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The goal of this study is to suggest an approach to predict building loss due to
typhoons using a deep learning algorithm. Due to the influence of climate change,
the frequency and severity of typhoons gradually increase and cause exponential
destruction of building. Therefore, related industries and the government are
focusing their efforts on research and model development to quantify precisely
the damage caused by typhoons. However, advancement in the accuracy of
prediction is still needed, and the introduction of new technology, obtained due to
the fourth revolution, is necessary. Therefore, this study proposed a framework for
developing a model based on a deep neural network (DNN) algorithm for
predicting losses to buildings caused by typhoons. The developed DNN model
was tested and verified by calculating mean absolute error (MAE), root mean
square error (RMSE) and coefficient of determination (R2). In addition, to further
verify the robustness of the model, the applicability of the framework proposed in
this study was verified through comparative verification with the conventional
multi-regression model. The results and framework of this study will contribute to
the present understanding by suggesting a deep learning method to predict the
loss of buildings due to typhoons. It will also provide management strategies to
related workers such as insurance companies and facility managers.
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1 Introduction

Extreme weather events called tropical cyclones, floods, heat waves, droughts, heavy
rains, and cold waves have been a part of human history since the very beginning. However,
the occurrence pattern of recent extreme weather events changes, the severity and frequency
of it have augmented rapidly compared to the past, increasing the possibility of human
casualties as well as the loss of buildings and facilities (Kim et al., 2019; Kim et al., 2020a). The
fifth Assessment Report (2014) of the Intergovernmental Panel on Climate Change warns of
the negative effects of rising global mean air temperature, extreme rainfall, acidification and
average sea level rise. Moreover, these phenomena are expected to accelerate in the future
(IPCC, 2014).
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The result of an analysis of the frequency and intensity of
typhoons that invaded Korea from 1973 to 2019 showed that the
severity of typhoons amplified and the risk of losses due to them
enlarged (Kim et al., 2020a). Furthermore, instrumental data
collected since 1904 indicates a rise in typhoon intensity on the
Korean peninsula over the past century. From 1959 to 2019, the
coastal region experienced an average of three typhoons per year,
totaling 188 typhoons during that period. Among these, noteworthy
typhoons like Rusa (2002), Maemi (2003), Nari (2007), and Soulik
(2018) inflicted significant damage to lives and properties (Yum
et al., 2023). In addition, substantial losses due to windstorms are
occurring worldwide. A representative example is Hurricane
Katrina, which struck the southeastern United States as a
Category 5 tropical cyclone in 2005. Hurricane Katrina attacked
cities along the Gulf Coast of the United States with strong winds
and heavy rain, causing direct and indirect damage of $180 billion,
becoming the largest amount of damage caused by a natural disaster
in the US history (Blake et al., 2011). Also, in 2017, three hurricanes
(Hurricane Harvey, Hurricane Maria, and Hurricane Irma)
occurred in a row, causing a total of approximately $293 billion
in critical damage. Hurricane Harvey was the largest, with
$125 billion, followed by Hurricane Maria, with $90 billion and
Hurricane Irma, with $77.6 billion (USNHC, 2018). Typhoon
Haiyan occurred in 2013 in Asia. It was classified as a grade
5 typhoon and was also called a super typhoon. The typhoon
attacked the Micronea region, the Philippines, Vietnam, and
China one after another, causing damages estimated at
$300 billion. The extreme weather event was recorded as showing
the highest wind speed upon land landing among tropical cyclones
that occurred worldwide and caused severe human casualties and
property damage with strong winds and heavy rain (Kim et al.,
2017). In Europe, three extratropical cyclones (Cyclone Anatol,
Cyclone Lothar, and Cyclone Martin) hit Western European
countries in succession in 1999. Damages in Germany,
Switzerland and France amounted to 13 billion euros (Ulbrich
et al., 2001). Therefore, with a high population density and
critical infrastructure along the coastal region, accurately
assessing the potential losses caused by typhoons is crucial for
disaster preparedness, risk management, and infrastructure
resilience.

As proved above, natural disasters worldwide cause tremendous
property loss, which will increase with time. Two contributing
factors are expected escalation of the severity and frequency of
extreme weather events and surge in the value of citizens’ property
and in the development of cities (Kim et al., 2020a). In order to
decrease the risk of financial loss due to natural disasters, the
government and the private sector invest enormous budgets and
time to establish prevention and recovery strategies. Therefore, with
the aim of efficiently use limited time and budget to minimalize
financial losses, it is essential to accurately predict the damage
caused by natural disasters.

1.1 Quantification model for natural
disasters

Catastrophic models for natural disaster risk assessment have
been developed in the public sector at a national level as the demand

for quantification of the financial losses due to natural disasters has
increased. Among the others, the new Multi-Risk and Multi-Risk
Assessment Method (MATRIX) in Europe, the Central American
Probability Risk Assessment (CAPRA) in South America, the
Florida Public Hurricane Loss Model (FPHLM) in Florida,
United States, The RiskScape in New Zealand and the US Federal
Emergency Management Agency (FEMA) Hazus Multi-Hazard
(MH) are demonstrative examples. Mentioned catastrophic
models simulate, evaluate, and quantify direct and indirect losses
caused by natural disasters such as earthquakes, floods, and
windstorms that occur at the national or regional level. The
models are seen as essential means to improve formulating
responses and mitigation strategies. Thus, efforts are being made
for constant development and advancement (Kim et al., 2016).
However, the aforementioned models are ineffective when
applied to other countries and regions since they are based on
specific data such as the vulnerability of buildings, topography, and
disaster patterns for the relevant country or region. In the private
sector, vendors such as RMS (Risk Management Solution), Risk
Frontiers, EQECAT, and AIR (Applied Insurance Research) develop
and provide their own models for each natural disaster (Sanders
et al., 2002; Kunreuther et al., 2004). The vendors’models are widely
used by insurers and reinsurers around the world as vital tools for
cumulative risk management, insurance underwriting, as well as
holding and establishing business strategies through the risk
assessment of loss due to natural disasters. Nonetheless, the
models’ usefulness is limited to the respective countries, and the
evaluation for other regions is not possible.

Furthermore, the presence of financial constraints lessens the
chances for small and medium-sized companies to introduce and
use catastrophic models, as they must pay high annual fees.
Additionally, since the black box module of the models
determines the natural disaster loss evaluation, verifying whether
the loss calculation result is appropriate appears problematic.
Moreover, although the above models may be referential for the
market, the plan of their comparison is required because each
company’s portfolios, risk appetite, and capital are different.
Therefore, an in-house model, which considers the vulnerability
and exposure of the country or the region, other than the
commercialized models, is required to evaluate the risk of natural
disasters of a country or a company.

1.2 Literature reviews

As mentioned above, there is a strong possibility that the
amount of loss from natural disasters and the frequency and
severity of natural disasters will increase. Naturally, a more
sophisticated and refined in-house loss prediction model that
reflects the complexity and uncertainty of natural disaster
damage as well as the circumstances and characteristics of each
user is required. Recently, the fourth revolution technology,
consisting of Internet of Things, artificial intelligence, robots,
unmanned transportation, and big data, has been introduced to a
wide range of industries, and its effectiveness has been recognized
(Gledson and Greenwood, 2017). Thus, a natural disaster loss
assessment model using a deep learning algorithm, which can be
widely used for analysis and prediction, appears to be a suitable
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solution (Kim et al., 2020a). The demand for deep learning
algorithms burgeons progressively as they can adapt and respond
quickly and precisely to changes in the environment owing to
constructing and integrating big data easier (Kim et al., 2021a;
Guha et al., 2022). In the past, various studies have been
conducted aiming to develop and advance natural disaster risk
assessment models using various deep learning algorithms (Kim
et al., 2020b; Khosravi et al., 2020; Shane Crawford et al., 2020; Yi
and Zhang, 2020; Kim et al., 2021a; Al Najar et al., 2021; Moishin
et al., 2021; Berezina and Liu, 2022; Kaur et al., 2022; Klepac et al.,
2022; Irwansyah et al., 2023). For example, deep learning technology
was applied for the detection of damages after natural disasters such
as tornadoes and landslides (Shane Crawford et al., 2020; Yi and
Zhang, 2020; Al Najar et al., 2021; Haggag et al., 2021). Similar
techniques were applied to analyze changes in coastal areas after
natural disasters such as windstorms. In the described study, the
depth of the sea was precisely estimated by simulating remote
sensing images through deep learning (AI Najar et al., 2021). Yi
et al. (2020) predicted the risk of landslides due to earthquakes by
analyzing satellite images using the Convolutional Neural Network
(CNN) technique (Yi and Zhang, 2020). Kim et al. (2020b) use a
deep learning algorithm to assess the loss before and after an
earthquake at a regional scale. Ren et al. (2022) used a deep-
learning technique to predict typhoon tracks accurately. In
addition, when tornados occur, the wind speed is estimated
through the analysis of the satellite image data on trees using the
CNN method, and damage to buildings is classified (Shane
Crawford et al., 2020). Kaur et al. (2022) analyzed satellite
images based on the convolutional neural network to detect the
damages induced by severe hurricanes. Another previous study
adopted deep learning technology to predict and manage the risk
of flooding, one of the major natural disasters (Khosravi et al., 2020;
Moishin et al., 2021). Moishin et al. (2021) projected flood
occurrence utilizing past daily rainfall data based on a hybrid
deep learning algorithm. The described algorithm was a
combination of long short-term memory networks, CNN, and
advanced flood risk management (Moishin et al., 2021).
Moreover, a flood sensitivity map was created using CNN based
on a vast amount of data concerning the past flooding area, such as
elevation, geology, vegetation, distance from rivers and roads, land
use, rainfall, slope, curvature and soil moisture (Khosravi et al.,
2020). Kim et al. (2021a) proposed a model for expected
maintenance and repair costs using a deep neural network
(DNN) algorithm as a method for the economic management of
facilities. The mentioned study used a DNN algorithm based on
factors affecting loss from natural disasters and loss of data from
natural disasters for learning, testing, and verifying the new model.
As a result of comparison with other models, the developed model
was considered to be effective in predicting maintenance and repair
costs (Kim et al., 2021b). Furthermore, when loss of data on
construction projects caused by natural disasters has been
predicted through deep learning, the prediction error was lower
than the statistical model generally used for prediction (Kim et al.,
2021a).

As stated above, various deep learning technologies were applied
in order to develop and advance natural disaster risk assessment
models due to higher prediction accuracy compared to the
traditional approaches (Kim et al., 2020b; Berezina and Liu, 2022;

Kaur et al., 2022; Klepac et al., 2022). Described studies exposed the
shortcomings of existing models or showed advances in innovative
technologies. Additionally, models designed via deep learning
technologies are far more sophisticated and reliable than the
existing ones and can serve as a cornerstone of better natural
disaster risk mitigation strategies. Therefore, this study suggests a
framework for developing a model for building loss due to typhoons
through a deep learning algorithm.

2 Data and methodology

The goal of this study is to suggest an approach to predict
building loss due to typhoons using a deep learning algorithm.
Subsequently, this study has three detailed sub-goals. First,
collecting data on the loss of buildings caused by typhoons.
Second, a deep learning algorithm is applied to develop a
prediction model based on the collected data. Third, to verify the
developed model, comparing with the prediction results of other
model’s. For the validation of the developed model, the prediction
results gained from it and the results of the multi-regression analysis
model, which is generally used for prediction, were compared. The
detailed workflow and analysis process of the DNN model is shown
in Figure 1.

The RMSE (Square Mean Square Error), MAE (Mean Absolute
Error) and coefficient of determination (R2) of the deep learning
model and the multiple regression analysis models were calculated
and analyzed in comparison. Multiple regression analysis models
were built using IBM Statistical Package for the Social Sciences
(SPSS) V23. Moreover, Python 3.7 was adopted to generate the deep
learning model.

2.1 Data collection

2.1.1 Typhoon loss
For the purpose of this study, data on losses caused by Typhoon

Maemi from a major insurance company in South Korea were
collected. Thus, the scope of the study is limited to South Korea,
and data consist of a ground-up loss. Any other insurance conditions
were excluded, as only the loss caused by typhoonMaemiwas valid for
the analysis. Typhoon Maemi, which occurred in 2003 and hit Korea,
was the largest and the most destructive one (Hwang et al., 2020),
causing a serious human and economic loss in South Korea, thus was
chosen for this study. In 2006 theWorld Meteorological Organization
renamed the catastrophe as Mujigae (NTC, 2011). Typhoon Maemi
occurred in the sea near Guam on September 4, and was classified as a
typhoon on September 6. In the following days, it advanced
northwest, passed Okinawa, Japan, and landed on the southern
coast of the Korean Peninsula. The typhoon landed on the
southern coast of South Korea on 12 September 2003, passed
inland, and moved to the east coast the next day, causing many
casualties and leaving a lot of cities along the southern coast severely
damaged, as depicted in Figure 2. After rapid destruction of the
southeastern part of the Korean Peninsula, the typhoon moved into
the East/Japan Sea and transformed into an extratropical cyclone on
September 13 (Shim et al., 2013). Finally, it dissipated in the East Sea
on September 14.
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Typhoon Maemi has reached record-breaking maximal
radius of 460 km and a central pressure of 910 hPa. Figure 3
represents the eye of Typhoon Maemi from 10 to 13 September
2003 based on the MODIS-TERRA natural-color satellite images
which were retrieved from the Land Processes Distributed Active

Archive Center (LP DAAC) operated by the United States
Geological Survey (USGS) at https://lpdaac.usgs.gov and
visualized using the Google Earth Engine platform. During
this period, the typhoon caused record-breaking heavy rainfall
and strong winds across East Asia (Yun et al., 2012; Shim et al.,

FIGURE 1
Workflow and overview of the DNN model.

FIGURE 2
(A) Typhoon Maemi passed through the southeast coast of South Korea (https://www.ncdc.noaa.gov/ibtracs/), while the background shades
represent the population distribution of the region (http://nationalatlas.ngii.go.kr/pages/page_741.php) and (B) province wise recorded loss distribution
reported by Kim et al. (2020a).
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2013). It has been classified as a typical dry typhoon since it has a
maximum wind speed of 54 m/s and causes a lot of damage by
strong winds, heavy rain and storm surges (Ku et al., 2019).
Typhoon Maemi struck during spring tide, causing a maximum
surge level of 4.2 m above the WGS84 datum at Masan gauge
station. This level was 2 m higher than the mean high water
spring tidal level. Storm waves with a period of 16.7 s and a peak
height of 7 m originated from the East China Sea and propagated
through the Korea Strait, as recorded at the Geojedo buoy station
(Li et al., 2016). The average elevation of the impacted coasts in
South Korea, i.e., South and East, is 50.9 and 41.8 m, respectively
(Park and Lee, 2020). Typically, the region experienced its
highest rainfall during mid-July and mid-August, with daily
average rainfall ranging between 220 and 322 mm (Park and
Lee, 2020). However, during the passage of the typhoon, the
southeastern part of the Korean peninsula experienced a total
rainfall depth ranging from 100 to 450 mm within a short period
of time (Choi et al., 2019). As a result, the damage caused by
Typhoon Maemi affected 61,000 victims and 135 lives, and the

total property damage amounted to about $4.2 billion (NTC,
2011).

2.1.2 Input and output variables
The output variable of this study is the record of loss of buildings

caused by typhoon Maemi, done by the dominant Korean insurance
company. The collected loss data include the amount of the
buildings where the loss occurred, the type of buildings, the
number of floors, the number of basement floors, the date of the
accident, the accident details, the location of the accident, and the
total amount of loss, and no personal information is included.
Additionally, meteorological data such as 10-min average
maximum wind speed and the impact of coastal inundation in
the form of distance from the coastline have been considered, which
were obtained from the Korea Meteorological Administration
(KMA) and high-resolution Google Earth imagery. It should be
noted that this study examined 923 cases of loss caused by Typhoon
Maemi. The description of the input variables is presented in
Table 1.

FIGURE 3
MODIS-TERRA true color satellite images of Typhoon Maemi paths collected on four different dates (A) 10 September, (B) 11 September, (C)
12 September, and (D) 13 September 2003. MODIS-TERRA images were retrieved from the Land Processes Distributed Active Archive Center (LP DAAC)
operated by the United States Geological Survey (USGS) at https://lpdaac.usgs.gov and plotted through the Google Earth Engine platform (Gorelick et al.,
2017).
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Input variables were collected from the key indicators adopted
in the previous vulnerability and risk assessment studies of natural
disasters. For instance, the distance between the coastline and
buildings damaged by windstorms is a substantial indicator of the
force of typhoons (Kim et al., 2016; Yum et al., 2020). As the
distance between the shoreline and the building decreases, the
amount of damage increases. Conversely, as the distance between
the shoreline and the building increases, the amount of damage
decreases. Therefore, the greater the distance between the
shoreline and the building, the less vulnerable it is to
windstorm damage. The distance between the shoreline and the
windstorm-damaged structure was calculated using ArcGIS based
on the location of the specific building. Another vital indicator of
typhoon properties is wind speed (Huang et al., 2001; Kim et al.,
2018), as it causes direct damage akin to a missile impact and
indirect damage through storm surges and landslides (Kim et al.,
2018). Here, the 10-min average maximum wind speed (m/s)
measured by the Korea Meteorological Administration (KMA)
was used for wind speed. The wind speed at the precise time of
damaging specific structures was collected for each building
grounded on the accident date/time in the loss record.
Inventory information of buildings (i.e., number of basement
floors, number of floors, occupancy, building type, the total
value of the property, etc.) is an indicator often applied in the
study of damage vulnerability due to windstorms. Since the height
of a building and the number of floors strongly correlates with the
damage of windstorm, it is widely used to quantify the
vulnerability of buildings to windstorms. Moreover, the
presence or absence of the basement and the number of layers
in the basement are vital indicators of flood damage due to heavy
rainfall, which is one of the main damages of windstorms (De Silva
et al., 2008; Kim et al., 2019). Occupancy is also an indicator
frequently used for risk quantification studies of natural disasters
and therefore treated as a nominal variable in this study (Kim et al.,
2017; Yum et al., 2021). According to occupancy, it was divided
into 1) residential buildings, 2) industrial buildings, and 3)
commercial buildings due to vulnerability to windstorms
depending on the type of construction (Kim et al., 2022a; Yum
et al., 2021; D’Ayala et al., 2006). In this study, an input as a
nominal variable was classified into 1) reinforced concrete
building, 2) steel structure building, 3) wood building and 4)

steel plate roof building. Additionally, total property value has a
statistically significant correlation with windstorm damage, thus
adopted in vulnerability assessment and quantification studies
(Kim et al., 2016; Kim et al., 2017). For example, as the total
value of property increases, the damage caused by windstorms has
a decreasing negative correlation. The dependent variable is the
loss ratio (LR). LR has been determined based on the value of the
building loss caused by the typhoon divided by the total property
value. The total value of property and loss ratios were log-
transformed for normal distribution. The output variable, loss
ratio, has a sample size of 923 with a minimum value of −8.68, a
maximum value of −0.75, a mean of −5.62, and a standard
deviation of 1.65. The input variables, including the total value
of property, occupancy, maximum wind speed, distance from
coastline, basement floor, floor, occupancy types, and
construction types, also have corresponding statistics illustrated
in Table 2. Descriptive statistics provide a detailed summary of the
range, central tendency, and variability of the variables, offering
insights into the distribution and characteristics of the data. On the

TABLE 1 Description of variable.

Variables Explanation Unit

Distance from shoreline Distance from the building at which the loss occurred to the shoreline (km) Numeral

Maximum wind speed 10 min average maximum wind speed (m/s) Numeral

Basement floors Number of basement floors of buildings where typhoon loss occurred Numeral

Floors Total number of floors of buildings where typhoon loss occurred Numeral

Occupancy Occupancy of buildings that have suffered typhoon losses
1) Residential building 2) Industrial building 3) commercial building

Nominal (1–3)

Construction type Construction type of building that damaged typhoon loss
1) Reinforced concrete building 2) Steel structure building 3) Wood building and 4) Steel plate roof building

Nominal (1–4)

Total value of property Total value of property of buildings that have suffered losses due to typhoons (Mil. KRW) Numeral

Loss ratio The value of the loss of the building caused by Typhoon Maemi divided by the total value of property (%) Numeral

TABLE 2 Descriptive statistics.

Variable N Min Max Mean Std.
Deviation

Input variables

Distance from the
coastline

923 1.30 117.90 34.51 18.50

Maximum wind speed 923 31.20 38.60 37.53 1.28

Basement floors 923 0 6.00 0.53 0.95

Floors 923 1.00 28.00 13.12 9.21

Occupancy 923 1.00 3.00 1.65 0.77

Construction type 923 1.00 3.00 1.43 0.78

Total value of propertya 923 4.61 12.79 9.30 1.32

Output Variable

Loss ratioa 923 −8.68 −.75 −5.62 1.65

aLog-transformed value.
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other hand, Figure 4 represents the frequency distributions of
dependent and independent variables considered for constructing
the DNNmodel for the prediction of building loss due to Typhoon
Maemi.

2.2 Methodology: application of deep
learning algorithm

Internet of Things, artificial intelligence, robots, unmanned
transportation, big data, nanotechnology, etc., are applied to
various industrial fields to prove their value and lead innovation
in related fields (Cabello et al., 2021; Kim et al., 2022b). The amount
of damage is expected to increase due to changes in the frequency
and severity of natural disasters. Furthermore, to embrace the
complexity and uncertainty of natural disaster damage as well as
the various situations and characteristics of each user, a more
sophisticated and efficient prediction model is essential.
Moreover, an increasing usage of Internet of Things, Information
and Communications and sensor technology for the management of
buildings and facilities is expected to enrich complex and diverse big
data. Also, for such an extensive analysis, the introduction of deep
learning technology is rudimental. Deep learning algorithm is a part
of machine learning and is applied to various industries and
research, such as type classification of input data, regression,
recognition, and prediction fields. A deep learning algorithm has
components such as output layers, input layers, hidden layers, an
activation function, neurons, and weights. Countless combinations
of these components are possible, enabling applying to numerous
data depending on the combination (Allison et al., 2019; Cabello
et al., 2021). Deep learning algorithms are divided according to their
arrangement and treating methods, such as Deep Neural Network
(DNN), Convolutional Neural Network (CNN), Generative

Adversarial Network (GAN), Recurrent Neural Network (RNN),
and Auto Encoder (AE). For example, DNN allows construction of
artificial neural networks with innumerable structures according to
the number of hidden layers and combinations of components,
enabling the modeling of complex nonlinear interactions. Due to
these characteristics, DNN performs excellently in analyzing and
predicting nonlinear data with high uncertainty and complexity like
natural disasters (Kim et al., 2022a; 2021b).

Therefore, this study proposes a framework for developing a
predictive model based on a DNN algorithm for analyzing big data
generated by typhoons (Figure 1). Besides, this study aims to
improve future natural disaster prediction through the prediction
model based on the DNN algorithm, to reduce the monetary loss
from natural disasters by more advanced loss prediction, and
ultimately to contribute to the reduction and prevention of
natural disaster risk.

2.2.1 DNN model setup
For the input data, a z-score normalization method was

applied to normalize the data for the preprocessing. The
multi-collinearity analysis was carried out on the selected
independent variables using SPSS software. In the present
study, tolerance (TOL) and variance inflation factor (VIF) was
used to detect the multi-collinearity among the variables (Yum
et al., 2020). It was observed that the VIF value of all input
variables is <10 and the TOL value is >0.1, which indicates that all
the independent variables have no multi-collinearity problem
(Yum et al., 2020; Zhang et al., 2020). Moreover, 30% of the input
data were designated as test data, and the remaining 70% data
were used as learning data. 30% of the learning data were used as
validation data.

The developed DNN model calculated RMSE (Root Mean
Square Error), MAE (Mean Absolute Error) and R2 values for

FIGURE 4
The distributions of numerical attributes: (A) loss ratio, (B) the total value of the property, (C) construction types, (D) occupancy types, (E) floors, (F)
basement floors, (G) maximum wind speed, and (H) distance from the coastline.
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validation. The trial and error method must be applied to find the
best combination of hyperparameters and network structure to
construct an optimal DNN algorithm model (Ahmed, 2019). The
purpose is that the DNN algorithm using the backpropagation
algorithm modifies the weights of nodes affording to the input and
output variables, so the trial and error method is integral to
discover the ideal arrangement. For instance, the scenario of a
network structure arrays the number of nodes and the number of
layers. Hyperparameter tuning governs the combination of them,
such as dropout, epoch, activation function, batch size, and
optimizer. Dropout is a regularization penalty to avoid
performance degradation owing to overfitting, which is a
hindrance of deep learning models. Epoch specifies the number
of data training times for the DNN model. The optimizer is set to
manage the speed and safety related to data learning of the DNN
model. The activation function specifies how to find the cost
function with the minimum value. Moreover, the batch size
that identifies the unit of data learning for effective training of
the DNN model is firm (Ahmed, 2019; Lee et al., 2020). In this
study, the combination of Hyperparameter and Network structure,
which has been used in many past natural disaster risk assessment
and quantification studies, was stated (Yum et al., 2020; Kim et al.,
2021a). A network structure with three layers was fixed for the
DNN algorithm model, and dropout was configured as 0 or 0.2 in
reflection of the restricted amount of data. For the epoch, the
number of learning variables was set to 1,000, and the learning unit
was set to 5 for the batch. As the optimizer, Adaptive Moment
Estimation (Adam), which has been applied in many research and
industrial fields, was designated due to its wide application range
and convenient calculation. A moment theory based on a
stochastic objective function was also applied (Ajayi et al.,
2020). Rectified Linear Unit (ReLu) was chosen as the
activation function. ReLu is a function developed to compensate
the shortcomings of the sigmoid function and possesses the
characteristic of changing the output depending on whether it
has a value of 0 or more (Gu et al., 2018). The architecture of DNN
consists of independent variables (input), a hidden layer, and the
result (output), as depicted in Figure 5.

In addition, a Multiple Regression Analysis (MRA) model was
also constructed for supplementary model support with the same
input and output variables as the DNN model using the SPSS
V23 software. MRA is a technique widely used in the area of
prediction, whereas a regression analysis method quantifies the
correlation between variables through statistics (Nguyen et al.,
2019).

2.2.2 Model validation
Model validation is the process of evaluating a model’s

performance on unseen data. This is done to ensure that the
model is able to generalize well to new data and is not overfitting
to the training data (Kim et al., 2021a). There are a variety of metrics
that can be used to evaluate the performance of a deep learning
model, including mean absolute error (MAE), root mean squared
error (RMSE) and coefficient of determination (R2) (Devaraj et al.,
2021; Sakai et al., 2021). Since RMSE, MAE and R2 express the
precision of the model through the deviation of the predicted value
and the actual value, they were applied as descriptive pointers to
assess artificial neural network models (Rahman et al., 2021; Kim
et al., 2022b). The MAE measures the average absolute difference
between predicted and true values. It is calculated as the sum of the
absolute differences between the predicted and true values divided
by the number of data points. MAE is a robust metric that is not
affected by outliers, but it does not penalize large errors as much as
other metrics like RMSE. The lesser the MAE value, the minor the
prediction error is. On the other hand, the RMSE displayed the
residuals between the predicted values of the model and the actual
values as a single scale; thus, the slighter the RMSE value, the smaller
the prediction error. RMSE is more sensitive to outliers than MAE
but penalizes large errors more heavily. The R2 value acts as a
measure of prediction accuracy, where a value of 1 signifies a perfect
prediction. Conversely, a lower R2 value indicates diminished
prediction accuracy, enabling easier intuitive evaluation of a
model’s performance (Sakai et al., 2021). In the present study,
the final model verification has been performed based on the
MAE, RMSE, and R2 values of training, test and validation data.
The MRA model also individually estimated MAE, RMSE, and R2

FIGURE 5
The architecture of the DNN model and backpropagation algorithm.
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values and associated them with the MAE, RMSE, and R2 values of
the DNN model.

3 Results and discussion

3.1 Results

This study proposed a framework for building a predictive
model using the DNN algorithm, one of the deep learning
algorithms, to predict the loss of buildings caused by typhoons.
For data collection, data on loss of buildings that occurred by
typhoon Maemi was collected from the insurance company, and
variables were collected. For the development of an optimal DNN
algorithm model, different network scenarios and hyperparameters
learned the input and output variables, and a combination with a
minimum cost function was identified. Table 3 shows the learning
results according to the network structure scenario and dropout.
Among the learning results, the scenario in which the MAE and
RMSE values are the minima was decided as the final one. It was
found that, in general, a smaller loss function was exhibited when the
dropout was 0 than when the dropout was 0.2. Furthermore, as the
number of hidden layer nodes increased, MAE and RMSE became
smaller, and both MAE and RMSE had the smallest values in the
scenario where the number of hidden layer nodes equaled 600-600-
600. Therefore, the dropout was 0, the network structure scenario
and the number of hidden layer nodes were determined to be 600-
600-600, as depicted in Figure 6. The final network structure and
hyper-parameters are summarized in Table 4.

To verify the problem of overfitting the final DNN algorithm
model, this study simulated the validation and test data and

associated the predicted results. For these purposes, the
regression analysis (R2) results of the optimized DNN structure
for the training, validation, test and total datasets are plotted in
Figure 7. The regression results indicate that the optimized DNN
model can accurately capture the relationship between the
independent and dependent variables. The consistent correlation
coefficients (R2 > 0.8) across the different datasets (training,
validation, testing, and combined) suggest the model’s
generalizability and reliability in predicting the dependent
variable. Moreover, comparative verification with the MRA
model was performed for additional verification. As shown in
Table 5, MAE, RMSE and R2 values of the validation and test
data were calculated and compared to verify the final DNN
model. As a result of the simulation of validation data and test
data, the MAE, RMSE, and R2 values of the validation data were
0.133, 0.222, and 0.825, and the test data values were 0.131, 0.215,
and 0.832, respectively. Thus, the overfitting of the DNN model was
insignificant since the alteration between the result values of the
verification data and the test data was unimportant. Table 5 shows
the comparison of the results of the DNN model and the MRA
model. As a result of comparing the two models (i.e., DNN/MRA
(%) for test data sets), the DNN model showed 82.5% lower MAE
and 64.8% lower RMSE than the MRA model, which leads to the
conclusion that the DNN model displays a lower prediction error
rate than the MRA model. Furthermore, it was observed that the R2

values for validation and test cases were notably higher in the DNN
model compared to the MRA model. Thus, the higher R2 values in
the DNNmodel suggest that it captured the underlying patterns and
relationships in the data more accurately than the MRA model. Wei
and Yang (2021) also noticed the better performance of the
backpropagation algorithm compared to the MRA model.
Therefore, it was observed that the DNN algorithm model has
higher reliability and robustness in predicting the loss of
buildings due to typhoons. To sum up, the non-parametric DNN
algorithm is more suitable than the parametric MRAmodel for non-
linearity and data with high complexity and uncertainty, such as
natural disaster losses (Schmidhuber, 2015; Nguyen et al., 2019).

3.2 Discussion

Risk managers and facility managers in public or private sector
will be capable of predicting losses due to typhoons or developing an
in-house model through the DNN model proposed in this study. As
well, since the DNN algorithm model exhibits a lower prediction
error rate than the existing model, the loss prediction will be more
accurate and reliable. Therefore, risk managers or facility managers
will be able to reduce expected losses and establish investment
strategies to prevent damage. Into the bargain, the model can be
useful as a guideline for preparing an emergency reserve in reflection
of the expected typhoon loss for sound and continuous financial
planning. Furthermore, establishing a new strategy for transferring
the risk of loss by using this model is possible. For example, the
prediction done by the DNN model can be applied as a criterion for
judging the appropriate level of insurance premiums currently
insured according to the estimated risk of loss and can be
utilized to enhance the adjusting of insurance coverage. Besides,
insurance companies can use it to manage the accumulated risk of

TABLE 3 Results of learning.

Network structure scenario Dropout (0) Dropout (0.2)

MAE RMSE MAE RMSE

5-5-5 1.387 1.738 1.014 1.313

10-10-10 0.732 0.954 0.928 1.176

25-25-25 0.634 0.857 0.869 1.103

50-50-50 0.501 0.686 0.705 0.904

75-75-75 0.501 0.689 0.714 0.908

100-100-100 0.504 0.683 0.630 0.803

200-200-200 0.307 0.434 0.554 0.701

300-300-300 0.262 0.377 0.462 0.602

400-400-400 0.214 0.319 0.421 0.539

500-500-500 0.172 0.248 0.391 0.514

600-600-600 0.152 0.230 0.349 0.486

700-700-700 0.157 0.233 0.353 0.464

800-800-800 0.175 0.247 0.345 0.436

900-900-900 0.183 0.262 0.345 0.452

1000-1000-1000 0.192 0.296 0.354 0.461
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typhoons. Hence, it is conceivable to predict the economic loss due
to typhoons through the DNNmodel and framework and eventually
reduce the loss from typhoons by upgrading the damage prevention
and risk transfer strategy.

Additionally, the developed models and framework can be
adopted as reference materials for loss analysis and forecasting in
public and private sectors in other industries and academia, as well
as for the prediction of other natural disasters. Abnormal climate
and natural disasters caused by global warming, such as windstorms,
tornados, heavy snow, heavy rain, hail and droughts, are occurring
all over the world and have adverse effects on many fields, so many
studies are conducted to overcome their repercussions (Carreira-
Perpinan and Hinton, 2005; Kwon, 2019). The proposed model was
built on numerous introduced indicators such as the distance from
the coastline, maximum wind speed, number of basement floors,
floors, occupancy, construction type, and total property value. Initial
result that the risk indicators are closely related to the loss from
natural disasters was re-examined. Furthermore, expected rise of the

frequency and severity of natural disasters such as typhoons due to
the global warming is anticipated to have a significant antagonistic
effect on the management of buildings and facilities in the future
(Kim et al., 2020a). Besides, Information and Communications
(ICT), Internet of Things (IoT), and sensor technology have
recently become widely used for building and facility
management. Thus, similar research can be conducted to analyze
and utilize big data accumulated in these devices and technologies.
Therefore, as the need for advanced prediction of loss owing to
typhoons will grow greater and sources of information become
gradually more accessible, the results and framework of this study
can be recognized as rudiments of meeting these needs.

Nevertheless, in this study, only data on loss of buildings
caused by typhoon Maemi of a major insurance company in
South Korea were accepted. As a result, additional research is
desired to secure supplementary data on loss due to other
typhoons from other insurance companies and other
countries and comparative verification to upgrade the

FIGURE 6
Performances of the network architecture using criteria of (A) MAE and (B) RMSE for different dropout rates.

TABLE 4 Final network structure and hyper-parameter.

Set Configuration Feature

Hyper parameter Optimizer Adam (Adaptive Moment Estimation Method)

Activation function ReLu (Rectified Linear Unit function)

Epoch 1,000

Batch size 5

Dropout 0

Network structure Node 3

Layer 600-600-600
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proposed model. Furthermore, discovering additional variables
such as topographical indicators according to the characteristics
of natural disaster losses is essential not only for improving the
prediction error of the model but also in order to expand the
model’s capacity of predicting human casualties apart from
damage to buildings due to typhoons. Although the DNN
algorithm created in this study presents reduced prediction
error compared to the existing model, it has the disadvantage
of the weights and correlations between nodes being black
boxes. The problem stays unresolved as the deep learning
algorithms unilaterally provide through a black box without
screening the basis and process of deriving prediction results,
which may raise questions about the objectivity and
dependability of the results and models. Therefore, further
research is required by introducing XAI (eXplainable AI).
XAI is also an artificial intelligence technology that explains
AI algorithm classification, prediction, causality, and decision-
making to users (Chollet, 2017). Consequently, in the future
study of deep learning algorithm models, it is crucial to gain
users’ trust and improve understanding of models and data
through a glass box rather than a black box by using XAI.

4 Conclusion

Globally, the frequency and severity of natural disasters are escalating
due to climate change. The accumulation and scale of assets increase, and
the amount of damage caused by natural disasters is highly likely to
extend. Moreover, a sophisticated loss prediction model that reflects the
complexity and uncertainty of natural disaster damage as well as the
circumstances and characteristics of each user is required. Only then it
will be possible to achieve sustainable management of buildings and
facilities and establishing risk management strategies such as loss
prevention, reduction and transfer based on the prediction of
financial loss. Therefore, this study proposed a framework for
developing a deep learning algorithm prediction model based on the
loss data of buildings caused by typhoons. As a result of comparative
verification, the DNN algorithmmodel developed in this study exhibited
lower prediction error than the MRA model.

Consequently, the results and framework of this study can be
successfully used to predict the loss of a building owing to typhoons and
furthermore, to reduce the risk of loss of a building as well as to advance
financial management. The other benefit is that the results and
framework of this study can be applied to other research fields,
industries, and other natural disaster research. Additionally, the
proposed model allows the government to implement the risk
assessment based on the risk indicators for system and the manual
development. This information can then be used to develop and
implement preventive measures, such as improved disaster response
strategies, enhanced risk assessment and coverage by insurance
companies. This will ultimately help to reduce the damage caused
by typhoons and improve overall resilience to climate crises. In the
private sector, insurance companies are enabled to adopt the results and
framework of this study to better manage accumulated risk by taking
into account the company’s asset size, risk propensity and portfolio. As
well, the results of loss prediction based on model created by the
proposed DNN algorithm can serve as a standard for various insurance
conditions required by insurers, such as appropriate premium,
retention, probable maximum loss (PML), liability limit (LOL), and
excess of loss reinsurance (XOL). However, based on the available data,
the present study considered only one typhoon scenario (i.e., Typhoon
Maemi), which may not reflect the overall building loss scenario due to
Typhoon in South Korea. Therefore, additional research is required to
improve the reliability of the model through additional studies such as
adding variables (such as elevation, geology, vegetation, distance from
rivers and roads, land use, rainfall, slope, etc.), additional data collection
for multiple scenarios, and continuous model validation.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

Conceptualization, J-MK and S-GY. Methodology, J-MK, JB,
and S-GY. Investigation, J-MK, JB, S-GY, and MDA. Resources,
J-MK. Writing–original draft preparation, J-MK. Writing–review
and editing, J-MK, S-GY, andMDA. Visualization, J-MK andMDA.

FIGURE 7
Regression results of an optimized DNN model for (A) training;
(B) validation; (C) testing; and (D) combined input data sets.

TABLE 5 Model comparison result.

Model Validation Test

MAE RMSE R2 MAE RMSE R2

DNN 0.133 0.222 0.825 0.131 0.215 0.832

MRA 0.853 1.196 0.633 0.750 0.612 0.633

Frontiers in Earth Science frontiersin.org11

Kim et al. 10.3389/feart.2023.1136346

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1136346


Supervision, J-MK. Project administration, J-MK and S-GY.
Funding acquisition, J-MK. All authors contributed to the article
and approved the submitted version.

Funding

This research was supported by the Research Funds of Mokpo
National University in 2022.

Acknowledgments

The authors would like to thank the esteemed reviewers for their
valuable comments and suggestions that helped improve themanuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmed, S. (2019). Causes and effects of accident at construction site: A study for the
construction industry in Bangladesh. Int. J. Sustain. Constr. Eng. Technol. 10 (2), 18–40.
doi:10.30880/ijscet.2019.10.02.003

Ajayi, A., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., Davila Delgado, J. M., et al.
(2020). Deep learning models for health and safety risk prediction in power
infrastructure projects. Risk Anal. 40 (10), 2019–2039. doi:10.1111/risa.13425

Al Najar, M., Thoumyre, G., Bergsma, E. W., Almar, R., Benshila, R., and Wilson, D.
G. (2021). Satellite derived bathymetry using deep learning. Mach. Learn. 112,
1107–1130. doi:10.1007/s10994-021-05977-w

Allison, R. W., Hon, C. K., and Xia, B. (2019). Construction accidents in Australia:
Evaluating the true costs. Saf. Sci. 120, 886–896. doi:10.1016/j.ssci.2019.07.037

Berezina, P., and Liu, D. (2022). Hurricane damage assessment using coupled
convolutional neural networks: A case study of hurricane michael. Geomatics, Nat.
Hazards Risk 13 (1), 414–431. doi:10.1080/19475705.2022.2030414

Blake, E. S., Landsea, C., and Gibney, E. J. (2011). The deadliest, costliest, and most
intense United States tropical cyclones from 1851 to 2010 (and other frequently
requested hurricane facts). NOAA Tech. Memo. NWS NHC 6. Available at: https://
repository.library.noaa.gov/view/noaa/6929 (Accessed July 10, 2023).

Cabello, A. T., Martínez-Rojas, M., Carrillo-Castrillo, J. A., and Rubio-Romero, J. C.
(2021). Occupational accident analysis according to professionals of different
construction phases using association rules. Saf. Sci. 144, 105457. doi:10.1016/j.ssci.
2021.105457

Carreira-Perpinan, M. A., and Hinton, G. (2005). “On contrastive divergence
learning,” in International workshop on artificial intelligence and statistics (New
York City, NY, USA: PMLR), 33–40.

Choi, J., Lee, J., and Kim, S. (2019). Impact of sea surface temperature and surface air
temperature on maximizing typhoon rainfall: Focusing on typhoon maemi in Korea.
Adv. Meteorology 2019, 1–12. doi:10.1155/2019/1930453

Chollet, F. (2017). Deep learning with R. Version 1. Shelter Island, NY, United States:
Manning Publications.

D’Ayala, D., Copping, A., and Wang, H. “A conceptual model for multi-hazard
assessment of the vulnerability of historic buildings,” in Proceedings of the Structural
Analysis of Historical Constructions: Possibilities of Numerical and Experimental
Techniques, Fifth International Conference, New Delhi, India, 2006, November,
121–140.

De Silva, D. G., Kruse, J. B., and Wang, Y. (2008). Spatial dependencies in wind-
related housing damage. Nat. hazards 47 (3), 317–330. doi:10.1007/s11069-008-9221-y

Devaraj, J., Ganesan, S., Elavarasan, R. M., and Subramaniam, U. (2021). A novel deep
learning based model for tropical intensity estimation and post-disaster management of
hurricanes. Appl. Sci. 11 (9), 4129. doi:10.3390/app11094129

Gledson, B. J., and Greenwood, D. (2017). The adoption of 4D BIM in the UK
construction industry: An innovation diffusion approach. Eng. Constr. Archit. Manag.
24, 950–967. doi:10.1108/ECAM-03-2016-0066

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.
(2017). Google Earth engine: Planetary-scale geospatial analysis for everyone. Remote
Sens. Environ. 202, 18–27. doi:10.1016/j.rse.2017.06.031

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent
advances in convolutional neural networks. Pattern Recognit. 77, 354–377. doi:10.1016/
j.patcog.2017.10.013

Guha, S., Jana, R. K., and Sanyal, M. K. (2022). Artificial neural network approaches
for disaster management: A literature review. Int. J. Disaster Risk Reduct. 81, 103276.
doi:10.1016/j.ijdrr.2022.103276

Haggag, M., Siam, A. S., El-Dakhakhni, W., Coulibaly, P., and Hassini, E. (2021). A
deep learning model for predicting climate-induced disasters. Nat. Hazards 107 (1),
1009–1034. doi:10.1007/s11069-021-04620-0

Huang, Z., Rosowsky, D. V., and Sparks, P. R. (2001). Hurricane simulation
techniques for the evaluation of wind-speeds and expected insurance losses. J. wind
Eng. industrial aerodynamics 89 (7-8), 605–617. doi:10.1016/s0167-6105(01)00061-7

Hwang, S., Son, S., Lee, C., and Yoon, H. D. (2020). Quantitative assessment of
inundation risks from physical contributors associated with future storm surges: A case
study of typhoon maemi (2003). Nat. Hazards 104 (2), 1389–1411. doi:10.1007/s11069-
020-04225-z

IPCC (2014). “Summary for policymakers,” in Climate change 2014: Impacts,
adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of
working group II to the fifth assessment Report of the intergovernmental Panel on climate
change (Cambridge, UK: IPCC), 1820.

Irwansyah, E., Young, H., and Gunawan, A. A. (2023). Multi disaster building damage
assessment with deep learning using satellite imagery data. Int. J. Intelligent Syst. Appl.
Eng. 11 (1), 122–131. Available at: https://www.ijisae.org/index.php/IJISAE/article/
view/2450 (Accessed July 29, 2023).

Kaur, S., Gupta, S., Singh, S., Koundal, D., and Zaguia, A. (2022). Convolutional
neural network based hurricane damage detection using satellite images. Soft Comput.
26 (16), 7831–7845. doi:10.1007/s00500-022-06805-6

Khosravi, K., Panahi, M., Golkarian, A., Keesstra, S. D., Saco, P. M., Bui, D. T.,
et al. (2020). Convolutional neural network approach for spatial prediction of
flood hazard at national scale of Iran. J. Hydrology 591, 125552. doi:10.1016/j.
jhydrol.2020.125552

Kim, J. M., Bae, J., Park, H., and Yum, S. G. (2022b). Predicting financial losses due to
apartment construction accidents utilizing deep learning techniques. Sci. Rep. 12 (1),
5365. doi:10.1038/s41598-022-09453-w

Kim, J. M., Bae, J., Son, S., Son, K., and Yum, S. G. (2021b). Development of model to
predict natural disaster-induced financial losses for construction projects using deep
learning techniques. Sustainability 13 (9), 5304. doi:10.3390/su13095304

Kim, J. M., Kim, T., and Son, K. (2017). Revealing building vulnerability to windstorms
through an insurance claim payout prediction model: A case study in South Korea.
Geomatics, Nat. Hazards Risk 8 (2), 1333–1341. doi:10.1080/19475705.2017.1337651

Kim, J. M., Son, K., and Kim, Y. J. (2019). Assessing regional typhoon risk of disaster
management by clustering typhoon paths. Environ. Dev. Sustain. 21 (5), 2083–2096.
doi:10.1007/s10668-018-0086-2

Kim, J. M., Son, K., Yoo, Y., Lee, D., and Kim, D. Y. (2018). Identifying risk indicators
of building damage due to typhoons: Focusing on cases of South Korea. Sustainability 10
(11), 3947. doi:10.3390/su10113947

Kim, J. M., Son, K., Yum, S. G., Ahn, S., and Ferreira, T. (2020a). Typhoon
vulnerability analysis in South Korea utilizing damage record of typhoon maemi.
Adv. Civ. Eng. 2020, 1–10. doi:10.1155/2020/8885916

Kim, J. M., Woods, P. K., Park, Y. J., Kim, T., and Son, K. (2016). Predicting hurricane
wind damage by claim payout based on Hurricane Ike in Texas. Geomatics, Nat.
Hazards Risk 7 (5), 1513–1525. doi:10.1080/19475705.2015.1084540

Frontiers in Earth Science frontiersin.org12

Kim et al. 10.3389/feart.2023.1136346

https://doi.org/10.30880/ijscet.2019.10.02.003
https://doi.org/10.1111/risa.13425
https://doi.org/10.1007/s10994-021-05977-w
https://doi.org/10.1016/j.ssci.2019.07.037
https://doi.org/10.1080/19475705.2022.2030414
https://repository.library.noaa.gov/view/noaa/6929
https://repository.library.noaa.gov/view/noaa/6929
https://doi.org/10.1016/j.ssci.2021.105457
https://doi.org/10.1016/j.ssci.2021.105457
https://doi.org/10.1155/2019/1930453
https://doi.org/10.1007/s11069-008-9221-y
https://doi.org/10.3390/app11094129
https://doi.org/10.1108/ECAM-03-2016-0066
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.ijdrr.2022.103276
https://doi.org/10.1007/s11069-021-04620-0
https://doi.org/10.1016/s0167-6105(01)00061-7
https://doi.org/10.1007/s11069-020-04225-z
https://doi.org/10.1007/s11069-020-04225-z
https://www.ijisae.org/index.php/IJISAE/article/view/2450
https://www.ijisae.org/index.php/IJISAE/article/view/2450
https://doi.org/10.1007/s00500-022-06805-6
https://doi.org/10.1016/j.jhydrol.2020.125552
https://doi.org/10.1016/j.jhydrol.2020.125552
https://doi.org/10.1038/s41598-022-09453-w
https://doi.org/10.3390/su13095304
https://doi.org/10.1080/19475705.2017.1337651
https://doi.org/10.1007/s10668-018-0086-2
https://doi.org/10.3390/su10113947
https://doi.org/10.1155/2020/8885916
https://doi.org/10.1080/19475705.2015.1084540
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1136346


Kim, J. M., Yum, S. G., Park, H., and Bae, J. (2021a). A deep learning algorithm-driven
approach to predicting repair costs associated with natural disaster indicators: The case
of accommodation facilities. J. Build. Eng. 42, 103098. doi:10.1016/j.jobe.2021.103098

Kim, J. M., Yum, S. G., Park, H., and Bae, J. (2022a). Strategic framework for natural
disaster risk mitigation using deep learning and cost-benefit analysis. Nat. Hazards
Earth Syst. Sci. 22 (6), 2131–2144. doi:10.5194/nhess-22-2131-2022

Kim, T., Song, J., and Kwon, O. S. (2020b). Pre-and post-earthquake regional loss assessment
using deep learning. Earthq. Eng. Struct. Dyn. 49 (7), 657–678. doi:10.1002/eqe.3258

Klepac, S., Subgranon, A., and Olabarrieta, M. (2022). A case study and parametric
analysis of predicting hurricane-induced building damage using data-driven machine
learning approach. Front. Built Environ. 8, 1015804. doi:10.3389/fbuil.2022.1015804

Ku, H., Maeng, J. H., and Cho, K. (2019). Climate change impact on typhoon-induced
surges and wind field in coastal region of South Korea. J. Wind Eng. Industrial
Aerodynamics 190, 112–118. doi:10.1016/j.jweia.2019.04.018

Kunreuther, H., Meyer, R., Van den Bulte, C., and Chapman, R. E. (2004). Risk
analysis for extreme events: Economic incentives for reducing future losses. Gaithersburg,
MD, USA: US Department of Commerce, Technology Administration, National
Institute of Standards and Technology.

Kwon, S. C. (2019). Use of frequency analysis of exposure of hazards by occupations:
Findings from the third and fourth Korean working conditions survey. Soonchunhyang
Med. Sci. 25 (1), 37–45. doi:10.15746/sms.19.006

Lee, G., Lee, C., Koo, C., and Kim, T. W. (2020). Identification of combinatorial
factors affecting fatal accidents in small construction sites: Association rule analysis.
Korean J. Constr. Eng. Manag. 21 (4), 90–99. doi:10.6106/KJCEM.2020.21.4.090

Li, H., Lin, L., and Cho, K. “Coastal inundation from sea level rise and typhoonmaemi,” in
Proceedings of the 12th International Conference on Hydroscience & Engineering ICHE
2016, Tainan, Taiwan, November, 2016. Editors Pao-Shan Yu and Wie-Cheng (Hg Lo.

Moishin, M., Deo, R. C., Prasad, R., Raj, N., and Abdulla, S. (2021). Designing deep-
based learning flood forecast model with ConvLSTM hybrid algorithm. IEEE Access 9,
50982–50993. doi:10.1109/access.2021.3065939

Nguyen, T., Kashani, A., Ngo, T., and Bordas, S. (2019). Deep neural network with
high-order neuron for the prediction of foamed concrete strength. Computer-Aided Civ.
Infrastructure Eng. 34 (4), 316–332. doi:10.1111/mice.12422

NTC (2011). National typhoon center, typhoon white book. Pearl Harbor, Hawaii:
National Typhoon Center.

Park, S. J., and Lee, D. K. (2020). Prediction of coastal flooding risk under climate
change impacts in South Korea using machine learning algorithms. Environ. Res. Lett.
15 (9), 094052. doi:10.1088/1748-9326/aba5b3

Rahman, M., Chen, N., Elbeltagi, A., Islam, M. M., Alam, M., Pourghasemi, H. R., et al.
(2021). Application of stacking hybrid machine learning algorithms in delineating multi-type
flooding in Bangladesh. J. Environ. Manag. 295, 113086. doi:10.1016/j.jenvman.2021.113086

Ren, J., Xu, N., and Cui, Y. (2022). Typhoon track prediction based on deep learning.
Appl. Sci. 12 (16), 8028. doi:10.3390/app12168028

Sakai, M., Nagayasu, K., Shibui, N., Andoh, C., Takayama, K., Shirakawa, H., et al.
(2021). Prediction of pharmacological activities from chemical structures with graph
convolutional neural networks. Sci. Rep. 11 (1), 525. doi:10.1038/s41598-020-80113-7

Sanders, D., Brix, A., Duffy, P., Forster, W., Hartington, T., Jones, G., and Wilkinson,
M. (2002). “January the management of losses arising from extreme events,” in
Convention general insurance study group GIRO (London, UK: GIRO).

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.Neural Netw.
61, 85–117. doi:10.1016/j.neunet.2014.09.003

Shane Crawford, P., Hainen, A. M., Graettinger, A. J., van de Lindt, J. W., and Powell,
L. (2020). Discrete-outcome analysis of tornado damage following the 2011 Tuscaloosa,
Alabama, tornado. Nat. Hazards Rev. 21 (4), 04020040. doi:10.1061/(asce)nh.1527-
6996.0000396

Shim, J. S., Kim, J., Kim, D. C., Heo, K., Do, K., and Park, S. J. (2013). Storm surge
inundation simulations comparing three-dimensional with two-dimensional models
based on Typhoon Maemi over Masan Bay of South Korea. J. Coast. Res. 65 (65),
392–397. doi:10.2112/si65-067.1

Ulbrich, U., Fink, A. H., Klawa, M., and Pinto, J. G. (2001). Three extreme storms over
Europe in december 1999. Weather 56 (3), 70–80. doi:10.1002/j.1477-8696.2001.
tb06540.x

USNHC (2018). United States National Hurricane Center (USNHC): Costliest, U.S.
tropical cyclones tables update. (last access: https://www.nhc.noaa.gov/news/
UpdatedCostliest.pdf June 31, 2022).

Wei, W., and Yang, X. (2021). Comparison of diagnosis accuracy between a
backpropagation artificial neural network model and linear regression in digestive
disease patients: An empirical research. Comput. Math. Methods Med. 2021, 1–10.
doi:10.1155/2021/6662779

Yi, Y., and Zhang, W. (2020). A new deep-learning-based approach for earthquake-
triggered landslide detection from single-temporal RapidEye satellite imagery. IEEE
J. Sel. Top. Appl. Earth Observations Remote Sens. 13, 6166–6176. doi:10.1109/jstars.
2020.3028855

Yi, Y., Zhang, Z., Zhang, W., Jia, H., and Zhang, J. (2020). Landslide
susceptibility mapping using multiscale sampling strategy and convolutional
neural network: A case study in jiuzhaigou region. Catena 195, 104851. doi:10.
1016/j.catena.2020.104851

Yum, S. G., Kim, J. M., and Son, K. (2020). Natural hazard influence model of
maintenance and repair cost for sustainable accommodation facilities. Sustainability 12
(12), 4994. doi:10.3390/su12124994

Yum, S. G., Kim, J. M., andWei, H. H. (2021). Development of vulnerability curves of
buildings to windstorms using insurance data: An empirical study in South Korea.
J. Build. Eng. 34, 101932. doi:10.1016/j.jobe.2020.101932

Yum, S. G., Song, M. S., and Adhikari, M. D. (2023). Assessing Typhoon Soulik-
induced morphodynamics over the Mokpo coastal region in South Korea based on a
geospatial approach.Nat. Hazards Earth Syst. Sci. 23 (7), 2449–2474. doi:10.5194/nhess-
23-2449-2023

Yun, K. S., Chan, J. C., and Ha, K. J. (2012). Effects of SST magnitude and gradient on
typhoon tracks around East Asia: Acase study for Typhoon Maemi. Atmos. Res. 109,
36–51. doi:10.1016/j.atmosres.2012.02.012

Zhang, Y., Wu, W., Qin, Y., Lin, Z., Zhang, G., Chen, R., et al. (2020). Mapping
landslide hazard risk using random forest algorithm in Guixi, Jiangxi, China. ISPRS Int.
J. Geo-Information 9 (11), 695. doi:10.3390/ijgi9110695

Frontiers in Earth Science frontiersin.org13

Kim et al. 10.3389/feart.2023.1136346

https://doi.org/10.1016/j.jobe.2021.103098
https://doi.org/10.5194/nhess-22-2131-2022
https://doi.org/10.1002/eqe.3258
https://doi.org/10.3389/fbuil.2022.1015804
https://doi.org/10.1016/j.jweia.2019.04.018
https://doi.org/10.15746/sms.19.006
https://doi.org/10.6106/KJCEM.2020.21.4.090
https://doi.org/10.1109/access.2021.3065939
https://doi.org/10.1111/mice.12422
https://doi.org/10.1088/1748-9326/aba5b3
https://doi.org/10.1016/j.jenvman.2021.113086
https://doi.org/10.3390/app12168028
https://doi.org/10.1038/s41598-020-80113-7
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1061/(asce)nh.1527-6996.0000396
https://doi.org/10.1061/(asce)nh.1527-6996.0000396
https://doi.org/10.2112/si65-067.1
https://doi.org/10.1002/j.1477-8696.2001.tb06540.x
https://doi.org/10.1002/j.1477-8696.2001.tb06540.x
https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf
https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf
https://doi.org/10.1155/2021/6662779
https://doi.org/10.1109/jstars.2020.3028855
https://doi.org/10.1109/jstars.2020.3028855
https://doi.org/10.1016/j.catena.2020.104851
https://doi.org/10.1016/j.catena.2020.104851
https://doi.org/10.3390/su12124994
https://doi.org/10.1016/j.jobe.2020.101932
https://doi.org/10.5194/nhess-23-2449-2023
https://doi.org/10.5194/nhess-23-2449-2023
https://doi.org/10.1016/j.atmosres.2012.02.012
https://doi.org/10.3390/ijgi9110695
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1136346

	A study of deep learning algorithm usage in predicting building loss ratio due to typhoons: the case of southern part of th ...
	1 Introduction
	1.1 Quantification model for natural disasters
	1.2 Literature reviews

	2 Data and methodology
	2.1 Data collection
	2.1.1 Typhoon loss
	2.1.2 Input and output variables

	2.2 Methodology: application of deep learning algorithm
	2.2.1 DNN model setup
	2.2.2 Model validation


	3 Results and discussion
	3.1 Results
	3.2 Discussion

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


