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Abstract: The present work describes a new approach for the design of a Frequency-Selective Surface
(FSS) in the context of frequency filters to increase isolation between two vehicle-borne antennas. A
compact FSS design based on nested square meandered resonators is optimized for multifrequency
operation. Furthermore, a design workflow is proposed. In general, the measurement of low-
profile FSS does not correspond to simulation through Floquet modes based on periodic boundary
conditions due to the lack of uniformity of mutual coupling among the FSS unit cells. The proposed
method demonstrates the agreement between the infinite simulation and the measurement of the
finite prototype once a convenient scale factor is applied, which facilitates the design workflow.
In this case, an FSS is used as an efficient filter to increase the isolation between antennas by 6 dB
in three representative bands (3GPP, WiFI I and II). In this way, multifrequency antennas can be
placed at approximately half their actual distance with the same performance in spatial-constrained
vehicular environments.

Keywords: attenuation; frequency selective surface; isolation technology; mutual coupling;
multi-frequency antennas; periodic boundary conditions; resonator filters; vehicles

1. Introduction

With the increasing development of wireless technology, the need for multiple anten-
nas in wireless systems has arisen to provide a growing number of wireless services, such
as WiFi, Bluetooth, 4G and 5G mobile telephony, GPS and others [1–3]. As a consequence,
the space between multiple antenna systems is often increasingly reduced. This reduc-
tion in distance is especially unavoidable when the available space is limited, such as in
mobile, autonomous vehicles and rolling stock. Thus, mutual coupling between antennas
significantly increases. This can lead to sacrificing the performance of the antennas, which
diminishes the data rate or the dynamic range of communication systems [2,4]. In the
particular case of rolling stock, recent studies recommend a separation distance of 2 m for
proper interoperability [5,6]. However, in the manufacturing workflow, rooftop antennas
are installed after the electric equipment is in place (e.g., pantograph, air conditioning
cabinets, etc.). This fact often forces the distance between antennas to be below the limit
where the antenna manufacturer defined compliance with the requirements. If QoS is
degraded, a situation arises where it is difficult to state the limits of liability. A decoupling
method without affecting the antenna installation is therefore required in these instances.

In recent years, significant attention has been paid to mitigating mutual coupling
interference in a multiple antenna system [1,3,7–10]. For this purpose, many decoupling
techniques have been proposed: decoupling networks [9,11–13], neutralization lines [2,14],
parasitic resonant elements [15], defected ground structures [16], pattern diversity [1,17],
metamaterials [18–22] and others [10,23,24]. Although these methods can effectively sup-
press surface wave propagation and achieve high isolation between antennas, most are
antenna-dependent, related to single-band applications and come with some constraints
and complexity [9]. Moreover, these methods often involve changing previously installed
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antennas, which increases costs. Hence, a desirable approach would be to achieve isolation
in a non-complex manner, regardless of the type of antenna, which is suitable for both
single and multiple-band applications. In this context, decoupling based on a Frequency
Selective Surface (FSS) is studied [25–27]. This method is not antenna-dependent and can
be used for several bands.

FSSs have been commonly used in radio frequency systems in applications as diverse
as microwave ovens, antenna radomes [28], modern metamaterials and radars [4]. An FSS
can be added between the antennas to reduce coupling, as shown in Figure 1. It typically
consists of a periodic array of printed resonators on a dielectric substrate. FSS acts as a
frequency filter between the antennas because it is composed of resonant structures that
absorb the energy at certain frequencies. The geometry of the resonator will determine its
frequency response, while the array size and the interspace between resonators impact the
final attenuation.
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In the proposed scenario, the FSS is placed perpendicularly to the rooftop of a vehicle
(e.g., train) between two multifrequency antennas. A low-profile FSS is convenient for
greater clearance and to avoid high impact on the general 3D radiation patterns of the
antennas. The actual FSS size will be a trade-off between the aforementioned downsides
and the filtering capability, which increases with the FSS cross-section.

For a low-profile FSS design, the size of each resonator or the number of them must
be reduced. Regarding the size of the resonator, different sizes and designs of compact
resonators are studied in [28,29]. Other investigations deal with reducing the resonator size
using discrete components [30]. In terms of the number of elements, simulation methods
are often based on infinite array approximation using Floquet modes and reducing the
computation domain to a unit cell with periodic boundary conditions. This approach
is closer to a filtering problem between the two sides of the FSS than open boundary
conditions, as the former provides reflection and transmission parameters. This is no
longer possible if a finite FSS is considered because a general transmission coefficient
cannot be set. However, unit cell approximation ignores the influence of the edge effect
on the isolation due to the actual finite size of the FSS structure. In a finite FSS design, the
resonators of the array that are closer to the boundaries are surrounded by air, whereas, in
its infinite simulation, they are all equally surrounded by other resonator elements. Then,
a discrepancy between infinite (simulated) and finite (measured) FSS is likely to occur
unless the resonators are far enough apart to be considered as not influencing one another.
If this happens, the infinite FSS simulation should match the finite FSS measurement.
However, this is not convenient because it increases the size of the FSS design. Therefore, a
convenient strategy should be provided by selecting the advantages of unit cell simulation
with periodic boundaries that could be applicable to a finite structure for a low-profile FSS.

In this paper, a new Meander Square Nested Resonator (MSNR) is proposed for a
compact FSS design, along with a methodology to expedite its design process when placed
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between multifrequency antennas. This goal will be achieved by taking advantage of the
simplicity of unit cell boundary conditions and Floquet mode calculation for an infinite
FSS structure. The dimensions of the resonator for the infinite simulation will be correlated
to the resonator dimensions of a real (limited) FSS prototype by a scale factor exclusively
derived from simulations. This factor will make up for the differences between finite and
infinite boundary conditions. The final solution should be low-profile to avoid high impact
in the radiation pattern of the antennas. Furthermore, this work aims at isolating several
bands of operation in a multi-standard system using a multi-band FSS.

This paper is organized as follows: Section 2 discusses the design methodology for a
compact low-profile FSS, Section 3 presents the implementation and results and Section 4
gives the conclusions.

2. Design Methodology

This section describes the methodology for designing a low-profile FSS to improve
isolation between two vehicle-borne multifrequency antennas.

2.1. Bands of the Multifrequency System

The considered frequency bands to be attenuated are shown in Table 1. The study can
be easily applicable to other bands. As a design strategy, the first two bands are grouped.
Therefore, two main bands are addressed and implemented in an FSS composed of two
resonators, one for each band.

Table 1. Services and Frequency Bands.

Service Freq. Band (MHz)

3GPP 1875–2200
WiFi I 2375–2500
WiFi II 5150–5850

2.2. Proposed Compact FSS Topology

The unit cell design, composed of a new Meander Square Nested Resonator (MSNR),
is proposed in Figure 2, where Ls and hs are the length of the square unit cell and the
thickness of the substrate, respectively; Lq is the length of the FSS square structure; Lt, Ld
and Lg are the meander-line dimensions (length, depth and gap); s is the space between the
needed square loops and w is the line width.
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The proposed MSNR draws inspiration from the Hilbert curve [31,32]. This fractal
structure has a particular compact size and therefore exhibits a small electrical size of the
overall surface when compared to the wavelength of the operating resonant frequency.
However, two main downsides are now addressed for this particular application. Firstly,
due to the asymmetry of the Hilbert curve, dual polarization cannot be achieved at the same
frequency. To overcome this issue, the MSNR is a closed structure without any opening,
which makes it dual-polarized in its filtering capabilities. Secondly, while traditional Hilbert
curve designs occupy the internal space of the structure, MSNR concentric feature enables
nested resonator accommodation and, therefore, multiband performance. In this way, the
MSNR exhibits similar compactness to the Hilbert curve but with dual-polarization and
multiband features.

The FSS design simulation is generally carried out using the unit cell boundary con-
dition, which virtually repeats the modeled structure periodically in two directions up
to infinity. When Floquet modes are used to solve FSS scattering, the induced currents
are uniform across the array excited with a plane wave. In CST software, this can be
implemented as shown in Figure 3, where Γ and T are the reflection and transmission
coefficients, respectively.
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ted (Et).

The unit cell can be defined as the basic building block of the array and repeats
itself in simulation infinitely with periodicity Dx, Dy. The simulation, based on Floquet
modes, imposes that all the elements of the infinite array are identical. As the space among
the elements of the array should be reduced as much as possible to achieve a compact
low-profile FSS, the mutual coupling between the elements must be considered.

2.3. Critical Design Parameters

In this section, the process from simulation to final design is described. The length of
the square of the outer resonator is essential to obtain the correct resonant frequency at the
center of the lower bands. Therefore, a sweep of the Lq parameter is performed, as shown
in Figure 4, which influences the meander-line dimensions. Using meanders in a design
allows for a decrease in the resonance frequency without altering the cell size, making them
an effective tool for fine-tuning the design to meet desired performance requirements.
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Designs with a square length from Lq = 29 mm to Lq = 31 mm would be candidates to
cover the lower frequency bands (3GPP and WiFi I, highlighted in grey). As it will shown
later, the effect of the second nested resonator will shift further down the filtering frequency,
and therefore Lq = 29 mm is selected to make up the envisaged effect. Although a compact
design was achieved with only one resonator, another resonator dedicated specifically to
the WiFi II band was added. The new resonator is an exact copy of the first resonator, where
its dimensions are scaled and reduced to obtain a filter response in the frequency of the
wide WiFi II band.

The inner resonator was adjusted using a size reduction coefficient, as shown in
Figure 5. This coefficient was estimated by the ratio between the resonant frequency of the
previous design and the center of the second band, which is 5.5 GHz. The resulting size
reduction coefficient is found to be 0.39.
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The figure shows a scale factor parameter sweep around the estimated value to
corroborate the hypothesis and test the impact of the mutual coupling corresponding to
the nested architecture. As can be seen in Figure 5, if the scale factor is set lower than the
calculated parameter, the frequency will overlap with the outer harmonic at the end of the
desired band (black line). On the other hand, if the scale factor is set too high, the resonant
frequency will be outside the desired band (blue line). Thus, the reduction coefficient of
0.39 turns out to be optimal for this band rejection. This setting causes the lower band to
shift down and become centered at the targeted frequency.

2.4. Analysis of Filtering Variation with Angle of Incidence

The influence of the inclination of the FSS structure is also studied in simulation, as
shown in Figure 6. The structure is illuminated with a plane wave at normal incidence
along the z-axis that changes from 0◦ to 60◦.

Figure 6. Simulated effect of increasing the inclination angle theta (θ) from 0◦ to 60◦.

Figure 6 reveals that the resonant frequency remains at 2 GHz, and the bandwidth is
quite insensitive to variations of the incident angle theta from 0◦ to 60◦ on the horizontal
xz plane (see coordinate system of Figure 3). However, the second frequency exhibits a
change in response and proves to be sensitive to angle variation.

2.5. Low-Profile Implementation

The FSS structure was designed for the resonant frequencies of 2 GHz and 5.4 GHz
with reduced inter-element spacing to achieve a low-profile design. Unfortunately, the unit
cell simulation will not provide accurate results for practical 3 × 3 or 4 × 4 implementations,
as explained below.

Figure 7 compares the transmission coefficient for the same FSS in simulation and mea-
surement. The simulation corresponds to the FSS design with unit cell (infinite) boundary
conditions, under the influence of mutual coupling (named FSSmc), due to close resonant
elements with an inter-element spacing of 6 mm. The measurement corresponds to its
implementation in a 4 × 4 array of the same resonator (named 4 × 4 FSSmc). As observed,
there is a shift in the first expected frequency band. The reason for this is that each unit
cell is surrounded by equal ones at all sides in the simulation, whereas, in the practical
implementation, that only happens for the central cells. Working around this constraint
would be convenient, taking advantage of the simplicity of unit cell simulation.
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Figure 8 shows the impact of cell inter-element spacing on the transmission coefficient.
As can be observed, the increase in inter-element spacing decreases mutual coupling impact
until the first filtered band converges, regardless of the distance (no influence among cells).
To illustrate the practical implication of this effect, a new 4 × 4 array of the same resonator
is now implemented and compared to the unit cell simulation in the convergence point,
that is, with 30 mm inter-element spacing (see Figure 9).

Figure 8. Simulated effect of increasing inter-element spacing (d) under Floquet mode boundary conditions.
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As expected, both simulation and measurement in their filtered bands agree. The target
would be to match simulations and measurements, even if the mutual coupling between
cells is present (shorter inter-element spacing, low-profile design). It could be argued that
by scaling the design by a factor given by the ratio of the two resonant frequencies of
the lower band in Figure 7 (simulated and measured), the new fabricated FSS would be
brought back to the initial design frequency. Therefore, the problem would boil down
to finding this ratio. In the following section, a method is proposed to extract this factor
without measuring any prototypes.

2.6. Proposed Strategy: Scale Factor Determination

Most of the cells in the practical implementation are surrounded mostly by air (except
the fewer central ones in a 4 × 4 array). An important observation is that the 4 × 4 resonator
with an inter-space of 6 mm has approximately the same response as the simulated result
in the convergence point of Figure 8 for the first resonant frequency. Assuming this
approximation, the scale factor could be inferred without fabricating a preliminary version
to extract the disparity ratio by estimating it within the scope of pure simulation from
Figure 8. Once the scale factor is applied to the original design, an equivalent resonator
of larger dimensions will be obtained. When this new design is simulated under unit cell
conditions, the expected resonant frequency should be lower than the measured one.

The scale factor α is defined as the quotient of the resonant frequency of the spaced
FSS, which has no mutual coupling influence (f rnmc), divided by the resonant frequency of
the unspaced FSS (f rmc) with mutual coupling effect.

α = f rnmc/f rmc (1)

The unit cell dimensions will be scaled according to the ratio between the frequencies
that were previously obtained. Only the internal resonator is left unchanged because its
resonant frequency coincides with the band that is required to be attenuated. Comparative
studies will be carried out to validate the scaling factor method proposed for the FSS design.

A summary of the proposed methodology for a low-profile FSS design is presented below:

1. FSSmc design with reduced inter-element spacing for a low-profile design at low frequencies.
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2. FSSnmc design = FSSmc design spaced until reaching convergence in the low-frequency
bands (approximately λ/2 at the center of the filtered band).

3. FSSscaled design = FSSmc design scaled by factor α leaving the inner resonator unchanged.
4. Fabricate FSSscaled design.
5. Measure FSSscaled design vs. Simulation FSSmc design.

3. Implementation and Results

The setup configuration consists of two aligned multifrequency antennas (Huber +
Shuner Sencity Rail Antenna 1399.17.0122 [33]) on a metallic plane as a test bed for a train
rooftop, separated by a distance of 1 m inside of an anechoic chamber (see Figure 10). The
considered services of the railway rooftop antenna are mainly those included in Table 1. The
FSS structure is fabricated on an FR-4 substrate of 0.8 mm thickness using conventional, low-
cost printed circuit techniques. The attenuation achieved is obtained from the transmission
parameter (S21) when the FSS structure is interposed between the antennas at a distance of
50 cm from each one.
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Figure 10. Experimental setup for the FSS structure measurement in an anechoic chamber.

The S21 parameter is measured with a vector network analyzer (VNA, Keysight
E5071A). First, the transmission coefficient between the antennas is saved (memory), then
the FSS is placed between the antennas (data) and the VNA data/memory option is applied,
which allows to obtain the attenuation in dB normalized to the transmission without the
FSS structure. For the measurements, the VNA was calibrated from 300 kHz to 8.5 GHz
with 1601 points to achieve a high resolution.

It is important to highlight that we can obtain the scale factor (α = 1.2) from the
previous simulations to adjust the resonant frequency without the need to fabricate neither
FSSmc nor FSSnmc, as the main outcome of the design workflow. Only FSSscaled should be
fabricated. This is performed in two sizes: 3 × 3 and 4 × 4, for final tuning and bandwidth
analysis. The fabricated 4 × 4 prototype FSSscaled is presented in Figure 11, and Table 2
shows the unit cell dimensions, including the distance between the cells. The scale factor is
applied only to the outer resonator in order to preserve the WiFi II band filtering as much
as possible.
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Table 2. Unit cell dimensions of the FSSscaled prototype.

4 × 4 FSSscaled Dimensions (mm)

Ls 42
hs 0.8
w 1.5
Lq 34.8
Lt 9.24
Lg 1.2
Ld 3.6
s 9.12
d 7.2

Figure 12 compares the simulated transmission coefficient of FSSmc and the measured
3 × 3 and 4 × 4 FSSscaled with a good agreement, particularly for the band for which the
methodology was applied. The 4 × 4 FSSscaled achieves a maximum attenuation of 25 dB
at 2 GHz but does not fully cover the rest of the target bands (grey vertical bands). The
3 × 3 FSSscaled covers all bands under 6 dB (dashed horizontal line). The 6 dB threshold
level allows the reduction of half of the distance between antennas given by the Friis
equation [34], with equal system performance. This is particularly helpful when space
constraints are present in vehicular technology.
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The study examined the inclination effect of the 3 × 3 FSSscaled design from theta (θ) = 0◦

to 45◦ on the horizontal plane. The findings presented in Figure 13 illustrate how the angle
at which the FSS array is inclined affects the maximum attenuation that can be achieved in
response to an incoming wave. It is worth noting that, despite the angle, the bandwidth
remains relatively consistent in both frequency bands, achieving a 6 dB attenuation level.
However, a noticeable decrease in attenuation is observed, particularly in the second fre-
quency band. In addition, the achieved results exceed initial expectations when compared
to the simulation results presented in Figure 6.
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Finally, a comprehensive analysis comparing our proposed FSS isolating structure
with related research is presented in Table 3, considering factors such as array size, isola-
tion, operating frequency bands and other noteworthy features. Our design, despite its
lower attenuation, exhibits numerous benefits, including compact size, straightforward
construction, dual-band operation, cross-polarization capabilities in both horizontal and
vertical planes and robust response across various inclinations.

Table 3. Compilation of the proposed FSS with relevant works.

Unit Cell
Design FSS Size Isolation Bandwidth Remarks Ref.

Interdigitated 4.1λ × 4.1λ 12 dB 3.2–3.7 GHz

single band operation,
narrow bandwidth,
composite low-loss
substrate, complex design

[21]

Square ring 3.5λ × 3.5λ 20 dB 3.5–4.9 GHz

single band attenuation,
cross-polarization
discrimination
(XPD > 20 dB)

[26]

Two-layer
Double Split
Ring Resonator
(DSRR)

1.058λ × 1.058λ 30 dB 915 MHz

narrow bandwidth,
mismatch between
simulation
and measurement

[20]

Square single
loop 0.58λ × 0.316λ 20 dB 0.6–1.4 GHz

single band operation,
double side FSS structure,
simple design

[4]

Meander Square
Nested
Resonator
(MSNR)

2.31λ × 2.31λ 6 dB 1.875–2.5 GHz and
5.15–5.85 GHz

compact size, dual-band
operation, dual-polarization,
stable to angle influence

[this work]
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4. Conclusions

The proposed approach provides a design methodology for a Meander Square Nested
Resonator (MSNR) employed as a low-profile FSS band-stop filter placed between two
vehicular antennas to avoid interferences. This methodology allows to simplify the work-
flow in the FSS design based on periodic boundaries, avoiding discrepancies with real
implementations due to edge effects. This is accomplished using a scale factor derived from
simulation. The proposed FSS design increases the isolation by 6 dB in three representative
commercial bands of embarked multifrequency systems: 3GPP, WiFi I and WiFi II. This
method can be easily extended to other bands. In this way, the distance between antennas
can be reduced by an estimated factor of two, without decreasing performance. This so-
lution is particularly attractive when dealing with frequent space constraints in vehicular
antenna placement situations.
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