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Virus-specific and shared
gene expression signatures in
immune cells after vaccination
in response to influenza and
vaccinia stimulation

Huy Quang Quach1, Krista M. Goergen2, Diane E. Grill2,
Iana H. Haralambieva1, Inna G. Ovsyannikova1,
Gregory A. Poland1 and Richard B. Kennedy1*

1Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester,
MN, United States, 2Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
Background: In the vaccine era, individuals receive multiple vaccines in their

lifetime. Host gene expression in response to antigenic stimulation is usually

virus-specific; however, identifying shared pathways of host response across a

wide spectrum of vaccine pathogens can shed light on the molecular

mechanisms/components which can be targeted for the development of

broad/universal therapeutics and vaccines.

Method: We isolated PBMCs, monocytes, B cells, and CD8+ T cells from the

peripheral blood of healthy donors, who received both seasonal influenza

vaccine (within <1 year) and smallpox vaccine (within 1 - 4 years). Each of the

purified cell populations was stimulated with either influenza virus or vaccinia

virus. Differentially expressed genes (DEGs) relative to unstimulated controls

were identified for each in vitro viral infection, as well as for both viral infections

(shared DEGs). Pathway enrichment analysis was performed to associate

identified DEGs with KEGG/biological pathways.

Results:We identified 2,906, 3,888, 681, and 446 DEGs in PBMCs, monocytes, B

cells, and CD8+ T cells, respectively, in response to influenza stimulation.

Meanwhile, 97, 120, 20, and 10 DEGs were identified as gene signatures in

PBMCs, monocytes, B cells, and CD8+ T cells, respectively, upon vaccinia

stimulation. The majority of DEGs identified in PBMCs were also found in

monocytes after either viral stimulation. Of the virus-specific DEGs, 55, 63, and

9 DEGs occurred in common in PBMCs, monocytes, and B cells, respectively,

while no DEGs were shared in infected CD8+ T cells after influenza and vaccinia.

Gene set enrichment analysis demonstrated that these shared DEGs were over-

represented in innate signaling pathways, including cytokine-cytokine receptor

interaction, viral protein interaction with cytokine and cytokine receptor, Toll-

like receptor signaling, RIG-I-like receptor signaling pathways, cytosolic DNA-

sensing pathways, and natural killer cell mediated cytotoxicity.
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Conclusion: Our results provide insights into virus-host interactions in different

immune cells, as well as host defense mechanisms against viral stimulation. Our

data also highlights the role of monocytes as a major cell population driving gene

expression in ex vivo PBMCs in response to viral stimulation. The immune

response signaling pathways identified in this study may provide specific

targets for the development of novel virus-specific therapeutics and improved

vaccines for vaccinia and influenza. Although influenza and vaccinia viruses have

been selected in this study as pathogen models, this approach could be

applicable to other pathogens.
KEYWORDS

influenza vaccine, smallpox vaccine, virus infection, gene expression signature,
transcriptomic analysis, pathway analysis
1 Introduction

Although each pathogen has its unique characteristics,

pathogen-associated molecular patterns (PAMPs) are conserved

across a broad spectrum of pathogens (1). It is well-known that

the host relies on limited sets of pattern-recognition receptors

(PRRs) to recognize PAMPs, subsequently triggering a variety of

signaling pathways as part of the rapid innate immune response (2–

4). Therefore, host responses to pathogens are pathogen-specific

although certain immune response pathways are shared across

multiple pathogens due to the conservation of PAMPs within

those pathogens. While understanding pathogen-specific host

responses is critical for the development of pathogen-specific

therapeutics (5), identifying shared pathways across a wide

spectrum of pathogens can shed light on the molecular

mechanisms and/or components which can be targeted for the

development of broad or even universal therapeutics and vaccines.

The analysis of gene expression signatures in blood leukocytes

has been intensively utilized as a robust approach to characterize

host responses after infection or vaccination (6). As such, gene

transcripts have been used to distinguish a variety of viral infections

(7–12) or to differentiate viral from bacterial infections (13–16).

This approach has been also applied to study immune responses

(17–19) after vaccination. We have recently applied this approach

to compare T-cell transcriptional responses to high-dose and

adjuvanted influenza vaccines in older adults (20). A common

feature in these studies is that gene expression was characterized

in peripheral blood mononuclear cells (PBMCs) after a single

pathogen stimulation. Therefore, information on shared pathways

of host immune responses to multiple vaccine pathogens is limited

and subject to confounding due to differences in experimental/

analytical approaches between studies.

In the vaccine era, almost everyone receives numerous vaccines

in their lifetime, often including 1-2 vaccines annually. We

surmised that it would be possible to identify shared biological

pathways associated with gene expression across multiple

pathogens. We also hypothesized that different cell types of blood
02
leukocytes bear unique gene expression signatures. To test this

hypothesis, we analyzed gene expression in PBMCs, monocytes, B

cells, and T cells isolated from peripheral blood of donors who

previously received both influenza vaccine (within <1 year) and

smallpox vaccine (within 1 - 4 years). We then compared and

contrasted vaccine-specific gene expression signatures to identify

shared pathways associated with transcriptional responses to the

two vaccine pathogens across different cell subtypes.
2 Materials and methods

The following methods are similar or identical to our previously

published studies (20–22).
2.1 Ethics statement

This study involved human participants and was approved by

The Mayo Clinic Institutional Review Board (IRB# 11-000576).

Written informed consents was obtained from each donor before

blood collection.
2.2 Blood samples and cell separation

Blood samples were obtained from healthy blood donors (n =

10) who received both seasonal influenza vaccine (within <1 year)

and smallpox vaccine (within 1 - 4 years). Age and gender

characteristics of blood donors are summarized in Supplemental

Table S1. The peripheral blood mononuclear cells (PBMCs) were

isolated from blood, following our previously reported protocol

(22). Isolated PBMCs were suspended in a freezing media (20%

heat-inactivated FCS, 10% DMSO in RPMI 1640 media) and stored

in liquid nitrogen for future use.

MACS MicroBead isolation kits were used to separate

monocytes (catalog no. 130-096-537; Miltenyi Biotec, San Diego,
frontiersin.org
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CA), B cells (catalog no. 130-091-151), and CD8+ T cells (catalog

no. 130-096-495) from the PBMCs, following the manufacturer’s

protocols. The frequency of monocytes (CD14+CD16+), B cells

(CD19+), CD8+ T cells (CD3+CD8+) in the PBMCs and their

purities after separation were assessed by flow cytometry.
2.3 mRNA sequencing

Cells (1×106) of each population (PBMCs, purified monocytes,

B cells, CD8+ T cells) were incubated for 6 hours in a 37 °C, 5% CO2

incubator under three conditions: i) cell culture media only (RPMI

1640 with glutamine supplemented with 10% FCS, Pen/Strep,

nonessential amino acid, HEPES buffer) as unstimulated control,

ii) influenza virus (A/H1N1/California/07/2009-like strain) in cell

culture media with a virus/cell incubation ratio of 5, and iii) vaccinia

virus (New York City Board of Health strain) in cell culture media

with the virus/cell incubation ratio of 5. After incubation, the cells

were collected and subjected to total RNA extraction using a Qiagen

RNeasy Plus Mini Kit (catalog no. 74134) and Qiagen RNAProtect

reagent (catalog no. 76104), following a step-by-step instruction in

the manufacturer’s protocol. Extracted RNA was qualitatively and

quantitatively evaluated by Agilent 2010 Bioanalyzer assay (Agilent,

Palo Alto, CA) and a NanoDrop 2000 spectrophotometer (Thermo

Fisher Scientific, Waltham, MA).

The extracted RNA (150 ng) was sequenced at Mayo Clinic’s

Gene Sequencing Core Facility (Rochester, MN). Briefly, the

TruSeq® Stranded mRNA Library Prep v2 (Illumina, San Diego,

CA, USA) was used to create cDNA libraries, following the

manufacturer’s protocol used at Mayo Clinic Core Facility.

Illumina’s HiSeq 2000 S2 Reagent Kit (51 cycles) was used to

perform paired-end read on the Illumina HiSeq 2000 Instrument.

Gene sequencing data was aligned using the MAP-RSeq V1

pipeline to the h19 human genome as outlined in Kalari et al.

(23). The viral sequences were mapped to the vaccinia virus

ACAM2000 genome (AY313847.1) and the influenza A/

California/07/2009 H1N1 genome.
2.4 Statistical analysis

Gene expression was normalized for each cell subset (PBMCs,

purified monocytes, B cells, CD8+ T cells) using Conditional

Quantile Regression (CQN), which adjusts for GC content and

gene length bias, via the cqn R package (24). Any post-normalized

genes with <16 counts and genes with coefficient of variation in the

lower 20th percentile in all groups were removed from further

analysis. After filtering, 12,733, 11,641, 12,201, and 12,501 human

genes remained for the PBMCs, monocytes, B cells, and T cells,

respectively. The edgeR package (25, 26) was used to identify

differentially expressed genes (DEG) by fitting quasi-likelihood

negative binomial generalized log-linear model, utilizing the offset

provided by the CQN normalization and blocking on subject. DEGs

were identified based on fold change (FC) of gene expression as

compared to corresponding uninfected samples with a threshold set

at abs(log2FC) ≥0.585 and p-value <0.05. All p-values associated
Frontiers in Immunology 03
with DEG results were unadjusted. Gene set enrichment analysis

(GSEA) and over-representation analysis using KEGG pathways

was performed using the clusterProfiler package in R (27). Pathway

analyses were performed under the settings: i) the minimum

geneset size of 3, ii) the maximum geneset size of 800, iii) the p-

value cutoff of 0.05, and iv) adjusted p-values were calculated using

the Benjamini-Hochberg method (28). GSEA provides a statistical

framework using the hypergeometric distribution to test if KEGG

pathways are overrepresented by significant DEGs.
3 Results

3.1 Differentially expressed genes in
influenza-stimulated cells

After blood collection, we isolated PBMCs, and purified

monocytes, B cells, and CD8+ T cells were using commercial

magnet-based separation kits (Figure 1). We incubated each of

these cell populations with either influenza virus or vaccinia virus

and profiled gene expression in each cell subset (Figure 1).

Differential gene expression analysis identified a total of 2,906,

3,888, 681, and 446 differentially expressed genes (DEGs) in

influenza-stimulated PBMCs, monocytes, B cells, and CD8+ T

cells, respectively (Figures 2A–D). Interestingly, PBMCs and

monocytes shared 1,763 DEGs, while PBMCs had 322 and 284

DEGs in common with B cells and CD8+ T cells, respectively

(Figure 2E). In overlapping DEGs, we observed a similar pattern

of gene expression in PBMCs and monocytes (Figure 2F). The

expression patterns of DEGs were also similar between PBMCs and

B cells (Figure 2G), and between PBMCs and CD8+ T cells after

influenza stimulation (Figure 2H), although some genes

differentially regulated in B cells and CD8+ T cells.

Among the DEGs in each cell population, the highest fold

changes of gene expression were observed in PBMCs and

monocytes (Table 1). PBMCs and monocytes also shared

numerous DEGs, including seven of top ten up-regulated genes

(IFNA1, IFNA2, IFNA7, IFNA10, IFNA13, IFN17, TEKT1) and

two of top ten down-regulated genes (CCL24 and SCRT2) (Table 1).

In contrast, the expression level of DEGs in B cells and T cells were

~100-fold lower than that in PBMCs and monocytes (Table 1). Both

B cells and T cells did not share any DEGs with PBMCs among their

top DEGs (Table 1). Meanwhile, B cells and T cells shared some

genes encoding for interferon induced proteins, such as IFIT1,

RSAD2, among their top DEGs (Table 1).

To further understand the biological pathways associated with

the DEGs, we performed gene set/pathway enrichment analysis

using the clusterProfiler package and KEGG modules and pathways

(27). We found that DEGs in PBMCs, monocytes, B cells, and CD8+

T cells were significantly enriched in 42, 30, 11, and 26 pathways

(adjusted p <0.05), respectively (Figure 3). Influenza A and

coronavirus disease-COVID-19 pathways were among the top

enriched pathways in all influenza-stimulated cell populations

(Figure 3). The NOD-like receptor signaling pathway was also

enriched in each of the four cell populations upon influenza

stimulation (Figure 3). Similar to the pattern of gene expression
frontiersin.org
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(Figure 2F), almost all signaling pathways associated with DEGs in

monocytes were also found in PBMCs, including JAK-STAT

signaling pathway, cytosolic DNA-sensing pathway, Toll-like

receptor signaling pathway, RIG-I-like signaling pathway,

cytokine-cytokine receptor pathway, and PI3K-Akt signaling

pathway (Figure 3).
3.2 Differentially expressed genes in
vaccinia-stimulated cells

We also identified DEGs in vaccinia-stimulated cells (Figure 4).

In general, the number of DEGs in vaccinia-stimulated cells was

approximately 30-fold less than that in the influenza-stimulated

cells. Specifically, a total of 97, 120, 20, and 10 DEGs were identified

in PBMCs, monocytes, B cells, and CD8+ T cells after vaccinia

stimulation, respectively (Figures 4A–D). Of vaccinia-induced

DEGs, 36 DEGs were identified in both PBMCs and monocytes
Frontiers in Immunology 04
(Figure 4E). We also observed a similar expression pattern of

overlapping DEGs in PBMCs and monocytes (Figure 4F), PBMCs

and B cells (Figure 4G). Only one common DEG was identified in

PBMCs and CD8+ T cells, but its expression was in opposite

directions (Figure 4H). Similar to influenza stimulation (Table 1),

vaccinia-stimulated PBMCs and monocytes shared multiple

interferon-encoding genes, such as IFNA7, IFNA17, among their

top DEGs (Table 2).

Gene set enrichment analysis demonstrated that vaccinia-

induced DEGs in PBMCs, monocytes, and CD8+ T cells were

significantly (adjusted p <0.05) enriched in 64, 29, and 9

pathways (Figure 5). No pathway was significantly associated with

vaccinia-induced DEGs in B cells. Similar to influenza-induced

DEGs (Figures 3A, B), vaccinia-induced DEGs in PBMCs and

monocytes were enriched in multiple innate pathways, including

cytosolic DNA-sensing pathway, RIG-I receptor signaling pathway,

Toll-like receptor signaling pathway, JAK-STAT signaling pathway,

and NOD-like receptor signaling pathway (Figures 5A, B).
FIGURE 1

Study design. Healthy subjects (n = 10) who received both seasonal influenza vaccine (within the prior year) and smallpox vaccine (with the prior 1-4
years) were enrolled for this study. Blood was sampled from each subject and PBMCs were isolated from blood. Monocytes, B cells, and CD8+ T
cells were separated from PBMCs using MACS MicroBead isolation kits. Each cell population was then incubated with either influenza virus (A/H1N1/
California/07/2009-like strain) or vaccinia virus (NYCBOH strain). Cells in cell culture media served as unstimulated controls. After infection, RNA was
extracted from incubated cells and gene expression in each cell population was profiled.
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FIGURE 2

Identification of differentially expressed genes (DEGs) in influenza-stimulated cells. (A–D) Volcano plots show the distributions of DEGs in PBMCs,
monocytes, B cells, and CD8+ T cells. DEGs are defined as genes with p <0.05 and fold change (FC) >1.5, equivalent to log2FC >0.585 (for up-
regulated genes) or <0.67 (equivalent to log2FC <-0.585 for down-regulated genes) as compared to corresponding unstimulated controls. Down,
down-regulated; NS, nonsignificantly different; Up, up-regulated genes. (E) Venn diagram shows overlapped DEGs among PBMCs, monocytes, B
cells, and CD8+ T cells. (F–H) A comparison of expression pattern of overlapped DEGs between PBMCs and monocytes (F), PBMCs and B cells (G),
PBMCs and CD8+ T cells (H). For comparison purpose in (F–H) the levels of gene expression in PBMCs were sorted.
TABLE 1 Top DEGs in influenza-stimulated cells.

Top 20 DEGs in influenza-stimulated PBMCs

No. Gene name Fold change p value No. Gene name Fold change p value

1 IFNA8 2181.955 7.04E-09 11 FNDC4 0.145373 8.44E-09

2 IFNA14 726.0143 1.73E-16 12 RASAL1 0.145041 1.1E-11

3 IFNA1 678.3852 1.98E-07 13 C5orf20 0.141976 6.08E-11

4 IFNA2 607.6028 3.85E-17 14 SCRT2 0.133294 1.14E-07

5 IFNA7 559.336 3.74E-07 15 NRG1 0.128385 9.47E-08

6 IFNA17 373.914 1.76E-06 16 STEAP4 0.119966 9.26E-09

7 IFNA13 291.8295 1.52E-06 17 CXCL6 0.119082 1.26E-09

8 SERPINB10 232.9731 5.44E-13 18 ALOX15B 0.116041 2.87E-09

9 TEKT1 193.4793 1.06E-13 19 MYCL1 0.11461 2.4E-10

(Continued)
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TABLE 1 Continued

Top 20 DEGs in influenza-stimulated PBMCs

No. Gene name Fold change p value No. Gene name Fold change p value

10 IFNA10 151.9787 4.34E-13 20 CCL24 0.076289 1.98E-12

Top 20 DEGs in influenza-stimulated monocytes

1 IFNA1 1511.601 2.92E-07 11 SHF 0.172435 2.15E-09

2 IFNA7 1362.34 1.78E-06 12 DTX1 0.167912 1.3E-06

3 IFNA17 1263.123 5.21E-06 13 EMILIN1 0.167355 1.72E-08

4 IFNA5 744.4645 2.71E-16 14 LMCD1 0.165757 2.45E-07

5 IFNA16 656.0336 3.28E-15 15 SYT1 0.141535 9.13E-07

6 MS4A5 568.8181 8.83E-06 16 C21orf67 0.135241 2.74E-07

7 IFNA13 505.4156 4.98E-06 17 CMTM8 0.131482 8.34E-06

8 IFNA2 447.5793 4.8E-16 18 CCL24 0.09982 1.8E-10

9 TEKT1 445.7084 1.98E-15 19 OLFM2 0.097763 3.03E-08

10 IFNA10 417.3111 7.5E-12 20 SCRT2 0.063292 1.95E-07

Top 20 DEGs in influenza-stimulated B cells

1 OASL 9.618311 2.31E-08 11 SCD 0.414793 1.75E-10

2 IFIT1 9.153269 4.22E-06 12 PEG10 0.399879 9.61E-10

3 CMPK2 6.92906 2.39E-06 13 TUBB4A 0.394574 4.17E-07

4 IFIT3 5.018015 1.28E-05 14 C3orf37 0.393327 6.55E-10

5 IFI44L 4.864317 3.43E-06 15 C1orf233 0.393102 0.00038

6 CCL2 4.823913 0.00922 16 KLF15 0.367394 1.2E-05

7 RSAD2 4.599041 5.89E-05 17 SLC38A11 0.356771 5.22E-11

8 BCL2L14 4.491828 0.000623 18 NPW 0.344144 9.47E-06

9 OLR1 4.210285 0.001037 19 LOC100507254 0.337172 3.71E-09

10 IFI44 3.98739 2.55E-05 20 CTGF 0.311241 2.57E-08

Top 20 DEGs in influenza-stimulated T cells

1 IFIT1 13.98099 1.76E-05 11 GDF10 0.511657 0.001692

2 CXCL11 9.346556 1.7E-05 12 PRSS23 0.493313 5.07E-07

3 RSAD2 8.150847 0.000141 13 MIR4323 0.489808 0.012527

4 IFI44L 7.970153 3.95E-05 14 PODN 0.483733 0.000127

5 CMPK2 7.262956 0.000144 15 ADAMTS1 0.476493 0.000123

6 CXCL10 7.177282 1.95E-05 16 CMKLR1 0.446075 2.32E-06

7 IFIT3 6.931951 0.00024 17 MYCL1 0.435182 0.012756

8 CXCL9 6.493048 8.53E-06 18 ITGAM 0.405805 1.29E-08

9 USP18 5.441969 0.000483 19 CXCR1 0.391311 0.002656

10 IFI6 5.069574 0.000428 20 CX3CR1 0.360917 1.67E-09
F
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In each cell subset, top 10 up-regulated genes (No. 1-10) and top 10 down-regulated genes (No. 11-20) were selected based on their fold changes of expression compared to corresponding
unstimulated controls. Full list of DEGs and their additional information are available in Supplemental Tables S2–S5.
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3.3 Shared DEGs in each cell population
after influenza and vaccinia stimulation

We next explored the commonalities of DEGs in each cell

population after influenza and vaccinia stimulation. Of DEGs

induced either by influenza or vaccinia virus, we identified a total

of 55, 63, and 9 shared DEGs in PBMCs, monocytes, and B cells,

respectively (Figure 6). Meanwhile, no shared DEGs were identified

in CD8+ T cells. Although we observed a similar expression pattern

in PBMCs and monocytes after viral stimulation; a significant

number of shared DEGs were expressed in different directions
Frontiers in Immunology 07
upon influenza and vaccinia stimulation (Figures 6A, B). In

contrast, shared DEGs in B cells were expressed similarly after

influenza and vaccinia stimulation (Figure 6C).

We further identified over-represented pathways associated with

the shared DEGs after influenza and vaccinia stimulation to

understand their biological functions. We found that shared DEGs in

PBMCs and monocytes were significantly over-represented in 35 and

26 biological pathways, respectively (Figure 7). These pathways

included: cytokine-cytokine receptor interaction, Toll-like receptor

signaling pathway, NOD-like receptor signaling pathway, RIG-I-like

receptor signaling pathway, viral protein interaction with cytokine and
A B

DC

FIGURE 3

KEGG pathways associated to DEGs in influenza-stimulated PBMCs (A), monocytes (B), B cells (C), and CD8+ T cells (D). All KEGG pathways shown
are statistically significant (adjusted p <0.05). NES, normalized enrichment score. Red color (NES <0) indicates suppressed pathways while bule color
(NES >0) indicates activated pathways. The size of each red or blue dot represents the total number of genes (size of geneset) in the pathways.
Additional information of these pathways is provided in Supplemental Tables S10–S13.
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FIGURE 4

Identification of DEGs in vaccinia-stimulated cells. (A–D) Volcano plots show the distributions of DEGs in PBMCs, monocytes, B cells, and CD8+ T
cells incubated with vaccinia virus. (E) Venn diagram shows overlapped DEGs among vaccinia-stimulated PBMCs, monocytes, B cells, and CD8+

T cells. (F–H) A comparison of expression pattern of overlapped DEGs between PBMCs and monocytes (F), PBMCs and B cells (G), PBMCs and
CD8+ T cells (H). For comparison purpose in (F–H), the levels of gene expression in PBMCs were sorted.
TABLE 2 Top DEGs in vaccinia-stimulated cells.

Top 20 DEGs in vaccinia-stimulated PBMCs

No. Gene name Fold change p value No. Gene name Fold change p value

1 HIST1H4B 14.82992 5.3E-06 11 SIGLEC15 0.56646 0.012112

2 IFNA17 12.72248 0.01125 12 OR2B11 0.56639 0.02211

3 IFNA8 12.50059 0.011594 13 XIRP1 0.55963 0.002415

4 IFNA2 9.718248 4.3E-05 14 CCL22 0.55423 7.1E-06

5 IFNA14 9.684393 0.000185 15 ZNF366 0.550802 3.89E-06

6 IFNA7 8.327709 0.022589 16 CCL8 0.514673 0.014367

7 IFNA10 7.110967 0.001202 17 CLEC4F 0.507814 0.000387

8 HIST1H4E 6.306492 3.37E-06 18 GREM1 0.48265 4.95E-05

9 VTRNA1-3 5.144499 2.02E-06 19 OR9A4 0.423488 0.010843

10 HIST1H4C 4.131405 7.48E-06 20 CCL11 0.27434 0.009736

Top 20 DEGs in vaccinia-stimulated monocytes

1 IFNA17 11.63274 0.020463 11 HYAL4 0.547074 0.007491

2 HIST1H4E 10.21971 7.98E-11 12 NRCAM 0.532147 6.28E-08

(Continued)
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cytokine receptor, JAK-STAT signaling pathways, cytosolic DNA-

sensing pathway, and natural killer cell mediated cytotoxicity. In

contrast, only one shared DEG was identified in B cells and it was

significantly associated with the taste transduction pathway.
4 Discussion

Understanding host transcriptomic responses to pathogens after

vaccination is critical for the development of vaccines (5). In this study,

we identified virus-specific DEGs in PBMCs, monocytes, B cells, and T

cells isolated from healthy donors who had been immunized with both

seasonal influenza vaccine and smallpox vaccine. Among the virus-

specific DEGs, we were able to identify shared DEGs and their

associated biological pathways after influenza and vaccinia virus

stimulation. Our data showed a significant number of innate

signaling pathways associated with shared DEGs were activated in
Frontiers in Immunology 09
response to influenza and vaccinia virus stimulation. Our data also

highlighted the role of monocytes as a cell population driving

transcriptomic responses in PBMCs to both viruses. These results

suggest that this specific cell type may be useful as sentinels to monitor

the physiologic response during an infection or after vaccination.

We chose influenza and smallpox vaccines as vaccine models

for multiple reasons. First, influenza vaccine is administered

annually in the U.S.; therefore, it is a logical choice to study.

Meanwhile, after its eradication in 1980, routine smallpox

vaccination ceased (29). However, vaccinia virus is used as a

vector for the development of multiple vaccines. Public concern

still exists concerning the safety of these vaccines and there have

been an increased number of zoonotic orthopoxvirus outbreaks. A

recent global re-emergence of monkeypox (30), another member of

Poxviridae, further heightens this public concern. As a result,

vaccinia virus serves as a re-emerging pathogen model which

may require a vaccination campaign to re-establish herd
TABLE 2 Continued

Top 20 DEGs in vaccinia-stimulated PBMCs

No. Gene name Fold change p value No. Gene name Fold change p value

3 IFNA7 9.452872 0.032506 13 C10orf81 0.523123 0.039039

4 HIST1H4B 8.827368 1.25E-08 14 SNORA16B 0.522103 0.001467

5 HSPA4L 7.710156 1.34E-13 15 MTUS1 0.506773 3.63E-05

6 SERPINH1 6.382744 2.3E-15 16 LINC00487 0.460149 0.048456

7 MRVI1-AS1 5.148515 0.045137 17 AMH 0.412942 0.005379

8 IFNA5 5.134458 0.024392 18 FOXD4 0.392176 0.015616

9 ESPNL 4.556629 0.041009 19 EPHA6 0.368833 0.002251

10 CYP7A1 4.295212 2.08E-06 20 METTL21C 0.098127 0.03412

Top 16 DEGs (10 up-regulated and 6 down-regulated genes) in vaccinia-stimulated B cells

1 MIR374B 1.876026 0.011394 9 LOC100133985 1.62534 0.003572

2 HIST1H4E 1.800007 0.00086 10 MTRNR2L7 1.603618 0.046264

3 MIR3679 1.793666 0.03245 11 KLF15 0.661182 0.005598

4 HIST1H1D 1.754327 0.015881 12 RAX2 0.660299 0.008124

5 SCARNA1 1.706011 0.003422 13 PLEKHA4 0.64964 0.008154

6 IQGAP3 1.705527 0.001947 14 SLC35G5 0.647834 0.012933

7 LOC91450 1.702022 0.001277 15 MYLPF 0.642104 0.01482

8 TAS2R46 1.669156 0.007607 16 ANP32AP1 0.626549 0.01517

Top 10 DEGs (8 up-regulated and 2 down-regulated genes) in vaccinia-stimulated T cells

1 MIR4467 1.764117 0.000538 6 LOC100303749 1.553224 0.030204

2 RNF223 1.663955 0.014388 7 UQCRBP1 1.530758 0.044532

3 MTRNR2L6 1.590673 0.029816 8 SRRM4 1.523065 0.000494

4 MIR101-1 1.58819 0.012361 9 SRGAP3 0.662062 0.000663

5 HCG9 1.55889 0.003262 10 KLF1 0.647852 0.011399
In vaccinia-stimulated PBMCs and monocytes, top 10 up-regulated genes (No. 1-10) and top 10 down-regulated genes (No. 11-20) were selected based on their fold changes of expression
compared to corresponding unstimulated controls. In vaccinia-stimulated B cells, top 10 up-regulated genes (No. 1-10) were also selected based on their fold changes, but only 6 DEGs (No. 11-
16) were down-regulated. Similarly, in vaccinia-stimulated CD8+ T cells, 8 (No. 1-8) and 2 DEGs (No. 9-10) were up-regulated and down-regulated, respectively. Full list of DEGs and their
additional information are available in Supplemental Tables S6–S9.
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immunity (31, 32). Second, by choosing two distantly related

viruses, such as influenza (a small RNA virus that replicates in

the nucleus) and vaccinia (a large DNA virus that replicates in the

cytoplasm), we aimed to demonstrate that shared signaling

pathways of host responses exist across highly diverse pathogens.

In other words, we demonstrated that some shared signaling

pathways were activated in response to the stimulation of a wide

spectrum of pathogens. Therefore, these signaling pathways should

be principal pathways in response to viral infections and identifying

these pathways will aid the development of general or even

universal therapeutics and vaccines.
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Previously, we profiled transcriptomic responses in blood

leukocytes after influenza vaccination (21, 33–37) and smallpox

vaccination (38–42). We and others repeatedly observed the

activation of interferon-encoding genes in PBMCs after either

influenza (35–37, 43) or vaccinia stimulation (38, 40). Consistent to

these previous findings, in this study we found that interferon-

encoding genes were up-regulated in both PBMCs and monocytes

stimulated with either influenza virus (Table 1) or vaccinia virus

(Table 2). Transcriptional analysis has also found that interferon-

encoding genes were among the top activated genes in human PBMCs

infected with different viruses (7, 12). Together, these findings
A B C

FIGURE 5

KEGG pathways associated to DEGs in vaccinia-stimulated PBMCs (A), monocytes (B), and CD8+ T cells (C). All KEGG pathways shown are
statistically significant (adjusted p <0.05). NES, normalized enrichment score. Red color indicates suppressed pathways (NES <0) while bule color
indicates activated pathways (NES >0). The size of each red or blue dot represents the total number of genes (size of geneset) in the pathways.
Additional information of these pathways is provided in Supplemental Tables S14–S16.
A B C

FIGURE 6

Expression patterns of overlapped DEGs in PBMCs (A), monocytes (B), and B cells (C) after influenza and vaccinia stimulation. No overlapped DEGs
were identified in CD8+ T cells. For comparison purpose, the expression levels of DEGs in influenza-stimulated cells were sorted.
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consolidate a defensive role of interferons in viral infections. Serving as

the first line of innate defense, interferon production is amongst the

first innate responses against viral infection (44, 45); hence, this could

explain for the up-regulation of interferon-encoding genes observed in

this and other studies. In turn, the production of interferons is activated

by the JAK-STAT signaling pathway (44–46), which was consistently

amongst the top enriched signaling pathways in this study (Figures 3, 5,

7). Altogether, these findings suggest the JAK-STAT signaling pathway

as a main target for the development of viral therapeutics or

vaccines (46).

After influenza stimulation, the identified DEGs were enriched

in influenza A and coronavirus disease-COVID-19 pathways in

each cell population (Figure 3). These results suggest a similarity

between these two respiratory viruses in the way they are recognized

and targeted by the host immune system, as observed by others

across respiratory viruses (9, 47). More importantly, even with the

influenza and vaccinia viruses used in this study, we could identify

35 and 26 biological pathways associated with shared DEGs in

PBMCs and in monocytes, respectively (Figure 7). These shared

pathways were mainly involved in the activation of innate immune

responses, such as NOD-like, Toll-like, RIG-I-like receptor

signaling pathways, cytokine-cytokine receptor interaction,

cytosolic DNA-sensing pathway, and natural killer cell mediated

cytotoxicity (Figure 7). Altogether, these observations suggest that

the host relies on a similar set of PRRs to sense the presence of

pathogens and trigger similar innate immune pathways in

responses to pathogens (1–4, 48). Therefore, these innate immune

pathways could potentially be targeted for the development of

broader viral therapeutics or be used to inform the use of

appropriate adjuvants for vaccines.
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Consistently, we observed the similarity in DEGs and their

expression patterns in PBMCs and in monocytes upon either

influenza or vaccinia (Tables 1, 2; Figures 2A, B, F, 4A, B, F, 6A, B).

As a result, the biological pathways associated with the DEGs in

PBMCs and in monocytes were also similar (Figures 3A, B, 5A, B,

7A, B). These results reflect the importance of monocytes as a cell

population driving transcriptomic responses. This may be due to the

remarkable degree of plasticity observed inmyocytes, in which they can

rapidly sense and respond to diverse invaders (49, 50). Our results

suggest that monocytes could be a major target cell type for viral

therapeutics and/or serve as a cellular biomarker for infection/

vaccination. In fact, previous studies have found that monocytes are

the main target for a variety of viral infections, including influenza,

dengue, measles, Zika (51–54). Our results further demonstrate the

heterogenous nature of PBMC samples and the limitations in using

whole blood or PBMCs to evaluate transcriptomic changes after

infection or vaccination. While useful as an initial step, examination

of isolated cell subsets or the use of single cell technologies are more

powerful and increasingly taking the place of bulk RNA-Seq.

In contrast, B cells and CD8+ T cells provided limited

information on transcriptomic responses and the biological

pathways associated with DEGs in B cells and CD8+ T cells did

not show a specific trend (Figures 2–5). This could be due to the fact

that receptors on B cells and T cells are binding to specific viral

epitopes, rather than DAMPs. B cells and T cells are involved in

adaptive immune responses, which chronologically occurs after the

activation of innate responses triggered by PRRs.

Our study has both strengths and limitations. The strengths of this

study mainly lie in our study design. As such, first we studied the

transcriptomic responses induced by two viral vaccine pathogens,
A B

FIGURE 7

KEGG over-representation pathways associated to overlapped DEGs in PBMCs (A) and monocytes (B) after influenza and vaccinia stimulation. All
KEGG over-presentation pathways shown are statistically significant (adjusted p <0.05). The size of each dot represents the count of DEGs in
associated pathways. The adjusted p value (p.adjust as shown in the figures) is color coded. Additional information of these pathways is provided in
Supplemental Tables S17–S19.
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which minimizes variation and confounding due to the differences in

experimental/analytical approaches between studies. To the best of our

knowledge, this study is one of the first studies identifying shared

transcriptomic responses induced by these two vaccine pathogens in

the same host. Second, rather than study only PBMCs we expanded the

transcriptomic characterizations in purified monocytes, B cells, and T

cells. By studying the transcriptomic responses in these purified cell

subset populations and comparing the responses in these cell

populations with the responses in PBMCs, we found that the

transcriptomic responses in PBMCs were driven by monocytes.

Meanwhile, our observations were limited to 10 subjects, mainly due

to the difficulty in recruiting study participants who met the

requirements for this study. A future study with the same design, but

with a larger study cohort may consolidate the results observed in this

study. In this study, we used only two virus models. A future study

including more pathogens of different types, such as bacteria, virus,

fungi would facilitate the development of universal therapeutics or

vaccines for a broader spectrum of pathogens. In addition, we used fold

change of gene expression and unadjusted p value to identify DEGs.

While the fold change shows a relative expression of each individual

gene in virus-infected cells as compared to control cells, unadjusted p

value may be impacted by multiple testing, where the expression of a

certain gene is influenced by others (55).

In conclusion, we identified both virus-specific and shared

DEGs in response to influenza and vaccinia stimulation and their

associated biological pathways in this study. Our results highlight

monocytes as a main cell type driving transcriptomic responses in

the PBMCs. The shared biological signaling pathways observed in

this study may provide molecular insights into virus-host

interactions, serving as targets for the development of novel virus-

specific therapeutics and new generic vaccines for vaccinia and

influenza. Although influenza and vaccinia viruses have been

selected in this study as pathogen models, we believe that this

approach is applicable to other pathogens including SARS-CoV-2.
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