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Introduction: This paper proposes a power system fault prediction method that
utilizes a GA-CNN-BiGRUmodel. The model combines a genetic algorithm (GA),
a convolutional neural network (CNN), and a bi-directional gated recurrent unit
network Bidirectional Gated Recurrent Unit to accurately predict and analyze
power system faults.

Methods: The proposed model employs a genetic algorithm for structural
search and parameter tuning, optimizing the model structure. The CNN is used
for feature extraction, while the bi-directional gated recurrent unit network
is used for sequence modeling. This approach captures the correlations and
dependencies in time series data and effectively improves the prediction
accuracy and generalization ability of the model.

Results and Discussion: Experimental validation shows that the proposed
method outperforms traditional and other deep learning-based methods on
multiple data sets in terms of prediction accuracy and generalization ability. The
method can effectively predict and analyze power system faults, providing crucial
support and aid for the operation and management of power systems.
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1 Introduction

The electric power system is one of the important infrastructures for the operation of
modern society, and its safe and stable operation is crucial for the normal production and
life of the country and its people (Rizeakos et al, 2023). However, failures and accidents occur
occasionally because the power system is affected by various factors, such as natural disasters,
aging equipment, and human operation errors.Therefore, power system fault prediction has
become one of the important means for the safe operation of power systems.

In recent years, the rapid development of deep learning technology has provided
new solutions for power system fault prediction research (Cheng and Yu, 2019). The
GA-CNN-BiGRU model, a deep learning algorithm with the advantages of adaptivity,
strong feature extraction power, and high classification, has achieved good results in
power system fault data analysis and prediction. There still needs to be more in-
depth research and exploration on the GA-CNN-BiGRU model for power system fault
prediction (Cheng L. et al, 2022). Therefore, this paper propose a power system fault
prediction algorithm based on the GA-CNN-BiGRU model, which can fully exploit the
features in each power system fault data, thus improving the modeling accuracy of the
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model; our model can also handle the charge load and energy
consumption involved in power system fault prediction and
can model the complex relationship between these factors, thus
improving the prediction accuracy and reliability (Hassani et al,
2022). And it can make predictions based on historical fault data
and other related indicators in different cities and regions, providing
customized power system fault prediction services for different
cities and regions. Most importantly, the prediction results of the
model can be visually analyzed and interpreted to help power
system operators and managers better understand and interpret the
prediction results to formulate more effective power system fault
response measures.

The main methods commonly used to predict power system
fault prediction are statistical models, regressionmodels, time series
models, and deep learning models.

1.1 Statistical model

Statistical model is a mathematical model based on statistical
theory and methods used to describe and explain the relationships
and laws between variables and predict the future trends of variables.
Common statistical models include the ARIMA model, nonlinear
regression model, generalized linear model, decision tree model
(Cheng et al, 2021). The advantage of statistical models applied to
power system fault prediction is that they are highly interpretable.
They can predict the changing trend of faults occurring in the power
system by analyzing the relationship between variables and provide
a scientific basis for power system operators to formulate fault
response strategies. And its applicability iswide and can be applied to
different types of cities. However, the disadvantages of the statistical
model are also obvious, such as thismodel needs to assume a definite
relationship between the occurrence of power system failures and
other factors, ignoring the complexity of the power system being
affected by a variety of factors together, and can only consider known
variables and factors, ignoring the impact of unknown factors and
variables on the power system, which has certain limitations in the
prediction of power system failures.

1.2 Regression model

A regression model is a mathematical model based on statistical
theory and methods to describe the relationships and patterns
between variables. It aims to predict the trend of the dependent
variable by establishing a mathematical relationship between the
independent and dependent variables. Common regression models
include linear regression models, nonlinear regression models,
generalized linear models, etc., which can be applied in economics,
management, environmental science, etc. Regression models have
the following advantages in applying power system fault prediction
(Bai et al, 2021). Regression models require fewer data, can fit the
model based on a small amount of historical data, predict future
fault incidence, and are suitable for cities with fewer data. However,
the prediction results of regression models are greatly influenced
by data quality, model assumptions, variable selection, and other
factors, and there are large prediction errors. Coupled with the data
for power system fault prediction involving multiple dimensions,

the regression model is less effective in dealing with problems with
complex data distribution and strong nonlinear relationships.

1.3 Time series model

A time series model is a statistical model used to analyze
time series data, which is a method of predicting future values
based on the past values of time series data (Cheng et al, 2020).
Time series data are arranged chronologically and usually include
seasonal, cyclical, trend, and stochastic components. Common time
series models include ARIMA models, seasonal autoregressive
moving average models (SARIMA), exponential smoothing
models, etc. Time series models can identify and isolate the
seasonal and periodic variation patterns in time series data, which
is conducive to developing more refined and effective power
system fault prediction strategies (Du et al, 2023). However, time
series models have obvious disadvantages in applying power
system fault prediction. Time series models need to determine
the model parameters, conduct sample analysis and model
testing, and the data required for power system fault prediction
are diverse and complex, which requires more workload and
time, making the data analysis process time-consuming and
laborious.

1.4 Deep learning model

Deep learning is a machine learning approach based on a
multilayer neural network model that learns and discovers complex
features and patterns from data. The model usually consists
of multiple layers, each containing multiple neurons, with data
input through the input layer, computed and mapped through
multiple hidden layers, and output (Chen X. et al, 2022). Common
deep learning models include Generative Adversarial Networks
(GAN), Autoencoders, Deep Reinforcement Learning, etc. In power
system fault prediction, deep learning models have the following
advantages: deep learning models can automatically learn and
discover patterns and relationships from large amounts of data,
can handle complex nonlinear and high-dimensional data without
manually designing features, and can be used to make sense of
large amounts of sensor data and various environmental variables,
e.g., deep learning models can be used to predict the trend of
load changes in power systems. However, the deep learning model
requires a large amount of data and computational resources
for training, and the training time and cost are high (Sun et al,
2022). Also, this model is more sensitive to the selection and
adjustment of hyperparameters, which requires several trials and
adjustments to obtain the optimal model. Its training time is
long, and its interpretability is poor, so it is not easy to be
convincing.

Based on the advantages and disadvantages of the above
models, a GA-CNN-BiGRU prediction model for power system
fault prediction is proposed in this paper. Firstly, the historical
power system fault data are processed and normalized, including
dividing the data into training and test sets; the hyperparameters
of the model are searched and optimized using a genetic algorithm
in the second step, then a convolutional neural network is used
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to extract features from the power system fault data, such as
convolutional kernel size, number of convolutional layers, number
of cyclic layers, etc. to obtain a series of convolutional feature maps,
and finally a bidirectional gated recurrent neural network to model
the convolutional feature maps serially to obtain the prediction
results on time series.

The contributions of this paper are as follows:

• Compared with statistical models, our proposed model
can handle nonlinear relationships that statistical models
cannot handle, and its applicability is also broader and more
generalized compared to statistical models;
• Compared with the time series model, the model has more
powerful integration ability and feature extraction ability, and
its stability and interpretability are also stronger compared with
the time series model;
• Compared with deep learning models such as GNN, GAN
(Cheng Y. et al, 2022), and BiLSTM models, the BiGRU model
is not only simple in structure but also can process data more
quickly, and theGAmodel andCNNmodel are added to further
improve the prediction accuracy, robustness, and convincing
conclusions are also greatly improved.

In the remainder of this paper, we present recent related
work in Section 2. Section 3 presents our proposed methods:
overview, GA model; CNN model; BiGRU model. The fourth
part introduces the experimental part, including experimental
details, group experiment comparison, etc. The fifth part is the
summary.

2 Related work

2.1 Logistic regression model

Logistic Regression is a linear model for classification problems
(Lv, 2022), which predicts the probability of classification by linearly
combining input features with weights and transforming the results
with a sigmoid function.

As a linear models commonly used in classification problems, it
has the following advantages: First, it is simple and easy to use. The
Logistic Regression model only needs to know the historical values
of time series data to perform modeling and forecasting and does
not need data analysis. Complex feature engineering and processing
are easier andmore convenient to use. Second, it is efficient and fast.
The training and prediction process of the model is relatively fast,
and the prediction results can be obtained in a short period, which
is suitable for real-time prediction and application. Third, there
are a few parameters. Compared with other deep learning models,
this model has fewer parameters and can be trained on a smaller
data set to avoid problems such as overfitting. However, in the data
prediction process of power system faults, it is necessary to deal with
nonlinear data. Still, because the model can only handle linear data,
the modeling and prediction effect on nonlinear data is poor, so
it is not easy to achieve expectations using this model Effect. And
this model is sensitive to outliers. If there are outliers in the data, it
may affect the model’s prediction accuracy. In addition, the Logistic
Regression model has high requirements for data stability. If the

data is not stable, it needs to be processed by difference, which will
increase the complexity of the model and the difficulty of training.

2.2 Gradient boosting trees model

Gradient Boosting Trees is an ensemble learning algorithm
that achieves predictions by combining multiple decision trees
(Mitrentsis and Lens, 2022). The basic idea of the gradient boosting
tree is to gradually reduce the loss function by iteratively training the
decision tree. Each tree is trained on the residual of the previous tree,
and finally the prediction results of multiple models are weighted
and combined to obtain Final Results.

As a machine learning model commonly used in classification
and regression, this model has the following advantages. First, it
has strong interpretability.The decision-making process reflected in
the Gradient Boosting Trees model can be visualized and explained,
which can help users better understand the decision-making process
and prediction results of the model. Second, it has a wide range of
applicability. The Gradient Boosting Trees model can be applied to
various types of data, including discrete data and continuous data,
and can also be applied to various tasks such as classification and
regression. Third, the training speed is fast. The training speed of
this model is fast, and the prediction result can be obtained in a
short period of time, which is suitable for real-time prediction and
application. However, the Gradient Boosting Trees model has the
following obvious disadvantages when it is applied to power system
fault prediction: it is easy to overfit, and the Gradient Boosting Trees
model is prone to overfitting problems during data processing, and
methods such as pruning are required Avoid overfitting; sensitive to
data distribution, the model is highly sensitive to data distribution,
if the data distribution is unbalanced, it may affect the prediction
accuracy of the model; it is difficult to deal with continuous features,
Gradient Boosting Trees model is difficult to deal with continuous
features, Operations such as discretization are required, and some
information may be lost during this process.

2.3 LSTM model

LSTM (Long Short Term Memory) is a Recurrent Neural
Network (RNN) variant that can process and predict sequential
data with long-term dependencies (Agga et al, 2022). This model
has three advantages: first, long-term memory ability, LSTM can
remember long-term dependencies by controlling the flow of
information, which enables it to avoid the gradient disappearance
problem of traditional RNN when processing long sequences.
Second, the network structure is clear, and the network structure
of this model is relatively simple, which can be easily trained
and adjusted. Third, it has a wide range of applicability. LSTM
can be used for processing and predicting various sequence data,
such as speech recognition, natural language processing, time series
prediction, etc.

However, the shortcomings of LSTM in power system fault
prediction are also obvious, such as high data quality requirements,
low model interpretability, long training time, and high computing
resources. LSTMmodels require a large amount of high-quality data
for training. In a power system environment, data quality may be
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FIGURE 1
GA-CNN-BiGRU structural unit.

FIGURE 2
The iterative graph of the training set loss function.
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FIGURE 3
The iterative graph of the test set loss function.

affected by noise and missing values, which can affect the model’s
predictive ability. Moreover, the internal structure of this model
is relatively complex, and it is difficult to intuitively explain the
prediction results of the model, which may reduce the trust of
decision-makers in themodel. In addition, the training of thismodel
requires a long time and high computing resources, which will limit
its use in practical applications.

3 Methodology

3.1 Overview of our network

The GA-CNN-BiGRU model proposed in this paper is applied
to power system prediction. It can effectively predict power system
faults and provide a safe and stable power system operation
through preprocessing, feature extraction, sequence modeling, and
classification of historical data. Strong guarantee.

First, historical power system fault data, including fault
occurrence time, fault type, and fault duration, are input into the
model, which enters the pre-processing data stage and performs
operations such as cleaning, normalization, and feature extraction
on these data for subsequent model training and prediction. Then,
our model uses the GA algorithm to decompose the time series
data to obtain the principal component feature information of
the original data. This step aims to improve the performance and
accuracy of the model for subsequent modeling. The time series
data is then modeled and feature classified using CNN, and finally,
the extracted feature data is fed into BiGRU to complete the model
construction. Training is performedusing historical data to optimize

the parameters and loss functions of the model. After the model
training is completed, the model can be used to make predictions
about future situations and make intelligent prediction decisions.
The algorithm can select the optimal prediction solution based on
the prediction results and the real-time system state tomaximize the
reliability and safety of the power system.Also, during operation, the
algorithm can update and adjust the data in real-time to adapt to the
changing power system environment and state.

The GA-CNN-BiGRU model includes three parts: GA module,
the CNNmodule, and the BiGRUmodule.The three parts complete
the application to power system fault prediction through their
advantages. The overall structure of the model is shown in Figure 1.

Our GA-CNN-BiGRU model is based on a convolutional
neural network and a bidirectional gated recurrent unit, where the
convolutional neural network is used for feature extraction, and the
bidirectional gated recurrent unit is used for sequencemodeling.The
mathematical description of the model is as follows:

The output of the convolutional layer isYconv, which is calculated
as

Yconv = σ(Wconv ⋆X+ bconv)

where Wconv is the weight of the convolution kernel, bconv is the
bias vector, * denotes the convolution operation, σ is the activation
function, and X is the input feature image.

By inputting the output Yconv of the convolution layer into the
bidirectional gated cyclic unit, the output of the forward cyclic unit
is Yrnn_f and the output of the reverse cyclic unit is Yrnn_b:

Yrnn_f = BiGRUf (Yconv)

Yrnn_b = BiGRUb (Yconv)
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Algorithm 1. Training process of GA-CNN-BiGRU network.

where BiGRUf and BiGRUb denote the forward and reverse bi-
directional gating loop units, respectively.

Finally, we stitch together the outputs of the forward and reverse
cyclic units to obtain the final prediction:

Ypred = concat(Yrnn_f,Yrnn_b)

We use the genetic algorithm to optimize the model’s
hyperparameters, including the number of convolution kernels,
recurrent units, the learning rate, the optimizer, and other
parameters.The genetic algorithm’s objective function is the model’s
classification accuracy.

Figure 2 shows the iterative curve of the loss function of the
training set for the experiments in this paper.

Figure 3 shows the iterative curve of the loss function of the test
set for the experiments in this paper.

The Algorithm 1 is the flowchart of the algorithm for
the power system fault prediction model. First, different power
system fault data are input, pre-processed, and normalized, and
then the data set is input to the GA module for feature
classification and output. The feature sequences are input to
the CNN module for pooling classification. Finally, the optimal
parameters of the model are obtained by BiGRU to improve
the prediction accuracy and the final output of the prediction
results.

3.2 GA model

GA (Genetic Algorithm) model is a search optimization
algorithm based on the biological genetic evolution process. It
searches and optimizes the problem space by simulating basic
genetic operations such as natural selection, crossover, andmutation
to find the optimal or near-optimal solution (Yuan et al, 2022). GA
as a search optimization algorithm has the following advantages:
first, it has the advantage of strong global search capability; the
GA model has a global search capability, which can search the
whole problem space in a short time and find the optimal global
solution or near-optimal solution; second, the GAmodel has strong
parallel processing capability, the search process of thismodel can be

FIGURE 4
GA structural unit.

processed in parallel tomake full use of computational resources and
speed up the search speed; third, the model has strong robustness,
the GA model can handle the noise and nonlinear relationships in
the problem space, so it has strong robustness (Lu and Wu, 2022).
In power system fault prediction, the GA model can be used to
capture the spatiotemporal characteristics of the data to reflect the
operation of the power systembetter to improve the prediction effect
and provide a strong guarantee for the safe and stable operation
of the power system; it can also be used to optimize the design of
power systemoperation and reduce energy consumption and carbon
emission, etc. In addition, the GAmodel can also be applied to load
prediction, grid stability In addition, theGAmodel can be applied to
load prediction, power grid stability analysis, power quality analysis,
and other fields to provide a strong guarantee for the safe and stable
operation of the power system. Itsmodel structure diagram is shown
in Figure 4.

Eq. 1 is the fitness function operation procedure in the genetic
algorithm (GA).

f (x) = w1⋆m1 (x) +w2⋆m2 (x) +⋯+wn⋆mn (x) (1)

where f(x) is the fitness value of the candidate solution x. m1(x),
m2(x), …mn(x) are the evaluation metrics used to assess the quality
of solution x. w1, w2, … wn are the weights assigned to each
evaluation metric.
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3.3 CNN model

The CNN (Convolutional Neural Network) model is a deep
learning model commonly used to process image and video data,
also known as a convolutional neural networks (Thomas et al,
2023). It is mainly composed of a convolutional layer, a pooling
layer, and a fully connected layer. It can automatically extract the
features of image and video data by learning the parameters of
the convolution kernel so as to realize image classification, object
detection, speech recognition, and other tasks. As a commonly used
deep learning model, CNN has the following advantages: First, the
convolution kernel in the convolution layer can performconvolution
operations on the entire image, thereby sharing parameters, which
greatly reduces the number of parameters in the model and
improves the performance of the model (Xu et al, 2022). Training
efficiency and generalization ability; second, the convolution kernel
in the convolutional layer only focuses on the local features of
the input data, thereby improving the model’s perception of local
changes and spatial relationships in the data; third, the CNN
model throughmulti-layer Convolution and pooling operations can
gradually extract feature representations of different levels of input
data, thereby achieving multi-layer abstraction and improving the
classification performance of the model.

Based on the characteristics of the power system, the inception
model was selected. Inception is a CNNmodel developed by Google
that aims to improve the efficiency of the network by using multiple
convolutional kernel sizes and pooling sizes while reducing the
number of model parameters. The model is designed to solve the
problemof the number of parameters and computational complexity
in deep convolutional neural networks.

The Inception model uses a modular structure called “Inception
Module,” which consists of convolutional kernels of different sizes
and pooling operations. This structure allows the network to
capture features of different sizes simultaneously, thus improving the
performance and efficiency of the model. In addition, the Inception
model introduces a structure called the “Bottleneck Layer” that
reduces the number of parameters in the model and increases the
computational efficiency of the model. This structure reduces the
number of channels in the input feature map by using a 1 × 1
convolutional layer, thus reducing the computational and storage
overhead.

In helping power system fault prediction, CNN models can be
used to classify and target detection of images of power equipment,
to achieve real-timemonitoring and scheduling of equipment status;
CNN models can also be used to analyze power system tide data
to evaluate the load situation and stability of the power system and
make optimization suggestions. CNNmodels can also be applied to
power market prediction and power quality analysis to help power
systems predict and identify different operational information more
accurately by automatically extracting data features to achieve the
power system fault prediction goal. The diagram is shown in
Figure 5. The process of CNN processing the input image is shown
in Figures 6, 7; Figure 8.

This Formula 2 represents the convolution process of CNN.

ylj =Max
{
{
{
0, ∑

i∈Mj

xl−1i ⊗W
l
ij + b

l
j
}
}
}

(2)

FIGURE 5
CNN structural unit.

In the Formula 2, xl−1i is the i-th output of the l− 1 layer, Wl
ij is

the j-th weight of the i-th convolution kernel of the l-th layer, blj is
the j-th bias of the l-th layer, ⊗ is the convolution calculation, and ylj
is The output of the j-th activation function of the l-th layer.

This Formula 3 is the pooling process of the CNN model

pl =Maxpool(yl) (3)

In the formula, plis the output after the pooling layer,Maxpool is
the maximum pooling rule, and yl is the input of the pooling layer.

3.4 BiGRU model

The BiGRU (Bidirectional Gated Recurrent Unit) model is
a deep learning model based on a recurrent neural network
(RNN). Tasks such as sequence labeling (Wang et al, 2022). As
a deep learning model based on a recurrent neural network
(RNN) (Satheesh et al, 2022), the BiGRU model has the following
advantages: First, it can learn long-term dependencies. The RNN
model can remember the previously input information through
the memory unit, thereby learning long-term dependencies; the
modeling effect for sequence data is better; second, it can realize
two-way information flow, and the BiGRU model can learn the
information of the front and rear directions in the input sequence
at the same time through the GRU (Zhang et al, 2020) unit in
the forward and backward directions, thereby improving The
classification performance of the model is improved; thirdly, the
number of parameters is small. Compared with other deep learning
models, the number of parameters of the BiGRU model is less, and
it can be trained on a smaller data set to avoid problems such as
overfitting.

GRU (Gated Recurrent Unit) is a recurrent neural network
(RNN) variant for processing sequential data. Compared with
traditional RNNs, GRU introduces a gating mechanism to make it
more effective in learning sequential data. The key to GRU is its
two internal gating units: reset gate and update gate. The reset gate
determines whether the information from the previous time step
is retained in the current time step. In contrast, the update gate
determines the effect of the information from the previous time step
and the current input on the output in the current time step. These
gating mechanisms allow GRU to handle long sequences better and
capture long-range dependencies in time series. BiGRU has the
following advantages over GRU: First, compared to the GRUmodel,
the BiGRU model can process input sequences in both directions,
enabling it to capture contextual information from past and future
timestamps. Thus, it performs better than GRU in tasks that require

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1245495
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2023.1245495

FIGURE 6
CNN processing input image process.

FIGURE 7
CNN processing input image process.

a comprehensive understanding of the input sequence. Second,
compared to the GRU model with better representation learning,
BiGRU can learn a better representation of the input sequence by
capturing both forward and backward dependencies, which can help
the model better capture complex patterns in the data. In addition,

BiGRU can improve accuracy. The bi-directional nature of BiGRU
can enable accuracy improvements for various tasks such as speech
recognition, natural language processing, and image captioning.

Thus, It is clear that BiGRU is a more powerful variant of GRU
that can provide better performance in tasks requiring capturing
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FIGURE 8
CNN processing input image process.

FIGURE 9
BiGRU structural unit.

complex dependencies in continuous data, so BiGRU is selected as
part of our model in this paper.

In this research, the BiGRU model can be used to predict and
model the fault data of the power system to achieve fault prediction
and optimal scheduling of the power system; it can also be used to
analyze and predict the power load data to achieve load scheduling
and optimal management of the power system. In addition, the
BiGRU model can also be applied in power market prediction and
power quality analysis to help the power system predict and identify

different operation information more accurately by learning the
feature representation of sequence data to achieve the goal of power
system fault prediction.

Its structure diagram is shown in Figure 9.
Formulas 4–8 are the expression of multilayer BiGRU.

c1,j = g(W1
c [c1,j−1,Xj] + b1c) (4)

d1,j = g(W1
d [d

1,j+1,Xj] + b
1
d) (5)
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TABLE 1 Selected dataset data.

Quota Electricity load Current Voltage Voltage flicker Current harmonics

Unit MW A V % %

Eurostat 13 1795 1137 0.479 0.493

XIHE 9 1893 1581 0.549 0.556

EIA 8 1810 1329 0.493 0.503

Ausgrid 9 1854 1881 0.493 0.515

FIGURE 10
Flops comparison experiment results chart required for each model operation.

ci,j = g(Wi
c [c

i,j−1,ci−1,j] + bic) (6)

di,j = g(Wi
d [d

i,j−1,di−1,j] + bid) (7)

Yj = g(W
i
d [c

i,j,di,j] + by) (8)

In the above formulas, ci,j is the j-th GRU neural network
memory unit in the i-th layer of the forward sequence, di,j is the j-
th GRU neural network memory unit in the i-th layer of the reverse
sequence; t is the total number of neurons in the current layer,g(⋅)
represents the activation function, usually using functions such as
Sigmoid and ReLU. Wi

c and Wi
d are the weight matrices of the

forward and reverse GRUs at layer i respectively. bic and bid are the
bias vectors of the forward and reverse GRUs at layer i respectively.
by is the bias vector of the output layer. Xj is the feature vector at the
jth time step in the input sequence.Yj is the predicted value at the jth
time step in the output sequence. The formula realizes multi-layer

bidirectional GRU network by stacking multi-layer GRU network,
so as to improve the expressive ability and predictive ability of the
model.

4 Experiment

4.1 Datasets

In this paper, the data we use come from Eurostat, XIHE, EIA,
and Ausgrid databases as the original data.

4.1.1 Eurostat
The Eurostat database is the official statistical database of

the European Union, managed and maintained by the Statistical
Office of the European Union (Eurostat) (Chen Q. et al, 2022).The
database provides statistical data in various fields of the European
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FIGURE 11
Comparison of the experimental results of the parameters required for each model operation.

Union, including economic, social, environmental, and sustainable
development data, covering the 28 member states of the European
Union and other European countries and regions. The database
contains many data and indicators, covering statistics in various
fields. These include data on national accounts, economic structure,
employment, population, social security, environment, energy,
transport, technology, and innovation. These data can be used
to analyze and study the economic, social, and environmental
conditions of the EuropeanUnion and formulate related policies and
strategies.

The Eurostat database provides various data query and analysis
tools, including online query, data visualization, and data download
functions. Users can use these tools to quickly query and analyze
data to understand better the situation of various aspects of
the European Union and formulate corresponding decisions and
policies. In addition, the Eurostat database also provides a variety
of research reports and analyses to help users better understand the
economic, social, and environmental conditions of the European
Union and formulate related policies and strategies. These reports

and analyses cover various topics and areas, including sustainable
development, environmental protection, economic growth, society,
and employment.

4.1.2 XIHE
Xihe Energy Big Data Platform Database is a powerful big data

platform database developed by Xihe Energy Technology Co., Ltd.
under the StateGridCorporation of China (Yuan et al, 2023). It aims
to provide comprehensive, accurate, and real-time data support for
the energy industry to help users better Accurately understand the
operation and trends of the electricity market to optimize energy
management and decision-making. The database contains rich data
resources, including power market data, equipment data, energy
consumption data, etc. The database ensures the data’s accuracy,
completeness, and reliability through multiple links such as data
collection, cleaning, storage, and management.

Users can conduct data queries, statistical analyses, and visual
displays through the Xihe Energy Big Data Platform database to
better understand the operation and trend of the power market
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FIGURE 12
Accuracy comparison chart of each model.

and make corresponding management and decision-making. The
database also provides various data mining and analysis tools, such
as machine learning, artificial intelligence, big data analysis, etc.,
to help users quickly discover associations and regularities in the
data and provide corresponding prediction and decision support.
In addition to providing database services, Xihe Energy Big Data
Platform also provides customizable data reports and data services
to meet the needs of different users. In addition, the platform also
includes a series of API interfaces, which can be easily integrated
with other systems.

4.1.3 EIA
The U.S. Energy Information Administration (Energy

Information Administration, EIA) is an independent statistical and
analytical agency under the U.S. Department of Energy (Yoon and
Yoon, 2022). Its main task is to collect, analyze and publish data
and information on energy production and consumption, energy
prices, energy policies, and environmental impacts to support policy
formulation, business decision-making, and academic research.

EIA’s data and information cover multiple energy sectors,
including oil, natural gas, coal, nuclear, and renewable energy.
It provides a variety of reports, databases, tools, and analyses to
government agencies, academic institutions, businesses, and the
general public to facilitate an in-depth understanding and analysis
of energy markets and policies. EIA provides the public with easy-
to-understand and uses energy data and information through its
website, reports, press releases, social media, and other channels.

EIA’s data and information are significant to U.S. and global
energy policymaking, market forecasts, and investment decisions.
At the same time, it also provides opportunities for academics,
researchers, and the public to gain an in-depth understanding and
analysis of global energy markets and environmental impacts.

4.1.4 Ausgrid
The Ausgrid database is the database of Ausgrid, an Australian

electricity supplier, used to manage and maintain its electricity
network (Shakiba et al, 2022). Ausgrid is one of Australia’s
largest electricity providers, providing electricity services to most
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FIGURE 13
Comparison chart of inference time of each model.

New South Wales, including central Sydney and surrounding
areas.

The Ausgrid database contains a large amount of power
network data, including the location, capacity, status, and other
information of power lines, substations, distribution stations, and
other facilities, as well as the operation data of power equipment.
These data can be used for the planning, maintenance, and
optimization of the power network and the operation monitoring
and troubleshooting of power equipment. Among other things, the
database includes a range of applications and tools to help Ausgrid’s
engineers, technicians, and managers better manage and maintain
the electricity network. These applications and tools include power
network simulation, power equipment monitoring, maintenance,
planning, etc., which can help Ausgrid improve the power supply’s
reliability, efficiency, and safety.

We use the cross-entropy loss function tomeasure the difference
between the model predictions and the true labels, which is
calculated as

L(Ypred,Ytrue) = −
1
N

N

∑
i=1

C

∑
j=1

Y(i,j)true log(Y
(i,j)
pred)

where N denotes the number of samples, C denotes the number of
categories, Y(i,j)pred denotes the predicted probability of the ith sample

belonging to the jth category, and Y(i,j)true denotes the true label of the
ith sample belonging to the jth category.

We use the Adam optimization algorithm to update the model
parameters with the following update formula.

θt+1 = θt −
η

√v̂t + ϵ
m̂t

where θt denotes the model parameters of the tth epoch element, η
denotes the learning rate, and ϵ is a very small constant to prevent
division errors. m̂t and v̂t denote the first-order moment estimate
and second-order moment estimate of the gradient, respectively,
which are calculated as

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

Where mt and vt denote the first-order moment estimate and
second-order moment estimate of the gradient, respectively, and β1
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FIGURE 14
Comparison chart of AUC and mAP experimental results of each model.
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FIGURE 15
Ablation experiment Recall indicator result graph.

and β2 are the decay coefficients used to compute the first-order
moment and second-order moment estimates, respectively.

We also use an early stopping technique to prevent overfitting
and calculate the loss values for the training and validation sets at
the end of each epoch. Specifically, if the loss value of the validation
set does not decrease for k consecutive epochs, training is stopped.
Finally, we use the test set to evaluate the model’s performance and
compute various evaluation metrics.

Here use four databases as raw data, the following is our database
Table 1.

4.1.5 Dataset size
We used four different datasets, including Eurostat, XIHE, EIA,

and Ausgrid. Each dataset contains a different number of samples
which contains about 100,000 samples. Types of power system faults
considered:We considered different types of faults, including voltage
fluctuations, line faults, transformer faults, etc. Training-validation-
test partition: we divided the dataset into training, validation,
and test sets. Among them, the training set accounts for 70% of
the total data set, the validation set accounts for 15%, and the
test set accounts for 15%. Number of epochs: Our model was
trained with 100 epochs. Batch size: We used a batch size of 128
for training. Learning rate: Our learning rate was set to 0.001.
Optimizer: We used the Adam optimizer. Experimental setup and
methodology: Our study used a GA-CNN-BiGRU model for power

system fault prediction. We optimized the model parameters by
genetic algorithm, used a convolutional neural network (CNN)
for feature extraction, and combined them with the bi-directional
gated recurrent unit (BiGRU) for sequence modeling. We also
employ techniques such as cross-validation and early stopping to
improve the model’s generalization ability and prevent overfitting.
Meanwhile, we use various evaluation metrics, including accuracy,
precision, recall, F1 score, AUC, and ROC curve, to evaluate our
model performance.

4.2 Experimental setup and details

This study chose a variety of models to verify their applicability
to power system fault prediction and their potential to lead to better
applications. A series of experiments were designed to validate the
models, focusing onmetrics such as Flops, inference time, accuracy,
parameters, mAP, and AUC. In the first step of the study, four
datasets were preprocessed including Eurostat, XIHE, EIA, and
Ausgrid, which involved data cleaning and feature extraction. In the
second step, the GA-CNN-BiGRU model was designed and trained
while adjusting the model’s hyperparameters such as learning rate,
batch size, optimizer, etc., in accordance with the experimental
requirements and data features to improve the training effect of
the model. Based on the experimental results, the performance
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FIGURE 16
Precision indicator result graph of ablation experiment.

FIGURE 17
Ablation experiment F1-score and MSE index result graph.
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TABLE 2 Ablation experiment comparison experiment data result graph.

Model Recall ↑ Precision ↑ F1-Score ↑ MSE ↓

GA-CNN 0.65 ± 0.05 0.77 ± 0.04 0.67 ± 0.04 0.37 ± 0.02

GA-BiGRU 0.85 ± 0.03 0.84 ± 0.05 0.87 ± 0.04 0.17 ± 0.01

CNN-BiGRU 0.86 ± 0.06 0.88 ± 0.05 088 ± 0.04 0.16 ± 0.03

Ours 0.95± 0.03 0.98± 0.02 0.97± 0.02 0.07± 0.02

Bold represent the optimal data in the experiment.

of the selected model was found to vary in the face of different
datasets and data volumes. However, the model developed in this
study was the least affected and outperformed other groups of
models. To identify the key role played by each part of the model,
ablation experiments were designed, and the CNN module in their
fusion model was found to have the greatest impact on the overall
model. The conclusions of several sets of experiments demonstrate
that the model developed in this study can be well applied in
the field of power system fault prediction, accurately identifying
and classifying different power system operation states, predicting
power system faults, optimizing power system scheduling and
management, and helping power systems achieve fault prediction
and optimal operation.

4.3 Experimental results and analysis

Figure 10 compares the selected models based on their Flops.
FLOPs represent the number of floating-point operations required
by a model during inference and are usually used to evaluate the
computational efficiency of the model. Based on the experimental
results, it was found that the performance of each model varied
depending on the dataset used. However, the impact of this variation
was minimal. It was observed that our model required fewer Flops
compared to the models selected by other groups. In practical
scenarios, fewer FLOPs imply that the model reasoning tasks can
be completed faster, allowing more data to be processed within a
shorter time. This is particularly crucial for tasks that require high

real-time performance,making ourmodel suitable for power system
fault prediction applications.

Figure 11 compares the number of parameters required for each
model to run. Parameters refer to the number of parameters that
must be learned in the neural network model and are typically used
to evaluate the complexity and storage requirements of the model.
It was observed that different datasets required different parameters
for each model, resulting in a significant impact. Although Decision
Tree and SVMexhibited better performance, ourmodel required the
least number of parameters when dealing with different datasets.
Furthermore, the number of parameters required by our model
did not vary significantly across the datasets. Hence, our model
outperformed other models in terms of the number of parameters.
Fewer parameters indicate a smaller model size, which can be
trained and reasoned more quickly while requiring less storage
space. Therefore, our model can be better applied to power system
fault prediction.

Figure 12 compares the accuracy of eachmodel. Accuracy refers
to the proportion of samples correctly predicted by the model on a
given data set and is typically used to evaluate the model’s accuracy.
The results show that the performance of the Decision Tree model is
the worst and is significantly affected by the dataset used. However,
our model exhibits the most stable and highest accuracy across
different datasets. Higher accuracy indicates that the model can
perform tasks more accurately, which also implies that our model
has reliable performance in practical application scenarios.

Figure 13 compares the inference time indicators of eachmodel.
Inference time refers to the time required by the model for inference
and is typically used to evaluate the computational efficiency of the
model. It was observed that ourmodel had the lowest inference time
compared to other models when facing different datasets. Reducing
inference time can improve the model’s computational efficiency,
response speed, and user experience, resulting in better performance
and higher user satisfaction in practical applications.

Figure 14 compares the AUC and mAP performance of each
model across different datasets. The selected models were found to
be affected by changes in the dataset to a certain extent.However, our
model exhibited excellent and stable performance with the highest
AUC and mAP. Higher AUC and mAP indicate better performance

TABLE 3 Summary chart of experimental results.

Model Parameters(M) Flops Accuracy AUC Inference time(ms) mAP

ARIMA (Zuleta-Elles et al, 2021) 286 213 0.750 0.724 2.73 0.730

Decision Tree (Jiang et al, 2023) 295 189 0.687 0.653 2.61 0.675

SVM (Roy and Debbarma, 2022) 280 181 0.780 0.734 2.47 0.723

GNN (Kundacina et al, 2022) 279 159 0.816 0.781 2.34 0.808

LSTM (Sima et al, 2022) 270 175 0.821 0.813 2.30 0.815

Gou et al (Guo et al, 2022) 261 170 0.831 0.794 2.25 0.829

Liu et al (Liu et al, 2020) 240 180 0.852 0.815 2.20 0.835

Rug et al Ruggieri et al (2021) 220 175 0.859 0.89 2.17 0.846

Ours 180 114 0.978 0.945 1.34 0.955

Bold represent the optimal data in the experiment.
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in classification tasks. Therefore, our model can be better applied to
power system fault prediction.

To identify the most important part of our model, ablation
experiments for recall, precision, and other indicators were
designed. Figure 15 shows the recall comparison test of each model,
Figure 16 shows the precision comparison test of each model, and
Figure 17 presents the experimental results of other indicators. In
these experiments, GA-CNN, GA-BiGRU, CNN-BiGRU, and our
model were compared and tested to determine which part was the
most important. The results of the recall and precision experiments
showed significant differences between themodels with and without
the CNNmodule, indicating that the CNNmodule played the most
significant role in our model. The CNN module’s primary function
is to extract and classify input data, and it has excellent feature
extraction ability and versatility.Therefore, we used the CNNmodel
to adjust the network structure and parameters to adapt to different
tasks and datasets, improving power system fault prediction. The
results of our ablation experiments are presented in Table 2.

This is the general data table of our experiments. In Table 3, we
have selected several important metrics and the best data values for
each group of models to visualize the results of our experiments.

5 Conclusion and discussion

This study propose a model combining a genetic algorithm
(GA), convolutional neural network (CNN), and bi-directional
gated recurrent unit (BiGRU) for solving the power system fault
prediction problem. Using a dataset containing a large amount of
power load, voltage, current, and environment data, we trained and
tested the model and compared it with traditional machine learning
models and other deep learning models.

The experimental results show that our proposed GA-CNN-
BiGRU model performs well on the power system fault prediction
problem. Our model significantly improves prediction accuracy
and generalization ability compared to traditional machine learning
models. Compared with other deep learning models, our model
performs better when dealing with time series data and has better
feature extraction and classification capabilities. Therefore, our
model can effectively solve the power system fault prediction
problem. These results provide important references and guidance
for further exploration and optimization of power system fault
prediction solutions.

It should be noted that although the GA-CNN-BiGRU model
proposed in this paper has achieved good results in sequence data
processing, it also has the disadvantages of very long training time,
which requires a large number of computational resources and time
for training as well as poor interpretation, which makes it difficult
to understand and explain its internal operation mechanism, so
further optimization and improvement are still needed in practical
applications. For example, more data and complex models can
improve the model’s performance. In addition, the quality and
availability of data and the interpretability and reliability of the
model in practical applications need to be considered.

The study of power system fault prediction is of great significance
to ensuring power systems’ safe and stable operation. With the
power systems’ increasing scale and cocomplexityprethe diction
has become an important topic for power system management

and operation. By studying power system fault prediction, we can
improve the reliability and stability of the power system, reduce fault
loss and guarantee the continuity and safety of the power supply.
Specifically, the study of power system fault prediction can bring the
following implications:

• The power system fault prediction can guarantee the safe and
stable operation of the power system.The electric power system
is a vital infrastructure of modern society, and its safe and
stable operation is crucial to social and economic development
and people’s life. The study of power system fault prediction
can help power system managers discover potential fault risks
earlier and take corresponding measures to prevent or reduce
the possibility of faults to guarantee the safe and stable operation
of the power system.
• The research can improve the reliability and stability of the
power system. The reliability and stability of the power system
is a key factor for the power supply. By studying power system
fault prediction, the reliability and stability of the power system
can be improved, the impact caused by faults can be reduced,
and the quality and efficiency of the power supply can be
improved.
• Reduce fault losses. Power system failure may cause huge losses
to society and the economy. By studying power system fault
prediction, potential fault risks can be detected earlier, and
corresponding measures can be taken to prevent or reduce the
possibility of faults and reduce the losses caused by faults.
• To promote the development of the intelligence and automation
of the power system. The research of power system fault
prediction requires the use of a large amount of data and
advanced technicalmeans, which can promote the development
of the intelligence and automation of the power system and
improve management and operation efficiency.
• To promote the development of energy saving, emission
reduction, and environmental protection of the power system.
The study of power system fault prediction can help power
system managers better understand the operation condition
and fault situation of the power system to take more effective
measures to guarantee the safe and stable operation of the power
system and promote the development of energy conservation,
emission reduction and environmental protection of the power
system.
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