-clavicular fossa, 3 involving the axilla and 1

treating the internal mammary node. The demographic also

ensured adequate testing of the solutions, with a median (range)

age of 64 years (39-87), weight 71 kg (46-138), height 1.62 m (1.52-

1.68) and BMI 26.1 (19.9-50.7).

Contours generated from each of the AI solutions were

compared to expert contours drawn by three Radiation

Oncologists, all with at least ten years’ contouring experience,

following protocols and guidelines (26–28) as detailed in Table 1.
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TABLE 1 Contouring guidelines followed by our clinicians when drawing the expert contours.

Anatomical
Region Organ Guidelines Mir MV Rad Ray Ther

Breast Breast
RTOG atlas

2008
(29, 30) (29) RTOG atlas 2008 (11) (29)

Heart
RTOG atlas

2008
(31) (32) (32) (11) (29)

Humerus
RTOG atlas

2008
Internal
guidelines

(29)

Liver
RTOG atlas

2008
Upper abdominal RTOG Atlas

2013
(11) (29)

Lung
RTOG atlas

2008
(32) (32) (32) (32) (29)

Oesophagus
RTOG atlas

2008
(27, 32) (11) (29)

SpinalCanal
RTOG atlas

2008
Internal
guidelines

(32) RTOG 1016 2011 (11) (29)

Head and neck Brain (28) (27) (27) (27) 33

Brainstem (27) (27) (28) (27) (28) 33

Chiasm (28) (27) (28) (27) 33

Eye (27) (27) (28) (27) (28) 33

Hyoid (27)

Hypophysis (27) (27) (27) (27) (28) 33

InnerEar
(27) Internal

guidelines

LacrimalGl (27) (27) (27) (27) (28)

Larynx (27) 34 (27) RTOG 1016 2011 (27) (29)

Lens (27) (27) (28) (27) (28) 33

Mandible (27) (27) (27) (27) (27) 33

OpticNerve (28) (27) (27) (27) (27)

ParotidGl (27) (27) (27) (27) (35)

SpinalCord (27) (27) (27) RTOG 1016 2011 (27)

Sternocleido (27)

SubmandGl (27) (27) (27) (27) (35) 33

Trachea (27)
Internal
guidelines

Internal
guidelines

(11) 32

Lung Heart
RTOG atlas

2008
31 (32)

Liver
RTOG atlas

2008
(36) (27)

Lung
RTOG atlas

2008
32 (32) 32

Oesophagus
RTOG atlas

2008
(27) (36) (32) (11) 32

SpinalCanal
RTOG atlas

2008
(27) (32) RTOG 1016 2011 32

Prostate Bladder (26) (26) (26) (26) (26)

(Continued)
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Contours were peer reviewed after one Radiation Oncologist

contoured all the structures for a given anatomical site. These

manual contours were drawn using ProSoma v4.1 (MedCom

GmbH, Darmstadt, Germany) using a brush tool, with

interpolation between slices (which is routine clinical practice). In

editing the AI contours, a brush tool was again used to push in/out

the contour lines, together with an eraser when required. The same

Radiation Oncologist that drew the original contours also corrected

the AI contours, blinded from the original contours, with a gap of at

least six weeks from the original contouring.

Taking into account laterality (counting individually for left and

right) and excluding the patient external, the number of contours

for each patient were: nine for breast; 17 for head and neck; six for

lung; 10 for prostate. Any contours excluded from the study are

indicated with the * in Table 1, with the motivation for the exclusion

given in Section 2.4.
2.2 AI contouring systems

In this study the following five systems were tested: DLCExpert

v2.6.4.47181 from Mirada Medical (Oxford, UK); MVision v1.2.1

(Helsinki, Finland); AutoContour v1.0.25.0 from Radformation

(New York, USA), Deep Learning Segmentation within the

RayStation Treatment Planning System v12.0.0.932 from

RaySearch (Stockholm, Sweden); and Annotate v1.10.0 from

TheraPanacea (Paris, France) (henceforth referred to as Mir, MV,

Rad, Ray and Ther, respectively). In such a crowded, competitive,

environment all systems undergo constant development and

updates. This work was conducted in April 2022 and thus

corresponds to the status of each system at that time.

All systems separate the implementation into individual models

for different anatomical locations. However, most systems offer the

option to either define custom models, in which the structures to be

included are manually selected, or to run any model on any image

dataset. Therefore, it is not logical to list the structures included in

each model, but rather all the possible structures that can be

generated with each system (across all a system’s models). These

are listed in Supplementary Table 1.
Frontiers in Oncology 04
2.3 Contour evaluation

Each AI contour was compared to its corresponding expert

contour, which was manually-drawn by a Radiation Oncologist. A

multitude of similarity metrics are available when quantitatively

comparing the similarities of two structures, as detailed by Taha and

Hanbury (38). However, as detailed by Sherer et al., no single metric

can effectively measure the quality of a contour (39). In this work we

use a number of geometric metrics, each of which have advantages

and disadvantages, as well as make an assessment of the time to

correct the AI contours.
2.3.1 Geometric metrics
The volumetric Dice Similarity Coefficient (vDSC) is a metric

that measures the amount of overlap of two contours and is

commonly used in studies comparing different segmentations of

the same organ. Simple to compute, it is defined as the union of two

volumes (A and B) normalized to the mean of the two volumes, as

shown in equation 1:

vDSC =
2 jA ∩ B j
jA j+ jB j : (1)

The vDSC has a score between 0 and 1, with a value of 1 when

the two contours exactly overlap. While it has been utilized

frequently, it has been shown that it does not correlate with the

clinical quality of the contours or the time to adjust them (40), it

does not differentiate between systematic and random errors, and it

is not sensitive to complex boundaries. Additionally, the vDSC is

biased to give higher scores for larger volumes.

In radiotherapy planning, contouring is performed on a slice by

slice basis so the surface Dice similarity coefficient (sDSC),

proposed by Nikolov et al. (41), is a more appropriate metric. It

assesses the agreement of two contours rather than two volumes

and is defined as the union of two contours (S1 and S2) normalized

to the mean surface of the two contours within a tolerance

parameter t, as shown in equation 2:

sDSC =
S1 ∩ B2,t
�
�

�
� + S2 ∩ B1,t

�
�

�
�

S1j j + S2j j : (2)
TABLE 1 Continued

Anatomical
Region Organ Guidelines Mir MV Rad Ray Ther

Bowels (26) (26) (26) (26)

CaudaEquina (26) (11)

FemoralHead (26) (26) (26) (26) (26)

PenileRoot (26) (26) 37 (26)

Prostate (26) (26) 37 (26) (26)

Rectum (26) (26) 37 (26) (26)

Sigmoid (26) (26)

SeminalVes (26) (26) (26) (26)
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It has been shown that sDSC has a good correlation with time

required to edit contours (42, 43), however the tolerance parameter

t, which represents inter-observer variations in segmentations,

must be set appropriately. Nikolov et al. (41) determined values

of t between 0.97-2.93 mm for organs in the head and neck. In this

work the voxelized version of the contours (i.e. binary masks) is

analyzed, not the original (subvoxel) contours. As we wanted to

analyze all edits no additional tolerance was added, so the tolerance

is, at most, equal to the voxel size.

The distance between boundaries can be assessed using the

Hausdorff distance (HD) (40, 44–46). Computed as the maximum

nearest neighbor Euclidean distance between two volumes, it is sensitive

to boundary errors (14, 47). However, as stated in the introduction, one

of the primary motivators for the use of auto-segmentation tools within

radiotherapy is to save time and it has been shown that HD does not

correlate with the time required to edit contours because it does not

account for the proportion of edits needed (40, 48). Nonetheless, HD is

a common metric that is well understood by most readers, and it has

been suggested that because volumetric overlap and distance metrics are

not highly correlated they are potentially complementary (14). For these

reasons it is included in this study.

Additionally, the added path length (APL), proposed by

Vaassen et al. (42) and defined as the total length of contour that

must be corrected to make the two contours overlap, was

determined. It has been shown that this has good correlation with

the time required for contouring (42). The APL accounts for the

number of slices an organ encompasses and is not normalized by

volume, which makes it unbiased for volumetrically small but

lengthy organs such as the esophagus, which are often subject to

poor visualization (39). The APL assumes lines are drawn to edit

contours, however if a brush tool is used it may be more appropriate

to consider the added volume, such as the false negative volume

proposed by Kiser et al. (43). In our work we computed APL with

no additional tolerance so that all edits could be assessed, so the

tolerance is, at most, equal to the voxel size.

Visual representation of the four above metrics can be found in

Vaassen et al. (42). As stated previously, each of the above metrics

(vDSC, sDSC, HD and APL) have advantages and disadvantages.

Potentially a composite of the above metrics may assist in

determining contour quality, but inherently there is a limitation in

that none of the metrics are able to distinguish where the variation is

located. In this work all four of the above geometric indices have been

determined for each contour, on each patient, for each AI contouring

system (using Open Reggui (https://www.openreggui.org/), but it is

necessary to also consider non-geometric assessments, which are

explained in the proceeding sections.
2.3.2 Timing comparisons
Although it has been shown that auto-segmentation tools offer

time-saving compared to manual contouring (22, 40, 49–51), manual

reviews are necessary and corrections are often required. While the

sDSC and APL geometric indices can be used as surrogates of the

time-saving offered by AI auto-segmentation systems, in this work we

manually recorded the absolute times to draw the expert contours as

well as the times required to correct the AI contours.
Frontiers in Oncology 05
The times required by each system to generate the AI contours

are of the order of a few minutes, but these are not relevant in a

clinical setting because these processes can be configured to operate

in the background of clinical operation. With the exception of

RayStation’s deep learning segmentation, which must be processed

within the treatment planning solution (TPS), the other systems

offer a solution in which the images from the CT are automatically

intercepted by the AI auto-segmentation system, appropriate

contours (dependent on the anatomical site) are automatically

generated, and the CT images and RT structure sets are

automatically pushed to a desired destination for review and for

the radiation oncologist to add their target volumes. As such, the

time to generate the AI contours can be considered to be zero or

insignificant, which is the assumption made in this work. However,

to ensure the AI system meets clinical expectations and to ensure

consistency and accuracy, it is critical that all AI-generated contours

are reviewed. Thus, for AI systems the relevant time to consider is

the time to correct the AI-generated contours so that they are

considered appropriate for clinical use. In this work such correction

times were recorded, for a randomly selected subset of the patients

(three) in each anatomical site and on each system.

There is a potential for bias because each system does not

contour the same structures (e.g. a given system may only contour a

well-defined structure like the lung and thus the overall correction

time will be shorter). Therefore, if a system did not generate a

contour that the institution does, it was assigned the average

correction time from the other systems that did generate that

contour. To allow computation of the time saving, only the

structures contoured routinely by our institution were corrected.

The absolute and relative time savings (in minutes and as

percentage, respectively) were computed.
2.4 Excluded and combined structures

To ensure a fair comparison, some structures had to be

excluded from the study, even if they are routinely contoured in

the clinic. The larynx can be contoured following a variety of

guidelines [RTOG 1016, (52, 53)], which may explain poor results

reported in literature [e.g. vDSC=0.28 was reported by Guo et al.

(54)]. We found that the different systems followed different

guidelines, so for fairness larynx was excluded throughout our

comparison. As detailed in Table 1, other structures follow

different guidelines but the impact was much less dramatic so

they were st i l l compared. The hyoid, inner ear and

sternocleidomastoid muscles were excluded due to lack of

AI structures.

Supplementary Figure 1 shows the different contouring

approaches to the optic nerves and optic chiasm – it is not clear

where the boundary between the optic nerves and optic chiasm

should be drawn. We approached this by grouping the optic chiasm

and left and right optic nerves into a common structure called the

‘optic pathway’. Most systems contour the optic chiasm and optic

nerves according to the guidelines of Brouwer et al. (27) (based on

CT), but in our clinic we routinely use MRI so follow the guidelines

of Scoccianti et al. (28). MV provides contours that follow the latter
frontiersin.org
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guidelines, so those structures were assessed. Assessment of the

optic pathway rather than individual structures should eliminate

discrepancies between CT and MRI based contouring. Ray was

excluded from this combined structure because, although it did

contour the optic nerves, it did not contour the optic chiasm.
3 Results

As can be seen in Supplementary Table 1, the total number of

structures (including laterality) for each AI contouring software are:

Mir 99; MV 142; Rad 83; Ray 67; Ther 86. In this work only a

proportion of these structures were tested (10 for breast, 19 for head

and neck, 6 for lung, 10 for prostate) as these correspond to

structures routinely contoured in our clinic. As an illustration,

example structures for a head and neck case, are shown in Figure 1.

Some structures are very similar (eyes, mandible), whereas other

show significant differences (brainstem, oral cavity, larynx).
3.1 Similarity comparison metrics

The median vDSC and sDSC indices for all systems across the

20 patients are detailed in Supplementary Table 2 (breast),

Supplementary Table 4 (head and neck), Supplementary Table 6

(lung) and Supplementary Table 8 (prostate). The distribution of

results across the 20 patients is shown as boxplots in Supplementary

Figure 2 (breast), Figure 2 (head and neck), Supplementary Figure 4

(lung) and Supplementary Figure 6 (prostate).

The corrected segmentations were found to agree better with

the expert contours than the original AI segmentations, with

geometric similarity coefficients increasing. For instance, the

corrected breast OAR vDSCs demonstrated an absolute increase

of 0.01/0.02/0.06/0.01/0.02 for Mir/MV/Rad/Ray/Ther respectively.

The median HDs and APLs for all systems across the 20 patients

are detailed in Supplementary Table 3 (breast), Supplementary

Table 5 (head and neck), Supplementary Table 7 (lung) and
Frontiers in Oncology 06
Supplementary Table 9 (prostate). The distribution of results

across the 20 patients is shown as boxplots in Supplementary

Figure 3 (breast), Figure 3 (head and neck), Supplementary

Figure 5 (lung) and Supplementary Figure 7 (prostate).
3.2 Timing comparisons

For the expert contours, the average time (mean ± standard

deviation) required to manually draw each anatomical site was

found to be: breast 22 ± 4 mins; head and neck 97 ± 24 mins; lung

26 ± 6 mins; prostate 42 ± 11 mins. Examples of the contours

produced by the AI contours, which require correction, is shown

in Figure 1.

It can be seen from Table 2 that, even after accounting for

correction times, all systems offer time savings, ranging between:

Breast 14.2-20.6 mins; head and neck 74.3-92.6 mins; lung 20.0-25.6

mins; prostate 34.6-41.9 mins.
4 Discussion

4.1 Overview

Auto-segmentation offers the opportunity to reduce inter- and

intra-observer variability in contouring, as well as to reduce the time

taken to conduct this manual task. It has been shown that AI offers

an improvement in the quality of contours compared to atlas-based

solutions, but to date there have been very few benchmarking tests

to compare different commercial AI auto-segmentation solutions

against a common dataset. The AAPM organized Grand Challenges

at the 2017 (19) and 2019 (20) meetings on thoracic CT auto-

segmentation and head and neck MRI segmentations, respectively,

but tests on the systems currently available on the market is lacking.

In this study we compared five commercial AI auto-segmentation

solutions (Mirada, MVision, Radformation, RayStation and

TheraPanacea) to generate organ at risk contours (a total of 45
A B C

FIGURE 1

Example head and neck contours in the study, showing similarities and differences between the different systems at three cranial-caudal heights
(A–C).
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structures) for 20 breast, 20 head and neck, 20 lung and 20 prostate

patients. These AI contours were compared to contours drawn

manually by a radiation oncologist.
4.2 Number of structures

There was a wide variation in the total number of structures that

each AI contouring software can produce. Not all were assessed in

this study because not all structures are routinely contoured in our

clinic, so readers should inspect the details in Table 1 for further

information. Care should also be taken to review the guidelines that

each system follows, so that they align with those of the clinic.

In this study only OARs were assessed, but when selecting an

appropriate AI contouring solution for clinical use it may also be

important to consider whether the system can contour lymph node

levels, to aid with drawing of the CTV. Mir, MV, Ray and Ther can
Frontiers in Oncology 07
generate axillary lymph nodes, including levels 1-4, interpectoral

and internal mammary nodes. MV, Rad, Ray and Ther can generate

head and neck lymph nodes, including levels 1-7, with MV also

contouring levels 9-10.

Another consideration for a clinic is that the AI contouring

solutions generate more contours that are drawn in routine clinical

use. While this may provide new insights, such as revealing doses to

previously uncontoured organs that could be correlated with

toxicity, they will also require additional editing and thus the

time saved by the AI solution will decrease.
4.3 Timing comparisons

As can be seen in the results, all commercial auto-segmentation

solutions offer significant time savings compared to manual

contouring. Comparing the time to manually draw the contours to
A

B

FIGURE 2

Distribution of (A) vDSC and (B) sDSC (with no added tolerance) across the 20 patients for each system, for the 19 organs at risk routinely contoured
for head and neck.
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A

B

C

FIGURE 3

Distribution of (A) HD and (B) APL (with no added tolerance) across the 20 patients for each system, for the 19 organs at risk routinely contoured for
head and neck. (C) Zoom of APL.
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the time to perform corrections to the auto-segmentations, relative

savings of 64-99% are possibly achieved depending on the anatomical

site and commercial solution used. In general, minimal corrections are

required for the structures involved in treating the breast, lung or

prostate, while using any of the software for head and neck leads to an

average saving of at least 74 mins. The time to correct any given

structure ranged from 0 secs (lens) to 206 secs (bowels), the latter of

which is comparable to the time to manually contour. As stated in the

introduction, one of the primary motivations for introducing auto-

segmentation is for time saving, and on this matter all systems offer an

advantage over manual contouring. However, as shown by this range,

sometimes it may be faster to manually contour the structure rather

than editing an AI contour.

As stated in the Methods, if a system does not contour all the

structures, it is assigned the average correction time from the other

systems. This approach was utilized to allow a fair comparison

between systems. For example, Ray does not contour liver or

bowels, both of which required substantial corrections in our

testing and thus led to longer correction times for the other systems.
4.4 Geometric comparison indices

Despite numerous studies showing that volumetric Dice

similarity coefficient (vDSC) and Hausdorff distance (HD) do not

correlate well with contour quality, they remain commonplace in

the literature and thus the results in this study can be compared

with previous works. They were therefore included alongside the

more appropriate, but less well understood, surface Dice similarity

coefficient (sDSC) and Added Path Length (APL) metrics. In this

study there are too many structures to compare each one

individually with literature, so general comments are made on

anatomical sites as well as on outliers.
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4.4.1 Volumetric Dice similarity coefficient (vDSC)
and surface Dice similarity coefficient (sDSC)

Van Dijk et al. (55) classified vDSC scores into good

(vDSC>0.8), good-intermediate (0.7<vDSC<0.8), intermediate

(0.6<vDSC<0.7), intermediate-poor (0.5<vDSC<0.6), poor

(vDSC<0.5). From Supplementary Tables 2, 4, 6 and 8, averaged

across all structures, the median vDSCs would be classified as good

for all systems. However, it should be noted that vDSC scores are

relative and highly dependent on the structure volume. A vDSC of

0.8 would be considered exceptionally good for small structures

such as the optic nerves, while such a value would be considered

very poor for large structures such as the brain or lungs. As such,

comments on specific structures, for which there are extensive

results in literature or for whom there were outliers, are made in

the separate anatomical site sections below.

Due to its relatively recent introduction, there are few reported

sDSC values in literature. Vaassen et al. (42) show sDSC values

considerably less than vDSC, with the esophagus showing the most

spread (0.07-0.94) and a median range of 0.66-0.97 for heart, lungs,

mediastinum and spinal cord. From Supplementary Tables 2, 4, 6

and 8, averaged across all structures, the median sDSCs for all

systems appear to be slightly lower than the results of Vaassen: Mir

0.47; MV 0.57; Rad 0.51; Ray 0.54; Ther 0.59; while the maximum

results for each system are also not as high: Mir 0.70; MV 0.76; Rad

0.74; Ray 0.81; Ther 0.81.
4.4.2 Hausdorff distance (HD) and Added Path
Length (APL)

Van Dijk et al. (55) classified mean HDs into: good-

intermediate HD<4mm, intermediate 4mm<HD<6mm, poor

6mm<HD<8mm and ve r y poo r (HD>8mm) . F r om

Supplementary Tables 3, 5, 7 and 9, averaged across all structures,
TABLE 2 Mean time needed to correct AI-generated contours and time saving compared to manual contouring, for three patients and five different AI
contouring solutions.

Mean time

Manual
Institution

Correction
Mirada

Correction
MVision

Correction
Radformation

Correction
RayStation

Correction
Therapanacea

Breast No. structures 10 8 8 10 5 10

Time for 10 structures [min] 22 7.5 1.6 7.8 3.1 1.4

Saving [min/%] 14.5/66.0% 20.4/92.8% 14.2/64.4% 18.9/86.0% 20.6/93.7%

Head and neck No. structures 19 27 27 27 26 30

Time for 19 structures [min] 97 8.2 9.8 22.7 4.6 4.4

Saving [min/%] 88.8/91.6% 87.2/89.9% 74.3/76.6% 92.4/95.3% 92.6/95.4%

Lung No. structures 6 6 6 6 5 6

Time for 6 structures [min] 26 5.2 1.2 6.0 1.5 0.4

Saving [min/%] 20.8/80.1% 24.9/95.6% 20.0/76.8% 24.5/94.4% 25.6/98.4%

Prostate No. structures 10 8 9 9 5 10

Time for 10 structures [min] 42 7.4 0.3 4.3 5.2 0.1

Saving [min/%] 34.6/82.3% 41.7/99.3% 37.7/89.7% 36.8/87.6% 41.9/99.7%
The saving refers to the time saved computed by finding the mean time correct each contour, multiplied by the number of contours drawn by the manual.
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the median maximum HDs in our study were found to be: Mir

13.4 mm; MV 10.7 mm; Rad 10.8 mm; Ray 12.0 mm; Ther 9.7 mm.

In computation of the APL, Vaassen et al. found that

mediastinum had the highest value (826 cm [range 290–2441

cm], compared to a median range of 24–413 cm for heart, lungs,

esophagus and spinal cord (42). In our study, from Supplementary

Tables 3, 5, 7 and 9, averaged across all structures, the median APLs

were all within this range: Mir 411.7 cm; MV 331.4 cm; Rad

342.5 cm; Ray 356.5 cm; Ther 355.9 cm.
4.5 Breast and lung cases

For the breast cases, there was a wide variation in the breast

contour agreement, for all systems (across all systems, range 0.11-

0.95). This is not unexpected because the limits of the breast are not

clearly visible on CT and are difficult to define. Very high vDSC

scores were observed for lungs (all systems ≥ 0.95) and liver (all

systems ≥ 0.96). High values are also seen in literature for these

structures (lungs 0.99, liver 0.98 (56)) whose boundaries are well

defined and can be contoured by automated grey value

thresholding. The esophagus demonstrates a variation between

systems, which is evident in both the breast and lung cases. The

clear outlier are the contours from Mir, but this is expected as the

system contours much more superiorly than the expert.
4.6 Head and neck cases

The HD for brain was larger for MV than the other systems as

they intentionally do not include the brainstem, which is included

as part of the expert structure. The lacrimal gland vDSCs found for

the different systems ranged between 0.52-0.61, which is slightly

lower than what has been previously reported 0.69 (41). The

lacrimal gland results have a wide spread, likely due to the

difficulty in defining the contour boundaries. Lens vDSCs were

found to be 0.56-0.83, with only Mir lying outside of previous

reported values 0.67-0.99 (56–58). The mandible contour from Rad

showed the largest APL as it often contoured parts of the teeth. Poor

vDSC scores have been previously reported in literature for the

optic chiasm [e.g. vDSC 0.37-0.63 (56, 59, 60)], likely due to the

difficulty of its visualization on CT. By assessing the optic pathway,

rather than individually the chiasm and optic nerves, the systems in

this study achieved vDSCs between 0.53-0.68, with Ray excluded

because it does not contour the chiasm. Segmentation of the parotid

in CT images is challenging due to the irregular shape, poorly visible

boundaries (59), and (possibly) dental artifacts. Parotid vDSCs were

found to range between 0.81-0.88 for this study, which is in the

upper range as reported in literature 0.57-0.95 (56, 61–72). The

range of submandibular glands vDSCs (0.75-0.90) produced by the

AI systems were all towards the upper end of previously reported

values 0.60-0.88 (56, 57, 73, 74). The spinal cord vDSCs in this study

ranged between 0.69-0.83, which fits into the range reported in

literature previously 0.62-0.90 (57, 61, 62, 70, 75; La 58, 76, 77).

Spinal cord HDs were much higher with Mir than the other systems

because it did not contour along the whole length of the CT scan.
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4.7 Prostate cases

Typically vDSC scores in the pelvic region have ranged between

0.60-0.99 (45, 54, 56, 78, 79), and similar values were found in our

prostate cases: Mir 0.54-0.95; MV 0.68-0.97; Rad 0.66-0.97; Ray

0.85-0.95; Ther 0.52-0.97. The lowest values were for the penile root

(vDSC 0.54-0.71) which is difficult to visualize on CT, and the

bowels (vDSC 0.59-0.76) and sigmoid (vDSC 0.52-0.77), which are

generally contoured more precisely by the AI solutions. It should be

noted that none of these three structures are contoured by Ray, so

the lower bound of its range above is higher.
4.8 Usefulness of metrics and
study limitations

As detailed in the introduction, as well as standardization of practice

one of the primary motivations for the introduction of an auto-

segmentation solution is to save time. In contouring, time-saving

depends on three main aspects; the visibility of the OAR boundaries;

the volume of the OAR; and the delineation tools used for manual

contouring (42). For example, the esophagus has poorly visible

boundaries, which is reflected by poor vDSC (Supplementary

Figure 2). Additionally, the esophagus is volumetrically a relatively

small organ and vDSC is normalized by volume, leading to further

suppression of values. However, because it is a small structure the

number of slices it covers is few and the absolute time needed to adjust

the contour is low. It has been shown that APL is a useful metric for such

assessments because it takes all of the above issues into account, which is

shown by the low values for esophagus in Supplementary Figure 3.

A limitation of the study is that the gold standard, to which all

systems are being compared, is a single set of contours drawn by a

single radiation oncologist. Despite being drawn by experienced

radiation oncologists following strict guidelines, there will

inevitably be different interpretations of the guidelines and inter-

observer variations (which can be substantial). A more complete

study would be to form the expert contours from the average of

multiple independently drawn structures from different radiation

oncologists, but the additional time this requires meant it was not

feasible to do this while simultaneously assessing the most

contemporary models for each system.

Another limitation of the work presented is the contemporary

nature of the field. Since the models were run on the datasets, all

systems have updated their models and offer additional structures

and improvements to the contouring quality (for instance, Mir

released a head and neck lymph node model after the analysis was

performed). Users should bear in mind that the data presented in

this study therefore reflects the status of each solution in April 2022.

In this work it was assumed that the time to generate the

contours is zero for all systems because the operation can be

performed in the background. However, this is not the case for

Ray, in which the user must import the CT dataset into the TPS,

select the appropriate deep learning algorithm and run it to generate

the contours. Additionally, in some systems, such as Rad, the user is

prevented from exporting the RT structure set from the AI auto-

segmentation software unless a manual review of all AI-generated
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contours has been performed across all slices. In this work these

times were not accounted for.

It has been discussed that clinical acceptance of an AI auto-

segmentation solution requires evaluation in multiple domains (39,

80). In addition to the quantitative geometric comparison and

timing efficiencies assessed in this work, it is desirable to conduct

a qualitative evaluation by the end user, as well as assess the clinical

impact in terms of OAR and target doses. However, the intention of

this work is to provide guidance for centers wishing to purchase a

commercial AI segmentation solution and, as such, it is critical for

the information to be contemporary and relevant. As stated in

Section 2.2, all commercial products undergo regular updates so it

was not feasible to perform assessments in all domains in a timely

manner. These are planned as future work.
4.9 Selection of an AI auto-
segmentation solution

As well as the number of structures (which, it should be noted,

is often customizable between anatomical sites for most systems),

geometric indices and timing savings detailed above, there are other

parameters to consider when selecting an appropriate AI auto-

segmentation solution. The cost should be considered, which is

typically either a fixed annual fee or on a per-patient basis. If

utilizing the per-patient model, users should bear in mind that the

number of times the model may be utilized may be higher than the

number of patients if replans are common or if the auto-

segmentation is run on daily CBCT images. Additionally, the user

should ensure that the contours offered, and the guidelines they

follow, are aligned with the structures that are required by their

clinical practice.

Another important consideration is the connectivity of the

solution and how it integrates within existing clinical workflows.

Excessive exporting and importing into current contouring software

and TPSs increases the potential for data corruption and impacts on

the potential time-saving. Also, while it is critical that all AI-

generated contours are reviewed, the user may prefer to perform

this to do this in their own contouring software, which is not

possible with all systems.
5 Conclusions

It can be concluded that all five commercial AI auto-

segmentation solutions assessed in this work, Mirada, MVision,

Radformation, RayStation and TheraPanacea, offer significant time-

saving compared to manual contouring, while the quality of

structures generated is very good and in line with previous

literature. While each system performs at different levels, the

introduction of any commercial AI auto-contouring solution

offers the potential for more contours to be drawn, improved

consistency and standardization, minimization of inter-observer

variability and time saving. In the future, a separate evaluation of AI

contouring of lymph nodes as well as an inter-observer validation of

the contours will be performed.
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17. Vrtovec Tomaž, Močnik D, Strojan Primož, Pernus ̌ F, Ibragimov B. Auto-
segmentation of organs at risk for head and neck radiotherapy planning: from atlas-
based to deep learning methods. Med Phys (2020) 47(9):e929–50. doi: 10.1002/
mp.14320

18. Claessens M, Oria CS, Brouwer C, Ziemer BP, Scholey JE, Lin H, et al. Quality
assurance for AI-based applications in radiation therapy. Semin Radiat Oncol (2022) 32
(4):421–31. doi: 10.1016/j.semradonc.2022.06.011

19. Yang J, Veeraraghavan H, Armato SG, Farahani K, Kirby JS, Kalpathy-Kramer J,
et al. Autosegmentation for thoracic radiation treatment planning: A grand challenge at
AAPM 2017. Med Phys (2018) 45(10):4568–81. doi: 10.1002/mp.13141

20. Cardenas CE, Mohamed ASR, Yang J, Gooding M, Veeraraghavan H, Kalpathy-
Cramer J, et al. Head and neck cancer patient images for determining auto-
segmentation accuracy in T2-weighted magnetic resonance imaging through expert
manual segmentations. Med Phys (2020) 47(5):2317–22. doi: 10.1002/mp.13942

21. Hwee J, Louie AV, Gaede S, Bauman G, D’Souza D, Sexton T, et al. Technology
assessment of automated atlas based segmentation in prostate bed contouring. Radiat
Oncol (2011) 6(1):1–95. doi: 10.1186/1748-717X-6-110

22. Young AV, Wortham A, Wernick I, Evans A, Ennis RD. Atlas-based
segmentation improves consistency and decreases time required for contouring
Frontiers in Oncology 12
postoperative endometrial cancer nodal volumes. Int J Radiat Oncol Biol Phys (2011)
79(3):943–475. doi: 10.1016/j.ijrobp.2010.04.063

23. Walker GV, Awan M, Tao R, Koay EJ, Boehling NS, Grant JD, et al. Prospective
randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted
radiation planning in head and neck cancer. Radiotherapy Oncol (2014) 112(3):321–25.
doi: 10.1016/j.radonc.2014.08.028

24. Tao CJ, Yi JL, Chen NY, RenW, Cheng J, Tung S, et al. Multi-subject atlas-based
auto-segmentation reduces interobserver variation and improves dosimetric parameter
consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical
study. Radiotherapy Oncol (2015) 115(3):407–11. doi: 10.1016/j.radonc.2015.05.012

25. Kanwar A, Merz B, Claunch C, Rana S, Hung A, Thompson RF. Stress-testing
pelvic autosegmentation algorithms using anatomical edge cases. Phys Imaging Radiat
Oncol (2023) 25(August 2022):100413. doi: 10.1016/j.phro.2023.100413

26. Gay HA, Jin J-Y, Chang AJ, Ten Haken RK. Utility of normal tissue-to-tumor a/
b Ratio when evaluating isodoses of isoeffective radiation therapy treatment plans. Int J
Radiat Oncology Biology Phys (2012) 85(1):e81–875. doi: 10.1016/j.ijrobp.2012.09.021

27. Brouwer CL, Steenbakkers RJHM, Bourhis J, Budach W, Grau C, Grégoire V,
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