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ABSTRACT 
 
 

Natural language processing (NLP), or the use of computers to analyze natural 

language, is a field that relies heavily on syntax. It would seem intuitive that computers 

would thrive in this area due to their strict syntax requirements, but the syntax of natural 

languages leaves them unable to properly parse and generate sentences that seem normal 

to the average speaker. A subfield of NLP, machine translation, works mainly to 

computerize translation between different languages. Unfortunately, such translation is 

not without its weaknesses; language documentation is not created equal, and many low-

resource languages—languages with relatively few kinds of documentation, most often 

written—are left with no way to effectively benefit from machine translation. As a step 

toward better translation processors for low-resource languages, this thesis examined the 

possibility of machine translation between high resource languages and low resource 

languages through an analysis of different machine learning techniques, and ultimately 

constructing a simple translator between English and an artificially constructed language 

using a context-free grammar (CFG). 

Keywords: natural language processing, machine translation, context-free grammars, 
syntax, corpora, artificially constructed languages, low-resource languages 
 
Word count:  13,510 
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SECTION ONE: LANGUAGE, COMPUTER PROCESSES, AND COMPUTER LANGUAGE 
 

Introduction 
 

Natural language processing (NLP), or the use of computers to analyze natural 

language, is a field that relies heavily on syntax. Syntax, or the study of grammatical 

structures, breaks down the internal structure of text-based sentences, focusing heavily on 

how the separate components interact with each other. Computers, as a rule, rely on such 

interactions to work. Take, for example, assembly language, an incredibly basic 

programming language, for which each seemingly simple command requires numerous 

lines of code. For instance, printing the classic “Hello World” to the console takes twelve 

lines of code, while in a computer-coding language like Python, a more modern 

programming language, it takes only one line of code. The main reason for this 

discrepancy in length is that assembly language interacts with each individual part of a 

computer’s memory, moving data from memory register to memory register. The 

comparison, while relatively loose, is fairly accurate to how a computer must parse 

natural language; while not explicitly interacting with computer memory, each individual 

part of each sentence must be broken down and shifted into different structures in order 

to extract any number of pieces of information from the data. 

Semantic meaning in natural language is deeply embedded within the structure, 

just as each individual command in assembly language tweaks the final result. It is how a 

sentence written in passive voice can have the exact same meaning as a sentence written 

in active voice; take, for example, the active sentence “the cat loves its owner.” The 

textual representation has the exact meaning as the passive text, “the owner is loved by 
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the cat.” This persistent meaning despite differing syntax, aptly named “deep structure,” 

is one of the greatest difficulties in textual processing for machine translation. It is here 

that the similarities between linguistic syntax and computer syntax diverge; while 

sentences can have the exact meaning with different syntax for human interpreters whose 

experience with the language is contextualized by such things as the person’s experience, 

emotion, setting, and culture, computers may not produce the same output when the order 

of the commands differ—the computer cannot bridge the differences with outside 

elements as a human does. This is compounded when the computer is asked to translate 

from one language to another, and this experience can be akin to humans learning a 

second language in which they first decode word for word and lack the semantic or 

cultural experiences to fully translate. Thus, if there is a sentence in, say, English, which 

has one meaning, and a sentence in English that has the exact meaning but a different 

structure, how would a computer translate that sentence into another language? The most 

brute-force “solution” would be to hard-code the different possible structures. In other 

words, the programmer would explicitly program each and every possible grammar 

structure into the code. This, however, is not feasible; computers have finite memory, 

while natural language allows for potentially infinitely mutable structures. Language 

evolves naturally and infinitely, growing with each new human experience, with every 

slip of the tongue, with every nuanced and different use. So, what is the solution? How 

might we program a computer translator to be better at language-to-language translation 

that captures the syntax and the semantics? This paper is an exploration of some of areas 

of exploration for written or textual translation. It cannot yet solve the problems but 

rather highlights areas for further development. 
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Thus, the questions are difficult to answer, and many in the field of artificial 

intelligence and natural language processing think they have stumbled upon one 

promising area: language models and bots. Each, however, struggles when confronted 

with colloquial language. A proposed solution would be to consider computer systems as 

language learners, using language acquisition research to build language models that 

prioritize grammatical phenomena in the order that humans learn them; another would be 

to use already created grammar models to build language models. This thesis focuses on 

using one such grammar model to translate written language between English, a high-

resource language, and Ethanski, an artificially constructed language the author created 

specifically for this thesis (used to simulate a low-resource language). 
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Background 

Grammar Models 

Grammar models, in psycholinguistics, are generally used to best capture how the 

human brain uses and parses grammar; many formal models have been created – falling 

into the categories of either dependency grammars or phrase structure grammars – and 

each has a different, nuanced view on how grammar works. Some work well for teaching 

second languages, while others work well for syntactic research, and still others – namely 

head-driven phrase structure grammar (HPSG) and lexical-functional grammar (LFG) – 

work best when combined with computer science for natural language processing. 

To define head-driven phrase structure grammar and lexical-functional grammar, 

dependency grammars and phrase structure grammars must first be defined. Phrase 

structure grammars focus more on the constituency of the words within a sentence, 

breaking the sentence into multiple, simplistic categories, with an emphasis on the 

locations of these constituents (Chomsky, 1956, p. 117). For our purposes, a constituent 

refers to an easily identifiable subpart of a sentence. 

In contrast, dependency grammars focus primarily on the links between words, 

namely how strongly—or weakly—each word depends on the structural center of clauses, 

which is normally assumed to be the verb (Müller, 2020, p. 367). This differs from phrase 

structure grammars which focus primarily on the constituency of words within clauses 

from a linear perspective (Müller, 2020, p. 53). Constituency within syntactic theory, 
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particularly within Chomskyan Universal Grammar Theory, refers to the relationship 

between individual units that allows such units to function as a unit together (Carnie, 

2007, p. 72). For example, a noun phrase (NP) can be composed of a noun as well as 

several other optional units, defined as follows: NP → (D)(AdjP+)N(PP), where D stands 

for determiner, AdjP+ refers to adjective phrases repeated as necessary, N stands for 

noun, and PP stands for prepositional phrase. To more clearly present the difference 

between the two, it could be said that dependency grammars focus on the dependency 

between every word in a clause and its structural center while phrase structure grammars 

focus on dependencies between each word within a clause, regardless of any perceived 

structural center. 

With that being said, both head-driven phrase structure grammar and lexical-

functional grammar are soundly within the realm of phrase structure grammars, but not 

without references to dependency grammar. Furthermore, both contain further nuance 

between the generative-enumerative and model-theoretic approaches. Generative-

enumerative approaches—reserved primarily for phrase structure grammars and other 

similar models—are built upon the concept of being able to generate strings of symbols 

(or words) in order to derive any well-formed string (Müller, 2020, p. 509). This is 

similar to the computer science theory of CFGs, where a simple language can be 

described using a series of production rules where derivation involves taking a starting 

symbol and generating the target string step-by-step. To illustrate, one could imagine 

having a string with different colored marks up and down the length, adding beads to the 

string accordingly; when you reach a certain color, you know to change the bead to place 

on the string. This is similar to how a computer processes a context-free grammar. 
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When originally created, lexical-functional grammars within computer software 

were intended to be generative-enumerative (focused on generating all possible strings 

within a language), but further adaptation through research changed its form to model-

theoretic. Model-theoretic approaches are the direct opposite of generative-enumerative 

approaches; rather than specifying rules that must be followed in the symbol/word 

selection process, model-theoretic models constrain lexical items and allow everything 

that is not outright banned by the constraints (Müller, 2020, p. 510). Referring back to the 

string example, this string would allow beads not explicitly denoted by the colors on the 

string, as long as the beads were not explicitly disallowed. Both head-driven phrase 

structure grammar and lexical-functional grammar are classified as model-theoretic 

languages, but both fulfill this in different ways. 

Lexical-functional grammar structures are, first and foremost, strict and explicit. 

They focus primarily on describing the relationship between words and their functions 

within a phrase or clause within the theoretical domain of mathematical modeling 

(Kaplan, 1995). Each aspect of a sentence is broken down into its components according 

to subject, object, and predicate, with additional modules that can be added in order to 

classify tense, perspective, and number. For example, the sentence  

The silly dog gave the contentious cat a mimosa after dinner. 

       NP            V                       NP               NP         Prep Phrase 

DET ADJ  N   V     DET    ADJ        N   DET  N      P          N 

       S                                                 IO       DO                  OP  

                                                      [prepositional phrase = adverbial] 
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The complete predicate is emboldened. Here the functions not the grammatical categories 

(e.g., noun, adjective, verb) are of import. 

This calls to attention the lexical aspect of the model with the emphasis on the 

importance of individual lexical items; it is a lexicalist idea, that each word adds a 

significant amount of information to the semantics of a sentence. An important 

summarization of the point of lexical-functional grammar is that the importance is based 

on the relationship between all lexical items within a sentence, not their position in the 

sentence (Müller, 2020, p. 228). So, in the sentence above, the relationship among the 

determiner, adjective, and noun to form a noun phrase functioning as the subject versus 

the determiner, adjective and noun that forms the noun phrase that is functioning as the 

indirect object and so on is essential. 

Similar to lexical-functional grammar, head-driven phrase structure grammar 

structures are strict, explicit, and highly lexical. However, rather than focusing on the 

subject, object, and predicate relationship, head-driven phrase structure grammar 

structures focus primarily on compiling phonological, syntactic, and semantic 

information for each lexical item (Müller, 2020, p. 268). The selection criteria are 

generally programmed to focus on extracting words according to their place within a 

sentence, and, since the grammars are informed by written corpora, the extracted words 

are then checked against the stored data, determining whether or not the word is capable 

of fulfilling the sentence placement inferred during extraction. 

 Head-driven phrase structure grammar structures were created almost specifically 

for computational linguistics and natural language processing, and this is evident in the 

structure of the model. As a general rule, head-driven phrase structure grammar does not 
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allow for overcomplicated linguistic ideologies in the attribute-value matrices; this 

grammar rules out structures like movement and the idea that all branches of a structure 

are binary, and ultimately leads to simpler, flatter structures that are easier to parse 

(Müller et al., 2021, p. 5). Emphasis is placed on the form and meaning of words, 

compiling them into a larger structure that shows the form and meaning of entire 

sentences or clauses (Müller, 2020, p. 268). Thus, the noun cat might be broken down 

into subcategories such as noun, singular, animate, animal, feline. 

It is inefficient to create an entire diagram every time a sentence needs to be 

translated, but these models are useful in creating the underlying system of machine 

translation software. For the heavy-lifting of machine translation, various methods are 

used, mainly neural networks, statistical models, and CFGs. Time constraints for this 

project removed the possibility of using neural networks and statistical models, leaving 

CFGs as the only feasible method. To be clear, CFGs are most similar to the phrase-

structure grammar model, as noted above, that were developed by Noam Chomsky, 

where sentences are modeled using each phrase and each component (Chomsky, 1956). 

These grammars can easily be written in syntax tree form (can be seen in Fig. 1 and Fig. 

2), and this is often how they are seen when not written for computer science purposes. In 

computer science, CFGs are written primarily for programming languages and their 

syntax and also hold great theoretical value within the more theory-motivated areas of the 

discipline (Dassow & Masopust, 2012). In computational linguistics, however, they are 

used often as a form of parsing. When used for the purposes of machine translation, the 

grammars have to be made for each language, with each word in each language being 
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separated according to part of speech. In order to fully analyze the part of speech of each 

word, lexical resources are usually needed. 

 
 In Fig 1, “The cat” is the subject, while “ate” is an intransitive verb, or a verb that 

does not take an argument, or object. 

 
 In Fig. 2, “The cat” is still the subject, but the verb “ate” becomes monotransitive, 

or, a verb that takes one argument, which is “the mouse,” the direct object. 
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The Computer as Language Learner 

Traditionally, many of us would not think of computers as language learners, or, 

rather, not in the way that is often meant. When used to describe human speakers, it 

usually means a person that is actively learning a language, whether they be a child 

learning their first language, or an adult learning their second, third, or even fourth. When 

used to describe computers, it generally means a computer that is being actively taught 

language, albeit in a different manner than that of human learners. In modern discourse, 

most language-learning “computers” are chatbots, or other forms of artificial intelligence 

(AI). 

Chatbots can be defined as computer programs that use various methods to 

communicate through text with humans. To go more in-depth, most chatbots are one of 

three kinds: rule-based, intellectually independent, and AI powered (Lishchynska, 2022). 

Rule-based bots are, by definition, the most constrained of the three models. These bots 

are normally constructed with a choice-based graphical user interface (GUI) and usually 

constrain the user–or customer–to the choices that are available (Lishchynska, 2022). 

These bots are seen most often on business websites and are used as the default bot for 

such sites. Intellectually independent bots, although not as advanced as AI-powered bots, 

are still quite a step up from rule-based bots. They are still constrained, but they allow the 

user to type their inquiries, and then the program parses the customer’s input for certain 

keywords (Lishchynska, 2022). These keywords are then connected to pre-programmed 

answers, which are then given to the user. Finally, AI-powered bots are the most 

advanced model and combine the best aspects of the rule-based bots and the intellectually 

independent bots. They use machine learning, AI, and natural language processing (NLP) 
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in order to parse user input and output relevant responses (Lishchynska, 2022). However, 

before these three models were fully developed, most bots were just scientific curiosities 

and their rudimentary forms could only reproduce pre-programmed language—they were 

not producers at any level of the output. 

The history of chatbots is quite extensive and begins with the influential works of 

Alan Turing. He argued that although it seems quite impossible to give a computer the 

full capacity of thought, it may be possible to give them the ability to imitate human 

communication (Zemcik, 2019). With his work, he brought into light one of the most 

compelling goals in computer science whose test became known as the Turing test. The 

Turing test required that a program be indistinguishable from a human in conversation. 

Following this, the first chatbot, ELIZA, was made at MIT with the purpose of providing 

psychiatric help to those who needed it and was even regarded by many to be an actual 

person (Shum et al., 2018; Zemcik, 2019). Then, the Parry bot was created and passed the 

Turing test for the first time, by providing human-like responses to the proctor during the 

test, creating a milestone that marked a turning point in the research (Shum et al., 2018). 

What Problems Remain in Natural Language Processing (NLP) 

 
Human linguistic abilities are unique, as is evident in the many complexities of 

language and meaning that humans most often find no difficulty understanding (but, of 

course, they do still often have difficulties understanding each other’s written and spoken 

language). In contrast, current NLP experiments fail to replicate understanding of these 

complexities; although this could be partially solved by programming multiple 

connotations and structures, that is, as previously stated, only a partial solution (Wallis, 
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2011). Furthermore, the sheer amount of data needed in a program to produce fewer 

errors would most likely render it inefficient and difficult to repair. Of course, the best 

solution would be to completely replicate human linguistic abilities, but this would 

require a complete understanding of human cognitive abilities and the neural networks 

that enable these abilities (Heinrich & Wermter, 2018) for which we still lack. Doing so 

would be similar to receiving a piece of unknown technology and having to reverse 

engineer it in order to replicate it. Many computational linguists try to work around this 

type of engineering by programing computers with extensive “dictionaries” in a 

misinformed attempt to give software the ability to understand and comprehend the many 

facets of words. The deficit of this approach is that the computer program may still select 

the inappropriate word from a list of choices since it still lacks all the experiences—

emotional, setting, culture of semantics (meaning) and pragmatics (context)—that a 

human uses. 

As the technology develops, accuracy does improve, although this is mainly due 

to the incorporation of deep learning and machine learning techniques, and not due to the 

efficacy of the dictionaries themselves (Kalra et al., 2022). The dictionaries do little to 

actually improve the comprehension skills of their programs. Unfortunately, these 

computational linguists are mistakenly conflating knowledge of denotations with full 

comprehension (i.e., semantics and pragmatics), though this is obviously not their 

intention, and recent forays into machine learning and deep learning are providing new 

avenues that improve the efficacy and efficiency of such dictionary systems. 

In basic information extraction systems, these memorized definitions could be 

useful in extracting relevant data from a set, though it is not very useful outside of these 
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basic situations. Even in these basic situations the usefulness is not absolute; in the case 

of metaphorical phrases, denotations are not of much use at all (Russell, 2016, p. 37). 

Metaphors are simply too unpredictable for even a machine-learning algorithm to predict 

possible meanings from all denotations of any word (Russel, 2016, p. 53). Slang is even 

harder to incorporate than metaphors, due to the fact that a lot of slang pays no mind to 

denotation. Take, for example, the phrase “that’s lit”; although it means “that’s 

interesting,” it is difficult to figure out the meaning from denotation alone, and current 

software is not capable of including context during analysis. In NLP, this inability to 

analyze figurative language is a debilitating limitation. This would require computational 

linguists to be able to program the linguistic models in such a way that the model’s 

grammar usage is not only functionally motivated, but semantically motivated as well 

(Periñán Pascual & Mestre-Mestre, 2016, p. 240). Semantically-motivated grammar is 

reminiscent of human language usage; as such, effective NLP programs would naturally 

replicate the human way of utilizing meaning (semantics) and context (pragmatics) with 

grammar. 

Currently, some of the better computer-powered interpreters are several 

NLP/artificial intelligence (AI) programs now available to the public like Cleverbot™. 

Still, these programs, while intended to respond logically and coherently, often respond 

in illogical ways; these moments make it very easy to remember that they are not, in fact, 

humans with humanlike linguistic capabilities. In the case of personal assistants, there are 

several examples of their inability to answer what the average person would consider a 

“simple” question, like “is the sky blue?” (Grosz, 2018). The flaw is in the lack of 

available comprehensive rules that can be programmed; obviously, the solution does not 
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lie in creating generic rules that cover the basic knowledge or basic syntax of a language 

but rather the crux lies in those slightly complex parts of language, as the programmers 

have not worked out for their machines at this point. To answer “Is the sky blue?” the 

program must be able to understand the subjectivity of color interpretation, and, unless 

the program possesses a camera with the ability to interpret light wave frequencies, it 

would be unable to give an answer that it created itself; rather, the answer it would give 

would be based on what the training data taught it, not on what could actually be 

perceived in that moment. In other words, if a program is taught by training data that the 

sky is blue, but the sky has suddenly turned red, it would be unable to accurately tell you 

what color the sky is. 

Functionally, computational linguistic theories on NLP systems have changed 

since the endeavor first began, and these changes have been significant, but they are 

seemingly not significant enough to really matter in analyses like the Turing test (Grosz, 

2018). At this point, the limitations far outweigh the current uses, although with further 

research this could very well not be the case. The necessary research, however, would 

need to be in something other than writing general linguistic guidelines for NLP systems 

to follow (Heinrich & Wermter, 2018). It could be proposed that the research be done, 

instead, focus on furthering our understanding of how humans communicate, and the 

neurological components required in hopes that the knowledge can be applied to NLP 

systems. 

 As stated previously, a lot of the problems in current NLP systems lie in the 

inability to accurately discern meaning from any given input that strays from denotation. 

This, of course, is not a problem when humans consume linguistic data; it is quite 
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difficult to find someone who is always literal, so many people have had to learn how to 

understand figurative language. This is a disadvantage that NLP systems must face. 

Unfortunately, as noted previously, very little is known about the neurological 

components of human linguistic communication, so there is quite a bit of work to be done 

before the information is useful for computational linguists (Heinrich & Wermter, 2018). 

For example, there is very little understanding of how the brain rationalizes grammar 

structures that do not generally follow logical patterns, like prepositions. Utilizing 

knowledge of neurological processes would, as stated previously, allow computational 

linguists to replicate said processes and create effective NLP systems that are actually 

capable of human-computer interaction (Heinrich & Wermter, 2018). Human language 

capabilities can be narrowed down to certain regions of the brain like the superior 

temporal gyrus and the inferior temporal gyrus; assuming the neural connections can be 

“reverse engineered” and replicated in a simulated neural network made of a series of 

programs, the NLP systems that incorporate this technology would be able to utilize 

language in an almost human way (Heinrich & Wermter, 2018). This would, of course, 

bar the parts of language that are built upon personal experiences, as NLP systems would 

be hard pressed to experience such things. 

 Furthermore, much of language is based upon sensory interactions, something that 

would be unique to human speakers. Considering NLP systems are pieces of internal 

software, it would be difficult – if not impossible – to create those kinds of sensory 

experiences for the systems to draw upon for context (Deemter, 2016). For example, in 

terms of referential statements, adjectives generally work on a gradient (Deemter, 2016); 

due to the fact that NLP systems cannot and have not experienced the relevant contexts, 
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without some kind of failsafe they will be unable to properly process the given 

information (i.e., as machines, they cannot tell whether the sky is blue). This can be 

bypassed by tweaking the hypothetical neural networks to give the NLP systems the 

ability to utilize machine-learning technology to comprehend and utilize figurative 

language on a gradient. There is still, however, the problem of the NLP systems 

comprehending referential statements in the first place. The gradient adjectives are 

functionally vague with or without context, mainly due to the fact that the foremost 

context is less important than the personal context of the speaker (Deemter, 2016). 

Current computational models have great difficulty in even identifying these vague 

descriptors; there are, generally, very few accurate linguistic models to base the necessary 

grammatical guidelines on (Bobrow & Simmons, 1970; Deemter, 2016). It could be 

entirely possible to create a lexicographical database of referential adjectives, but 

language growth is quite a large barrier in that regard, though deep learning provides a 

possible solution that can surpass computational and semantic limitations (Kalra et al., 

2022). A better solution, perhaps, would be to create a set of guidelines that effectively 

pick out referential adjectives, and to utilize machine-learning to give software the ability 

– once the adjectives are selected– to store the contextual usage of the adjective for future 

use. 

 NLP systems, although mostly used for long strings of written and/or verbal input, 

could possibly be used to analyze dialogue. Unfortunately, this could be fairly 

problematic due to the current nature of NLP systems alone. Assuming steps are taken to 

help the systems understand referential statements, there still exists the inherent difficulty 

in understanding the multiple layers of semantic and pragmatic components of human 
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language. People employ language in ways that are contradictory to the standard forms of 

their language (Grosz, 2018). Furthermore, in written input, it could be easy for an NLP 

system to mistakenly conflate the subject of one speaker’s sentence with the subject of 

another as a result of the incomplete sentences often spoken by native speakers (Grosz, 

2018). The human mind is capable, however, of making these distinctions, and through 

providing NLP systems with a way to properly simulate human neurological function 

computational linguists could bypass this entire issue. Unlike basic information 

extraction, analysis of dialogue requires an understanding of intention (Grosz, 2018; 

Lehnert, 1997). Assuming it is possible to program the ability to understand intentions, 

the actual algorithm for analyzing separate speakers is as simple as a basic stack data 

structure (Grosz, 2018)—in other words, the algorithm could simply stack the speakers in 

their speaking order, allowing the program to then analyze each speaker individually. Of 

course, this simplicity hinges on the ability to extract intention from context alone. This is 

a little more intensive than artificially assembling the “neural connections” through, say, 

linked nodes; rather, this would require the ability to simulate abstract thought through 

programming, which is something no one really has an idea on how to accomplish yet. 

However, that is only due to the fact that no one knows how thought works. 

 Current machine-learning capabilities have allowed current NLP systems to 

effectively learn meanings without the need for programmed lexicons. Instead, NLP can 

rely on actual examples of language usage to learn how to create sentences. This is a 

necessary strategy, but it also raises the problem of storage. Language grows almost 

exponentially, so expecting any system to have enough storage for a possibly infinite 

amount of information is far too much to ask. This can be bypassed through having 
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multiple layers of modality—or human inputs, such as typing, mouse, eye tracking, 

etc.—in a system and storing such information in linked nodes (Heinrich & Wermter, 

2018). Modality would provide the opportunity to replicate the multiple layers of human 

sensory interaction, which would allow NLP systems to further any comprehension of 

human language (Heinrich & Wermter, 2018). Furthermore, considering the difficulty in 

referential statements, neural modality would allow NLP systems to understand the 

gradient, thus providing another level of usable comprehension in things like complex 

information extraction (Heinrich & Wermter, 2018; Deemter, 2016; Lehnert, 1997). A 

base lexicon, however, would be necessary in order to give any NLP system the ability to 

understand at least the simplest of sentences, which would enable basic comprehension. 

 Considering this need for a base lexicon, it would be conducive to provide the 

base lexicon that young children assemble rapidly during the first few years of life 

(National Institute on Deafness and Other Communication Disorders, 2018). Of course, 

every child experiences a different life, and thus receives a different lexicon, but there is 

a base lexicon (as well as structure) for shared language speakers; this would be the 

lexicon that would be programmed (Guthrie et al., 1996). The goal would eventually be 

to have multiple linked nodes for every word in the base lexicon; considering linked 

systems utilize far less storage than a stack, queue, or binary tree data structure, this 

would not be entirely inefficient, nor would it be cluttered and difficult to repair or edit. 

Utilizing the base lexicon in this way, it could be possible to have entire linked lists that 

specialize in specific areas of language. It would be similar to if the human brain was 

compartmentalized. Unfortunately, even modularity will not fix the seemingly inherent 

inability to comprehend emotional language (Bobrow & Simmons, 1970). Through 
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utilizing a base lexicon, computational linguists exclude a wide variety of emotionally 

charged language, which by extension also excludes a variety of emotionally charged 

documents (Grosz, 2018). Due to the potential widespread usage of NLP systems, 

excluding any possible uses is dangerous to the overall functionality of the technology. 

Machine-learning would not be enough to provide all possible meanings for emotional 

vocabulary, as emotional vocabulary is usually on a gradient, like the vocabulary in 

referential statements. Unlike referential statements, however, these emotional statements 

are far more reliant on personal context than linguistic context (Bobrow & Simmons, 

1970; Deemter, 2016). It is far beyond current technology to simulate emotional context 

in any way, so this provides quite the unique challenge for not only computational 

linguists, but neuroscientists as well. 

 Rather than simulating emotional contexts, it could be possible to create baselines 

for each possible emotion and quantify them; providing such information would provide 

basic information for NLP systems to build onto. This could work similarly to the basic 

lexicon. Furthermore, this could utilize the system hypothetically put in place to deal with 

figurative language. In a testing scenario, NLP systems could even be briefly 

programmed to work in a way similar to a chatbot to take in as much input as possible 

(Grosz, 2018). Utilizing this testing environment could give NLP systems the ability to 

learn as much information as possible to store in the linked nodes (Lehnert, 1997; 

Heinrich & Wermter, 2018). It could be seen in comparison to how children 

subconsciously strive to encounter as much language as possible. Utilizing neuroscience 

to learn how children do this and eventually applying this to NLP systems would allow 

computational linguists to streamline the process and allow their software to learn not 



 

20 
 

only vocabulary but grammatical structures in an even more logical and efficient way 

(Grosz, 2018; Heinrich & Wermter, 2018). If this were the case, the comprehension skills 

of NLP systems would be far more efficient and useful than current systems. 

 Semantically, NLP systems fall short, and they will continue to fall short as long 

as they use only functional grammar rules to parse input. If these systems are given 

semantically-focused grammar alongside the base lexicon and linked node system, they 

would be far more prepared to properly analyze any input (Lehnert, 1997). Linguistically, 

humans communicate through semantically-focused grammars rather than functional 

grammars; following this, it would only make sense for NLP systems to work similarly, if 

not in the same way, considering these systems would have to process natural human 

language (Lehnert, 1997). Unfortunately, most people do not consciously think about the 

grammar that they are using; rather, they are so used to speaking grammatically 

(whatever that means to them) that they can correctly follow their language’s grammar 

rules without any difficulty. As such, computational linguists will have to consciously 

think about the grammars that their NLP systems will need, and they will need to learn 

how to replicate the effortless usage in their programs (Lehnert, 1997; Heinrich & 

Wermter, 2018). Grammars, however, have to be fairly general in order for them to be 

utilized to the extent of the NLP system’s ability (Lehnert, 1997). If written generically 

enough, a proper NLP system can analyze input far more efficiently than a human 

(Lehnert, 1997). Written language is the simpler of the two between written and spoken; 

this would be more effective with written language, although this is more to do with the 

difficulty surrounding accents than differences in grammatical structure. 
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 For all future uses of NLP systems, it is integral that they be as efficient and 

effective as possible. Any error in analysis could be dangerous depending on the situation 

(Grosz, 2018). Take, for example, someone asking for emergency services to be called; if 

the NLP system is unable to properly analyze the request, it will ultimately be unable to 

oblige (Grosz, 2018). There are several instances where any request is required by a 

system to be worded in a specific way. Due to differences in lexicon or dialect, many 

users would be denied usage of a system. This is the importance of creating generic 

semantics-focused grammars. An ineffective system might simply extract information 

and do what it is programmed to think is the correct thing to do. This, of course, is not the 

solution, as it would ultimately cause more problems than it would solve (Lehnert, 1997). 

For example, if someone were to ask a personal assistant system a random, nonurgent 

question about a local hospital, a system that functions in this way might be programmed 

to call emergency services whenever the word “hospital” is mentioned. This would 

ultimately cause far more harm than good. 

 Unfortunately, much of the issue in NLP is that computers are treated as being 

fundamentally separate from humans in terms of language learning, leaving us with very 

few efficient and accurate ways to deal with computational understanding of natural 

language. These issues deeply permeate the field of NLP, but the issues are most glaring 

in machine translation due to the necessity of reconciling differences between differing 

languages. 

Issues in Machine Translation 

 Ultimately, all of these issues cause very real problems for machine translation, 

affecting the accuracy and efficiency of translations. In machine translation, several 



 

22 
 

issues require addressing, like culturally insensitive and generally inaccurate translations. 

Even now, computational linguists are only somewhat closer to creating software that can 

accurately translate any sentence in any language to any other language; note that in this 

scope, “accuracy” refers to semantic accuracy. Many who have taken foreign language 

courses have experienced this inability to take in proper semantics, namely in translation 

homework; it can be difficult to translate some sentences through software like Google 

Translate without the full context, which is not often given in language homework. These 

issues and errors are due to the inherent complexity of human language; there are layers 

of complexity and context hidden in every clause, each dealing with different aspects of 

personal cultures, experiences, and emotions. Unfortunately, these things remain 

inimitable due to the general lack of knowledge surrounding how the human brain works 

when dealing with language. However, that is not to say that developing machine 

translation software capable of semantically accurate translations is impossible; instead, 

this just provides an interesting puzzle that will likely require the combination of multiple 

structures. As such, although there are several issues regarding these lexical resources, it 

is ultimately the most informed way to accomplish accurate machine translation systems 

that respect semantic and cultural meaning. 

 In translating from one language to another, a certain level of affectation 

(emotional meaning) is lost; this is ultimately due to the lack of understanding regarding 

affective, or emotional, language in machine translation software (Valitutti et al., 2004). 

Much of the issue is that communication of any kind requires massive amounts of 

context, and it is difficult to give these contexts to machines; a lot of context is acquired 

through years of experience communicating with others, but researchers are expecting 
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programs to acquire this context within significantly shorter amounts of time. Previous 

attempts to facilitate accurate machine translations included the incorporation of a 

machine-readable dictionary or a lexical knowledge database; these attempts 

– specifically WordNet by George Miller – tried to create a sort of referential database 

that focused on synonyms, antonyms, hyperonyms, hyponyms, meronyms, and the like 

(Valitutti et al., 2004). The database was stored in a sort of “lexical matrix,” or a matrix 

that specifically recorded the relationships between word forms and their connotations or 

denotations (Valitutti et al., 2004). However, lexical knowledge databases are best used 

when utilized as a reference for human-computer interactions (HCI) rather than an 

overarching solution to the HCI issue as a whole. 

Beginning with these sorts of lexical knowledge databases – and, specifically, 

their role as lexical resources – the issue of taxonomies must be discussed. Language 

exists in categories that are simultaneously rigid and flexible, such as in the case of verbs 

being nouns (e.g., gerunds); these lexical resources are required to be both specific and 

intentional when classifying words in the target languages (Guarino, 1998). However, 

when these lexical knowledge databases were first being built, they ran into the issue of 

ISA overloading, or the overwhelming of the database in terms of Is-A relationships 

(Guarino, 1998). There is the issue of oversaturating the database in reference to words 

and any possible polysemy; one word may have multiple meanings, but to separate those 

meanings may remove access to a possible meaning of a word. Such removal would 

ultimately result in incorrect translations when presented with a particular context. 

Another possible issue – in terms of WordNet – would be the almost required 

overgeneralization to place entire lexicons into categories. Weaker definitions of rigid 
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classifications would be necessary based on the words being used due to every word not 

fitting into strictly one category (Guarino, 1998). Although WordNet starts from heavily 

general categories and narrows them when necessary, there would also be the need for 

categories so specific they include maybe one or two words; this, however, would be 

inefficient and take up an inordinate amount of memory. Furthermore, the necessity for 

affective language mastery in a system built for HCI would require lexical sorting on an 

“emotional” level (Valitutti et al., 2004). Although using machine-readable dictionaries 

to create these lexical knowledge databases is the general course of action, it ultimately 

leaves out the emotionally charged aspects of language and thus gives translations the 

short end of the stick (Neff & Mccord, 1990; Valitutti et al., 2004). As such, the ideal 

solution seems to be the combination of these techniques combined with another that 

would allow for the acquisition of figurative connotations as well as literal denotations. 

In acquiring figurative connotations and literal denotations, two strategies have 

followed from this problem’s realization: statistical approaches and neural network 

approaches. Beginning with statistical methods, many programs exist that analyze 

corpora and do something with the data, such as joke programs that analyze entire 

seasons of shows and subsequently generate their own episode or scene based on the data 

observed. At the outset of these programs, most relied on a statistical approach, analyzing 

the words and phrases used and creating a sort of statistical model that would allow for 

recreating something according to how it is already been created (Brown et al., 1990). 

However, this is an inexact science; although the ability to calculate the probability of a 

word existing in a translation given the words that preceded it is there, it is only a 

probability and is thus not guaranteed to be correct (Brown et al., 1990). Assuming the 
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translation software would be searching through the lexical resources at its disposal, 

difficulty could arise when there is no direct translation for a word or phrase. This 

scenario is something even human translators have difficulty with; the lack of 

metalanguage for some concepts is a difficult hurdle to get over and one that statistical 

analysis is not well-equipped to jump due to its inability to process language outside of 

what is statistically significant. This leaves the translation software vulnerable against 

sentences outside of its training data. Here lies the question of human language recursion: 

Can software translate structures for which it has not been programmed? Or, can we now 

program enough of the structure of a given low-frequency language for the computer 

program to fill in the gaps and translate a written sentence into or out of that low-

frequency language? 

Furthermore, since machine translation is a highly literal, or word-to-word-

process, testing would almost certainly result in the translation of “nonsense sentences.” 

These nonsense sentences – or sentences that have no real meaning but are grammatically 

appropriate, such as “colorless green ideas sleep furiously” – while ultimately 

meaningless, these sentences help test the accuracy of translation software. This proves to 

be another issue regarding the statistical model for machine translation; its abilities prove 

to be valid only in pragmatic senses due to its need for aligned multilingual corpora 

(Brown et al., 1990; Koehn, 2005). Aligning corpora in the sense of a database is 

remarkably simple when considering languages such as English and French – other than a 

few particle outliers in French, the word order is similar enough to have a 1:1 alignment 

between the two languages in which the order of the sentence remains the same in the 

translation (Brown et al., 1990). However, statistical machine translation heavily relies on 
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parallel corpora; without such corpora, the translation accuracy suffers (Koehn, 2005). It 

is similar to the Rosetta Stone; the corpora provided by such a stone would be parallel 

across Greek and Egyptian and thus would be able to translate fairly accurately using the 

data found on the stone. 

Neural networks, however, have – in recent years – become valuable structures in 

many different subfields in machine learning. Neural machine translation has been 

adopted by many companies that have produced translation software like Google; it is 

crucial, however, to remember that neural machine translation is not a “holy grail” and 

possesses its own set of drawbacks (Wu et al., 2016). Rather than using the corpora from 

the target languages to construct statistical models, the neural networks use the corpora to 

learn how the words are used and attempt to use this information to create accurate 

translations (Bahdanau et al., 2015). Neural networks, generally, are trained through HCI 

instead of through compiled corpora, and this results in less training time, the training is 

more intensive, and increases the overall cost of the model (Wu et al., 2016). However, 

these neural networks ultimately cut down on the number of separate models needed to 

complete one translation; statistical machine translation, as a general rule, requires 

multiple models to accurately translate from one language to another. The phrase to be 

translated goes through numerous models to be translated into the target language, while 

in neural machine translation, one large network is trained to minimize the number of 

models needed (Bahdanau et al., 2015). When correctly done, neural machine translation 

takes only one model. 

 In terms of the weaknesses of neural machine translations, they fall prey to three 

significant flaws: slow training speed, inefficacy when dealing with uncommon words, 
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and, in some instances, failure to translate all of the source sentence(s) (Wu et al., 2016). 

As a relatively new strategy in machine translation, not much has been accomplished in 

terms of solving these issues; because of this, many of the current instances are 

experimental and may or may not be ideal for use outside of a research setting. 

The statistical model currently shines when presented with large corpora 

compared to the neural network model; this is due to its inherent ability to analyze each 

word in the initial language as it attempts to translate into the target language (Brown et 

al., 1990). However, the neural network model finds difficulty translating large corpora 

due to its large number of required parameters (Wu et al., 2016). Despite this, the neural 

network model – if “perfected” – would end up being the ideal model due to its end-to-

end nature, or, simply, due to its ability to completely bypass any inner processes and 

learn all internal processes concurrently rather than sequentially, similar to acquiring 

multiple skills at one time instead of learning them one after the other. Interestingly, 

while the statistical model translates straight from the initial language to the target 

language based on the statistical likelihood of each word in a phrase, neural machine 

translation encodes and decodes the sentence in the initial language in an attempt to make 

the translation more accurate and able to vary between input length and output length 

(Bahdanau et al., 2015). This encoding/decoding technique also allows the same neural 

network to include multiple decoding techniques to decode the same sentence from the 

input language into several different languages (Bahdanau et al., 2015). This makes even 

just one neural network far more versatile than a statistical model due to the inherent 

limitations in a statistical model because they have to be specifically developed according 

to specific corpora and specific database tables with the appropriate probabilities. 
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Assuming a neural machine translation model that explicitly works between 

English and Russian, translating the sentence “I love to rest” does not employ resources 

beyond the statistical mode, which, while accurate in this scenario, can cause issues in 

others. In this translation, the input “I love to rest” would result in the output “я люблю 

отдыхать.” Using the WordNet strategy of defining classifications of the sentence, it first 

begins with a functional parsing of the propensity (statistical likelihood) for grammatical 

classes to fill functional roles. From this analysis, the neural network would then encode 

each word from the input according to their part of speech (Goldberg, 2017). As such, the 

word “I” in subject position would then be encoded as a pronoun, “love” would be 

encoded as a transitive verb, and “to rest” which then follows that sentence’s transitive 

verb, the two-part infinitive is subsequently encoded as a noun/noun phrase filling the 

direct object slot. Difficulty arises when there is tension between classification of words’ 

functions and their grammatical classes. 

When decoding the input into the output, another problem area could be matching 

multiple words into possible singular words in the target language. In the given example, 

“to rest” is matched with “отдыхать.” The grammar selection is accurate, here, but we 

can imagine errors such as identifying “to rest” as a noun could yield a selection from the 

target language array such as the synonymous “спать.” The solution for this issue could 

be in training the neural network to properly align certain types of phrases and parts of 

speech with their appropriate counterparts in the output language (Bahdanau et al., 2015). 

It is important to be careful, however, to not strictly model the language itself in a 

prescriptive manner; doing so would significantly reduce not only the efficiency of such 

programs but the accuracy as well (Goldberg, 2017). 
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In terms of training neural networks for machine translation, incorporating lexical 

resources – both in the forms of corpora and databases, although both are used in 

different ways – is incredibly important. As stated previously, neural networks generally 

take longer to properly train than statistical models due to neural networks requiring a 

different type of training than the statistical models (Wu et al., 2016). By providing the 

corpus-style lexical resource, the neural network is able to learn how words and phrases 

are used rather than just the probability that they will follow the previous words 

(Bahdanau et al., 2015). However, the database-table-style lexical resource allows the 

neural network to classify words according to different tags and classifications (Erjavec 

et al., 2001). To effectively use such a database in the most efficient manner, the tags that 

would be used would be those that are most prevalent; of course, to maximize the 

accuracy of the neural network, another table could be created that would include tags 

that aren’t likely to appear, to avoid an error in classification (Erjavec et al., 2001). 

Importantly, these tables could be generated by analyzing several corpora on the web; or, 

as many chatbots do, the tables could be generated by interacting with humans and 

learning from what they say (Volk et al., 2002). Ultimately, the textual resources for 

these lexical resources are numerous and have the potential to be incorporated by way of 

written data stored on the internet. Thus, the internet can serve as an unlimited input 

source to be harvested and used as teaching models for structure and lexical items. The 

question remains on how well semantics and pragmatics are encoded from these data. 

Another interesting prospect is that of post-editing. However, this is done 

regularly in professional translations when they are done largely by machine, and it could 

be done to learn what the neural network needs to improve its accuracy. Taking a 
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translation produced by a machine and editing it to understand inaccuracy could be 

integral to increasing these neural machine translators (Allen, 2001). Post-editing could 

even allow for a solution with polysemy; by analyzing the problems that the neural 

network may have with multiple connotations or denotations for a single word by 

correcting the translation, the issues could be corrected and, if able to be replicated, fail-

safes could be put in place to avoid such issues from happening again (Boas, 2005). 

Generally speaking, the issue of machine translation is not one that can be solved 

with one simple solution; instead, it would require a combination of methods both new 

and old, complex and straightforward, and, with these methods together, proper machine 

translation software may be developed and may be able to bridge the gap between 

speakers of different languages. There are many to choose from in the realm of lexical 

resources and many that may be required to efficiently and accurately translate from one 

language to another. Lexical databases – whether used to classify words according to 

parts of speech or provide dictionaries and definitions – are important to include as 

backbones for any machine translation software. The incorporation of corpora to train 

neural networks on word order and word usage is another crucial aspect of lexical 

resources, and in order to create neural networks that can continue learning and continue 

correcting themselves, post-editing must be used so as to learn from the mistakes and 

correct them until there are no more mistakes. As such, the importance of these lexical 

resources, post-editing, and the nature of neural networks themselves is their ability to 

learn from the resources given to them and the world’s ability to continue providing these 

written resources. 
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 Arising from the intersections of linguistics, computer programming, and 

exploring the remaining problems with NLP programs, the following questions were 

explored: how can we translate between languages with little-to-no documentation and 

how effective are CFGs when constructing these translation systems? In the following 

sections, each question is discussed first through the linguistic lens, and software 

development, followed by a discussion of next steps and future investigations as 

informed by this first attempt at a better translation system for low-resource languages.
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SECTION TWO: PERTINENT LINGUISTIC FEATURES FOR NLPS   
 
 

Corpora in NLP and Machine Translation 

 
NLP, in certain contexts, can be viewed as a statistical science; such was the case 

up until fairly recently, when neural networks became more popularized in professional 

and research settings. The abstract concept itself is simple: use probability functions to 

determine the most likely occurrence for the next section of the sentence, translation, and 

the like (Charniak 1997, p. 33). Using these statistical techniques seems independent of 

corpora, but this assumption is naive; the nature of statistical analysis relies on corpus 

analysis to build the actual probability models. Working without these corpora would 

leave the models uninformed, and similar to how a study cannot be analytically accurate 

without a large dataset, the same could be said for these statistical models. 

In order for computers to understand how to accurately complete processes like 

part-of-speech tagging, the instructions must be clear and comprehensive. To get the 

correct answers, the logical steps must be perfect. It’s similar to trying to find the 

probability of a yellow ball being in a set of red balls while being unaware of the exact 

number of balls of either color, much less the total number of balls; it would be nearly 

impossible to make an informed decision when trying to calculate the probability, and the 

same could be said of a computer trying to use a statistical model without the actual data 

to inform it. Collecting the data is, in a way, the backbone of the statistical model, and 

this data can be most effectively found in corpora (Charniak 1997, p. 34). Even without 
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large corpora, the data is still usually being collected from corpora of some kind, whether 

it be a single sentence or even just a couple of text messages. Written data is, 

fundamentally, stored in corpora and to do without corpora is to do without an entire 

branch of statistical data. The importance of such data can be seen even in deep learning 

contexts as in He, 2019, where the written data informs the sentence alignment algorithm 

(p. 6). 

Furthermore, corpora are an integral part of neural machine translation. Much like 

more statistical methods of processing natural language, neural networks generally take 

in certain amounts of parallel data between one language and another in order to learn the 

patterns in a way that is methodologically similar to that of the human brain’s own neural 

networks (He, 2019, p. 5). However, that is not to say the methods used after extracting 

the data from the corpora are the same; while statistical methods analyze the likelihood of 

words in a particular sentence, neural networks use this information to build relational 

algorithms (He, 2019, p. 7). In theory, neural networks could be created without having 

access to parallel corpora or even any corpora at all. By analyzing the language(s) by 

hand, one could calculate the same relational algorithms; this, however, is a much more 

strenuous task than that of using corpora to train the neural network. In this case, working 

without corpora would be a major handicap for the technology. 

Moving to older, less-accurate technologies, CFGs and part-of-speech parsers also 

greatly utilize corpora to classify different lexical items into their corresponding “box” in 

the analysis. The use of corpora in these areas is less straightforward than explained with 

previous systems: rather than explicitly learning and calculating the statistical probability 

or relations, the corpora is used to learn how to classify the lexical items into categories 
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such as determiners, pronouns, verbs, adjectives, and the like. Although these systems 

rely on more than just training corpora (Denis & Sagot, 2012, p. 723), the fact remains 

that the corpora themselves are an important part of the systems. To show an example of 

the importance, consider learning a complex topic in calculus, without having the 

opportunity to practice it; in theory, it is possible to be able to use the information given 

to properly solve a differential equation, but it is much less likely than if the opportunity 

to practice was given. In this scenario, training corpora are synonymous with the 

opportunity to practice. 

The importance of part-of-speech tagging (POS tagging) – and, by extension, 

corpora – is one that permeates every aspect of NLP (Lv et al., 2016, p. 647). Of course, 

in this area, the corpora are annotated so that the system can learn the parts of speech for 

the corresponding lexical items, but they are corpora, nonetheless. In order to emphasize 

the importance of corpora, the importance of part-of-speech tagging will be explained. As 

one of the most basic problems of NLP, POS tagging acts as the basis for many analytical 

practices in many different areas of NLP (Lv et al., 2016, p. 648). The general function is 

as such: by categorizing the different parts of speech for different words, the higher-level 

system will be – in theory – more capable of properly completing its task in a more 

efficient manner. This type of tagging is not restricted to parts of speech; it has also, in 

recent years, been used to classify types of paraphrasing (Vila et al., 2015, p. 356). 

Analysis of annotated corpora with the expectation of accurately parsing and categorizing 

both paraphrases and lexical items is, arguably, the most important aspect in the area for 

using corpora. Without the corpora – annotated or otherwise – the algorithms will be 
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forced to work with data given by hand or without any relevant data at all, ultimately 

jeopardizing the validity of any linguistic analysis it may attempt. 

Similarly, even low-resource languages – languages with little-to-no large corpora 

to reference – rely heavily on either the corpora they have available or the corpora of 

similar languages. Web scraping, the “scraping” of data from webpages, is often used in 

these situations (Tahir & Mehmood, 2021, p. 8549). In fact, one of the easiest ways in the 

modern era to collect and find corpora is to scrape webpages; the data is often easy to 

access, easy to parse, and tends to offer a much more genuine evaluation of language use 

than that of traditional texts. Web corpora, even when being used to analyze languages 

with large numbers of speakers and large numbers of data, can give much insight into the 

linguistic variations of different dialects (Cook & Brinton, 2017, p. 644). This variant 

analysis is key to providing accurate translations regardless of dialect; due to the high 

variance in dialectal lexicons, even omitting one dialect could result in incorrect 

translations when translating from that dialect to another language, or even another 

dialect. This could be seen in English. In the Southern dialect, “Coke” is used to refer to 

many sodas rather than just Coca Cola. In other dialects, however, “Coke” means only 

Coca Cola. Without analysis of these individual dialects through their corpora, these 

distinctions could be lost and could completely mistranslate the semantics, as well as the 

syntax.  

From the view of computational linguistics, corpora are among the most 

important resources available, and this is evident in the construction of many open-source 

corpora. WordNet, one of these open-source corpora, was the initial resource that 

prioritized semantics over syntax (Apidianaki & Sagot, 2014, p. 656). Much of the 
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current research completed on these wordnets revolves around combining models from 

different languages and allowing the models to expand semantically and lexically, with 

hopes that the validity of translations grows (Apidianaki & Sagot, 2014, p. 657). Without 

these corpora, the research in this field would have stalled, and many of these open-

source libraries – which current software rely heavily upon – would be nonexistent. 

Context-Free Grammars in NLP 

 In computer science, recursion is a method in which a function calls itself within 

its definition. For example, if one were to create a recursive program for calculating 

Fibonacci numbers, the method could call fibonacci(n-1) within itself, thus calling 

another instance of that method within itself. While recursion can be incredibly useful, it 

runs the risk of running infinitely, if not written correctly; in order to avoid this, explicit 

base cases must be written, and each possible text case must lead back to at least one of 

the base cases. Recursion in terms of CFGs is not much different from this definition. In 

CFGs, recursion involves having one kind of phrase on both sides of the grammar. For 

example, we could have the grammar in Fig. 3. 

  

In this grammar, the noun phrase exists on both sides, and the grammar will loop 

infinitely as it attempts to write each sentence. For each noun phrase it tries to write, it 

has to write an infinite number more. 

  

S → NP VP 

NP → DET NP | PP NP 

VP → V NP 

Fig. 3 
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 For a more formal definition of a CFG, take the following definition G = {VN, VT, 

P, S}, where VN is a set of terminals (or lexical items), VT is a set of nonterminals (abstractions 

that do not appear in the actual well-formed strings), P is the starting symbol (always one of the 

nonterminals), and S is a set of rules for the grammar (Hopcroft & Ullman, 1977, pp. 49-50). Any 

grammar G is used to generate the language L. For example, the following in Fig. 2 is a context-

free language. 

 

Generally, CFGs aren’t often used to translate between natural languages, but, for the purposes of 

this thesis, it is sufficient to investigate the structures necessary to translate to and from a 

language with little to no written documentation.

G = {VN, VT, P, S} 

VN = {slept, saw, walked, the, a, that, this, man, park, dog} 

VT= {S, NP, VP, Det, N} 

P = S 

S = { 
     S → NP VP 
    NP → Det N | N 
    VP → ‘slept’ | ‘saw’ NP | ‘walked’ 
    Det → ‘the’ | ‘that’ | ‘this’ | ‘a’ 
    N → ‘man’ | ‘park’ | ‘dog’ 
} 

Fig. 4 
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SECTION THREE: GRAMMATICAL STRUCTURES OF ENGLISH AND ETHANSKI 
 

 For the purposes of defining the languages used in this project, the basic grammar 

structures will be defined in the following subsections. Due to the limitations of context-

free grammars, the structures used and defined are extremely simple, focusing mostly on 

the importance of clearly and explicitly defining even extraordinarily simple grammars to 

allow for syntactically accurate translations. 

Basic English Structure 

 English, despite being a Germanic language, diverges from the usual verb-second 

sentence structure to instead use a subject-verb-object (SVO) sentence structure. The 

difference can be highlighted in the two sentences “I have a dog” and “neither do I.” In 

the first sentence, the subject “I” is followed by the verb “have,” which has “a dog” as the 

direct object. In the second sentence, the verb occupies the second position, and is 

preceded by either a single word or a group of words—also referred to as a constituent—

while being followed by the rest of the sentence. While English does, in certain contexts 

(as in the example sentence “neither do I”) use verb-second, it does not use it for all 

sentences. To further show the difference between the two structures, if English used 

verb-second sentence structure for all sentences, sentences such as “When I get home, I 

take a nap” would be instead structured as “When I get home, take I a nap.” 

In terms of questions, English forms interrogative sentences by inverting the 

subject and the auxiliary or copula; however, in sentences where no auxiliary exists, the 

auxiliary “do” is inserted while the structure is inverted (Carnie, 2007, p. 264). For 
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example, take the sentence “you have a dog”; since there is no auxiliary to invert with the 

subject, the auxiliary “do” must be inserted, creating the question “do you have a dog?” 

English—and most (if not all) languages—cannot fully be represented in a CFG 

due to not being context-free, though many broad HPSG grammars have been written for 

the language. Despite this limitation, for the purposes of this thesis, the relative simplicity 

granted by CFGs is useful in analyzing the ability of such systems to translate syntactic 

structures without much worry for semantics. 

Basic Ethanski Structure 

 Ethanski, the artificially constructed language (conlang) created for this thesis, is 

a language based on Scandinavian languages, although it does possess question particles 

much like Mandarin. I designed Ethanski to contain very little lexical or structural data, 

for the purposes of this thesis, namely because it is being used to imitate a low-resource 

language; note that the reason a conlang was used instead of an actual low-resource 

language was due to lack of time and resources. 

Like English, Ethanski’s word order is SVO, or subject/verb/object. This is, of 

course, relative to any conjunctions, numbers, or articles also used in the sentence. The 

exception is with interrogative sentences; questions are VSO, or verb/subject/object, 

similar to other Germanic languages. 

Due to this basic similarity, translating simple sentences, i.e., sentences with 

single verb phrases, between the two languages occurs without trouble; for example, to 

say “I like soccer,” the program would be able to translate each word individually—along 

with conjugations and the like—and form the sentence. In this case, we know that “I” is 

“Cjá.” The verb “to like” in Ethanski is “sá séniz,” or “sénizca” after conjugation. The 
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object, soccer, is “fútvo.” Thus, the translated sentence is “Cjá sénizca fútvo.” Specific 

word order, however, may change depending on the type of clause. 

  One difference between the two languages is due to two characteristics of 

Ethanski: verb conjugation and the usage of a particle to denote interrogatives. The 

conjugation table can be seen in Fig. 3. 

 

 These conjugations bring inherent difficulty in using a context-free grammar to 

translate, requiring the program to allocate storage in order to keep track of the respective 

subject’s pronoun. That is not to say, however, that such a thing would be impossible; in 

computer science—since recursion is usually computationally expensive—dynamic 

programming, or the technique in which a problem is broken into subproblems whose 

answers are saved, is often used to store data for later recursions, reducing the need to 

calculate results repeatedly. The referent and its relevant pronoun may be stored together 

and thus used in additional machinations in order to construct the translation. 

 In terms of interrogatives, the particle ní is placed at the sentence end in Ethanski 

to form an interrogative. While this could make translations from Ethanski to English 

straightforward when it comes to questions, English poses interesting issues due to its 

general question structure. Do-support is difficult to parse with only CFGs; for the 

sentence “I have a cat,” the question form would be “Do I have a cat?,” whose structure 

is difficult to put into CFGs when combined with other structures. 

  

Fig. 5 
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Additionally, not every question has an interrogative pronoun: 

For example, 

“What is today?” 

Where the interrogative pronoun is bolded, and: 

 “Do you have a cat?” 

Where the “do” is added instead of an interrogative pronoun. 

To avoid these problems in this thesis, a distinction was made between the 

interrogative and non-interrogative “do” forms as well as differences between “do” and 

interrogative pronouns.”
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SECTION FOUR: METHODOLOGY 

Designing Context-Free Grammars 

 To create the translator, the context-free grammars had to be created for each 

language. The grammars were written in a text file to be accessed during the parsing 

process; they can be found in Appendix 1. 

 Each language has one comprehensive CFG, with the starting symbol being 

defined as multiple sentence structures. Due to the large lexicon, the CFGs do not include 

all possible words; instead, there is a select set of words are stored in its dictionary. For 

translation, the keys for English (words) and their corresponding values in Ethanski 

(words) are listed with additional values for their corresponding parts of speech. For 

example, the following table shows some of the words available for translation and their 

parts of speech. 

  

English Ethanski Part of Speech and Simple 
Definition 

Bear Eca n. mammal native to America 
and Eurasia 

Bear Sa od v. to endure 

Sleep Sa gunzo v. to be in a state of sleep 

Sleep Jidjix n. a state in which the mind 
and body rests 

Table 1 

Assembling the Translator 

 The translator was assembled in a Jupyter notebook, a Python IDE (or 

development platform) that allows for interactive processing where code can be broken 
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up into individual parts, allowing for separate processing according to the separate cells 

the code was written in. An input widget was created to allow dynamic input by users, 

although it should be noted that due to the computational limitations of this project, full 

lexicons were not used; the goal was not to create a full translator, but to create a 

translator that can give us insight into how we might translate between a high-resource 

language and a low-resource language. 

 With the given input in the given language, the input was split according to 

delimiters (usually spaces) then stored in an array. Once in the array, the words are 

iterated in order to determine the type of sentence of the given input. This focused 

heavily on word order and the relationship between constituents. The importance of this 

step was mainly for questions; the differing syntax between the two languages when it 

comes to questions requires this kind of parsing to allow proper translations. In order to 

translate questions a boolean variable was defined within the program and labeled as 

interrogative. The interrogative array consisted of the parser identifying such question 

indicators as Wh-word or question marks. The interrogative variable, essentially, flagged 

whether or not the given sentence was a question or not based on the array that defined 

interrogatives. This determined which starting terminal definition would be used. 

 Once that was determined, the next step was to translate each individual word into 

the target language, storing it in another array. For example, pronouns—since the target 

language was Ethanski—require morphological suffixes that agree with the verb, i.e., 

verb agreement. Therefore, the morphological suffix patterns were copied into the array 

and saved in a storage variable, allowing for proper verb conjugation in the translation 

from English to Ethanski.  
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Thus, if a sentence in English were being translated to Ethanski, a sentence or 

questions would be entered for the CFG to “read” and “translate”. When this process is 

initiated, the translator starts with analyzing each cue of the language sample (i.e., a 

sentence or a question). The terminal definition—or decoder—uses the array and 

subsequently selects the target language words (Ethanski), orders the words according to 

the proper syntax programmed in, and conjugates the verbs and pronouns, need be. Once 

the sentence is completely parsed from English to Ethnanski, the translation is outputted. 

The CFG is, likewise, able to output Ethnanski sample sentences or questions in English 

form using the same processes in tandem with the language’s terminal definitions and 

array of features. 
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SECTION FIVE: DISCUSSION AND FURTHER RESEARCH 
 

When examining the output, as expected, the semantic acuity, i.e., the meaning-

making ability, of the translator was significantly lacking. Much like the grammatical 

validity of Chomsky’s sentence, “Curious green ideas sleep furiously” (1957, p. 116), the 

translator created structurally accurate sentences in both English and Ethnanski; however, 

these products were also often nonsensical. Seeing as semantically felicitous sentences 

were not the focus of this project, this was not troublesome. In the future—with more 

time—the ideal would be to create a knowledge graph database in order to create 

weighted relationships between words and their translations, giving heavier weights to 

the more accurate translations, but also allowing for a gradient according to context. 

However, with CFGs, the context aspect obviously is not as important; hence the name 

“context-free” grammars. The translator, though, did easily parse sentences like the one 

in Fig 6. 

 

Fig. 6 

In terms of syntax, though, the translator functioned much better than expected. 

As stated in the section on grammars and context-free grammars, it can be hard to 

definitively write out a grammar in a parseable fashion that does not lead to infinite 



46 
 

recursion. Careful writing and the lack of sentence generation easily avoided this 

problem; however, the limitation of CFGs required an avoidance of more complex 

structures (i.e., multiple clauses [more than one verb phrase] in a sentence such as The 

dog gave the cat a mimosa to calm him down after the owners left for the Bahamas. In 

future, perhaps if complex grammar structure is pursued, it would be best to program in 

grammar structures such as head-driven phrase structure grammar or lexical-functional 

grammar structure, which would allow for more specific and complex grammar structures 

to be accurately translated. This problem can be seen in Fig. 7, where the expected 

translation would be Dakki kero vy jaxta sa yr i cro ryx, as opposed to the given 

translation, which has the verb “run” conjugated for the mouse. The issue can more than 

likely be attributed to the inability of context-free grammars to accurately parse verbs in 

multiple contexts. 

 

Fig.7 

Another issue found in the translator was its inability to properly handle “do”-

support, despite my attempts to classify the dummy article (Carnie, 2007, p.264)—the 

inserted “do” auxiliary in English question formation (You like ice cream. [declarative] > 

Do you like ice cream? [interrogative/question]as functionally and denotationally 

different from the verb. A solution, if still using CFGs, would probably be to do a cursory 

parse of the given sentence, that is having the parser identify the “do” before it moves to 
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a word-by-word examination. Thus, before splitting up the sentence and storing it in the 

array, the parser would identify the “do” within the overall structure of the question and 

determine the placement of the dummy article as key to question formation, thereby 

giving the translator the opportunity to see it as different from the lexical verb (e.g., 

“like” in the sentence example). This can be seen in Fig. 8, where the expected 

translation would be Arja zto dakki ni?, rather than the given translation. The translator 

incorrectly sees the word “do” as an unconjugated verb instead of a word that does not 

need to be translated because it has no lexical meaning in Ethanski’s question syntax. 

 

 

Fig. 8 

Overall, this project granted me valuable insight as to how difficult it is to 

translate between languages when one has very little data. Using these data and this 

experience, I can further pursue research in this area of natural language processing and 

machine translation, working to provide faithful translations, beginning with proper 

syntax (the purpose of this thesis) and, in future, focusing more heavily on semantically 

faithful translations.
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APPENDIX: CONTEXT-FREE GRAMMARS FOR ENGLISH AND ETHANSKI 
 
 

Basic English Context-Free Grammar (noninterrogative) 

 

Basic English Context-Free Grammar (interrogative) 

 

Basic Ethanski Context-Free Grammar (noninterrogative) 

 

S → NP VP 

NP→ (D)(AdjP+)N(PP) 

VP → V NP 

PP→ P NP 

S → Aux NP VP | Wh-NP VP | Wh-NP Aux NP VP 

NP→ (D)(AdjP+)N(PP) 

VP → V NP 

PP→ P NP 

S → NP VP 

NP→ (D)N(AdjP+)(PP) 

VP → V NP 

PP→ P NP 
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Basic Ethanski Context-Free Grammar (interrogative) 

 

 

S → VP NP ni | Interrogative VP NP ni 

NP→ (D)N(AdjP+)(PP) 

VP → V NP 

PP→ P NP 
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