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ARTICLE INFO ABSTRACT
Keywords: Approximately 30-50% of patients with ST-segment elevation acute myocardial infarction have multivessel
STEMI disease. The physiology of the non-culprit artery (NCA) is complex and represents a challenge to physi-
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cians as, while these plaques are presumably stable, clinical data show that they frequently lead to major
adverse cardiovascular events. In addition the presence of microvascular and endothelial dysfunction may
have prognostic implications and interfere with current physiological indices for stenosis severity assess-
ment. In this review we aim to summarize current methods to study the microcirculation, discuss the

evidence available regarding the endothelium and the microvascular compartment of the NCA; the best
strategies to perform a complete revascularization based on proven ischemia; real limitations associated
to hyperemic stenosis indices; and the potential role of novel resting-indices in this specific acute context.

© 2019 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Acute coronary syndrome (ACS) is typically caused by the
abrupt rupture of an atherosclerotic plaque [1,2]. This event re-
sults in intraluminal thrombus formation, leading to flow compro-
mise and myocardial necrosis. ST-segment elevation acute myocar-
dial infarction (STEMI) occurs when the culprit artery is completely
occluded by the thrombus. However, coronary artery disease (CAD)
frequently extends beyond the culprit artery. Thus, approximately
half of the patients with STEMI have multivessel disease, which is
associated with worse outcomes [1,2].

Coronary stenosis in the non-culprit artery (NCA) territory
represents a challenge to physicians as, while these plaques are
presumably stable, clinical data show that they frequently lead
to major adverse cardiovascular events (MACE) [3,4]. Although
ischemic lesions should be revascularized, many NCA stenoses
are treated medically, while others are treated solely based on
their angiographic appearance. Fractional flow reserve (FFR), the
reference invasive physiologic index of severity, may improve
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classification and treatment decision for these lesions, facilitating
a complete revascularization based on hemodynamic significance
[5]. However, in the acute context of STEMI, with microvascular
and endothelial dysfunction potentially present both in the culprit
and NCA territories, FFR measurements may be altered, as a
result of insufficient hyperemia. In this context, there is increasing
interest in novel resting indices such as the instantaneous free-
wave ratio (iFR), because of their independence from hyperemia
[6,7].

In this article we aim to review the current knowledge of the
NCA physiology, its prognostic implications, the best strategies to
identify ischemia and the hypothetical limitations associated with
currently available stenosis indices (central figure).

Microvascular dysfunction in the non-culprit artery

In normal conditions, coronary vessels <500um -generally
known as microcirculation-, are accountable for over 90% of the
total coronary resistance [8]. These vessels autoregulate their re-
sistance with the purpose of maintaining a blood flow adequate to
myocardial demands. When the microcirculation is damaged, au-
toregulation fails; thus, microvascular dysfunction is a well-known
cause of ischemia both in patients with and without obstruc-
tive CAD [9]. Mechanisms responsible are mainly microvascular
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Fig. 1. Invasive hyperemic indices used to study the microcirculation.

FFR (fractional flow reserve); Pd (distal pressure); Pa (aortic pressure); CFR (coronary flow reserve); APV (average peak velocity); H (hyperemia); B (baseline); IMR (index of
microvascular resistance); Tmn (mean transient time); HMR (hyperemic microvascular resistance).

remodelling, endothelial dysfunction, reduced diastolic perfusion
time and ventricular hypertrophy [9].

Additionally, in the context of acute myocardial infarction
(AMI), transient microvascular dysfunction may take place as a
result of luminal obstruction (mainly microembolization by plaque
and thrombus debris), inflammation and myocardial edema and
necrosis, especially when no-reflow phenomenon takes place [10].
Contrarily to common belief, this microvascular damage is not
limited to the culprit vessel but may extend to the NCA territory
too [11]. This may have prognostic implications, and also interfere
with the measurement of stenosis severity indices.

Microvascular dysfunction can be measured directly by invasive
estimation of coronary flow and resistance (Fig. 1). In short, this
can be achieved using an intracoronary Doppler wire to determine
blood flow velocity or a thermodilution wire, which calculates the
mean transient time as a surrogate of blood flow. Since absolute
blood flow measurement and interpretation is complex, instead
two other methods are used to describe coronary flow: coronary
flow reserve (CFR) and microvascular resistance:

- CFR is defined as the ratio between coronary blood flow at
maximal hyperemia and at baseline, and is considered normal
if above 2 [8,9]. It expresses the capacity of the coronary circu-
lation to increase blood flow in response to a hyperemic stim-
ulus. CFR, however, has two main limitations: it does not help
differentiate between epicardial and microvascular flow limita-
tion; and it is very dependent on the baseline hemodynamics,
which presumably can be altered in the STEMI context.

- For this reason, coronary resistance indices were developed
(Fig. 1): the hyperemic microvascular resistance (HMR), which
is calculated using the Doppler wire, is considered abnor-
mal when above 2 [8]; and the index of microvascular resis-
tance (IMR), which is derived from the thermodilution method,
and is considered altered above 25 [8-10]. In contrast with
CFR, IMR and HMR selectively express microvascular function
and are less dependent on the hemodynamic situation [12].
It should be noted that CFR, IMR and HMR mainly express
endothelium-independent microvascular function, as adenosine
(which causes endothelium-independent vasodilation) is usu-
ally used to induce hyperemia.

Alternatively, microvascular function can be estimated by non-
invasive methods. In the context of STEMI, cardiac magnetic res-
onance (CMR) has emerged as an accurate tool for microvascu-
lar obstruction (MVO) and infarct size quantification [10], and has
been shown as an independent predictor of all-cause mortality
[10,12,13].

Microvascular function indices have been used in the culprit
territory after successful primary percutaneous coronary interven-
tion (PCI) to predict outcomes. In this sense, an IMR>40 has been
shown as an independent predictor of all-cause mortality [14] and
MVO [10]. Of note, IMR in the culprit territory tends to decrease
during follow-up [15], indicating the potentially transient pattern
of the microvascular dysfunction.

The study of the microcirculation in the NCA territory is, how-
ever, limited, and mainly contemporary (Table 1). We studied the
physiology of the NCA early after primary PCl, and found a mean
CFR of 2.6, and a value below 2.0 in 37% of patients [16]. Similarly,
Mejia-Renteria et al. found even lower CFR values, and lower than
those of stable patients with CAD (1.77 vs 2.44; p=0.018) [17]; an-
other two recent studies found values similar to ours (2.9) [18,19].
Last, another study using positron emission tomography found a
mean CFR of 2.5 as compared to 4.2 in healthy control subjects
(p < 0.001) [20]. In sum, CFR values seem to be lower in the NCA
than in patients with stable CAD, and are importantly decreased
(CFR < 2) in approximately one third of the patients [21].

With respect to IMR, a better marker of the microcirculation,
no significant differences have been observed in the NCA when
compared to patients with stable CAD [17, 18]. Mean IMR values
in these studies were in general normal (17.9 +£10.5 [18]; 15.6 (IQR
10.4-21.8) [17]; 18 (IQR 13.5-27) [19]). In the FISIOIAM study mean
IMR values were slightly superior (24.4 +19), but only 27,7% of pa-
tients had an IMR above 25 [16]. This is in line with another study
reporting IMR values in the NCA of 14 patients with STEMI, which
only found an abnormal IMR in 21% of the cases [22].

Finally, there is little evidence on how microvascular function
changes over time: on one hand CFR, with the limitation of its
epicardial component and its dependence on baseline flow, has
been described to increase during follow-up after AMI (2.9 vs 4.1
[19]; 2.5 vs 2.85 [20]); on the other hand, evidence on IMR mod-
ifications are contradictory, as one study showed a non-significant
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Table 1

Main studies assessing the microcirculation in the non-culprit artery.
Study Study design n CFR IMR
Teunissen et al. [20] « CFR calculated using [(15)0]H20 44 « NCA 2.,5+0.8 vs 4.16 + 145 in -

positron emission tomography 1
week after successful primary PCI
and 3 months later.

Compared with age and sex
matched sane subjects.

de Ward et al. [21]

Doppler study after successful 40
primary PCI

Compared to 40 stable patients

without obstructive CAD

Choi et al. [18] Thermodilution study after 100
successful primary PCI
Compared with 203 patients with

stable CAD

.

.

Staged thermodilution study 49
(mean time to 2nd procedure

5.92 + 4 days)

Compared with a matched control

group of 46 stable angina patients

Mejia-Renteria et al. [17]

.

Diez-Delhoyo et al. [16] Staged thermodilution study 82
[median time to 2nd procedure 2
days (IQR 2-4)].

No control group

Thermodilution study after 73
successful primary PCI and one

month later

No control group

van der Hoeven et al. [19]

.

Ntalianis et al. [22] Thermodilution study after 14
successful primary PCI and 35 + 4
days later.

No control group

control group (p < 0.001).
CFR changed to 2.85 &+ 0.7 3
months later in the NCA.

NCA 2.0+0.7vs 2.8+0.7 in -
control arteries.

Lower CFR in patients with larger
STEMI (1.7 £0.5vs 2.3+0.8),

p=0.02.

NCA 2.88 + 1.38vs 3.16 + 1.31 in
stable CAD (p=0.208).

.

+ NCA 17.9+10.5vs 18.5+11.4 in
stable CAD; p=0.693.

NCA Tmny, 0.80 £ 0.41vs

0.82 + 0.11 (p=0.406)

NCA Tmny, 0.30 + 0.16vs

0.30 + 0.16 (p=0.971)

- NCA 15.6 (IQR 10.4-21.8) vs 16.7
(IQR 11.6-23.6); p=0.559.

« Tmnb 0.58 (0.32-0.83) vs 0.65

(0.39-1.20); p=0.045

Tmny, 0.26 (0.20-0.42) vs 0.26

(0.18-0.35); p=0.783.

NCA 24.4+18.8.

27.7% of the patients had an
IMR>25.

+ Mean RRR 3.2+1.5.

Tmn, 0.85 + 0.48.

« Tmny, 0.39 + 0.26.

NCA 1.77 (IQR 1.25-2.76) vs 2.44
(IQR 1.63-4.00) (p=0.018).

.

NCA 2.6+1.3
37.3% of the patients had a CFR<2

.

+ NCA29+14 » NCA 18 (IQR 13.5-27)
« CFR increased to 4.1+2.2 during « Mean RRR 3.4+ 1.7 in the acute
follow-up phase vs 5.0+2.7 (p < 0.001)

22% of the patients had a CFR < 2
in the acute phase vs 16,7%
1month later (p=0.56)

during follow-up

No significant changes in baseline
IMR (20 + 3) vs follow-up IMR
(24 + 6)

IMR>25 in 21% of the patients in
the NCA

CFR (coronary flow reserve); PCI (percutaneous coronary intervention); CAD (coronary
Tmn (mean transient time; ,— baseline; ,— hyperemia); RRR (resistive reserve ratio).

increase in a small sample [22], while another found a nearly sig-
nificant decrease [19].

To summarize, according to IMR, microvascular function may
not be importantly affected in the NCA, or at least no more than
in patients with stable CAD. These studies highlight that some pa-
tients develop a certain degree of microvascular dysfunction, but
its severity and prevalence may not be as important as previously
believed, probably affecting around a quarter of the subjects. In-
deed IMR has to be used as the preferred method to measure
the microvascular function during STEMI, as the baseline hemody-
namic changes that affect patients in this context alter CFR values.

Endothelial dysfunction in the non-culprit artery

The vascular endothelium, a major determinant of coronary re-
sistance and flow, is a monolayer of cells that covers the inter-
nal lumen of blood vessels. In response to physiological triggers,
the vascular endothelium regulates arterial smooth muscle tone
through the release of vasodilators -mainly nitric oxide (NO)- and
vasoconstrictors [23]. When the vascular endothelium is damaged,
this function of coronary flow regulation is altered, which results
in an insufficient vasodilation or paradoxical vasoconstriction. En-
dothelial dysfunction also promotes atherosclerosis and thrombo-
sis, and thus may lead to ACS [23].

artery disease); NCA (non-culprit artery); IMR (index of microvascular resistance);

Although the endothelium has different roles, it is customary
to measure its function by the study of its vasomotor activity. The
gold-standard technique is to invasively assess this activity during
coronary angiography using intracoronary acetylcholine [8,23]. A
functioning endothelium releases NO in response to acetylcholine.
In case of an impaired endothelial function, NO production is inap-
propriate, the direct muscarinic stimulation of the smooth muscle
by acetylcholine becomes predominant, and vasoconstriction oc-
curs. This is appreciated in the epicardial artery by angiography,
and in the microvascular compartment by measuring the CFR. Al-
ternatively, non-invasive methods, such as flow mediated dilation
(FMD) and peripheral arterial tonometry (PAT), can also be used
[23]. However, in the ACS context, FMD and PAT do not represent
intrinsic NCA endothelial dysfunction, but a surrogate of the sys-
temic endothelial status.

Endothelial dysfunction has been widely identified as a predic-
tor of MACE in patients with non-obstructive CAD, stable angina
and heart failure [23]. However, evidence in patients with ACS
is limited. Using FMD, systemic endothelial dysfunction has been
shown as an independent predictor of MACE [24,25]. Evidence re-
garding an invasive assessment of endothelial dysfunction is scarce,
probably translating a safety concern related to acetylcholine ad-
ministration within the acute phase of AMI. One study reported
a 21% prevalence coronary spasm in response to ergometrine, half
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of which affected the NCA [26]. However, the procedure was not
performed during the acute phase, but at least 2 weeks after the
index AMI; and moreover, the physiologic meaning of these re-
sponses is uncertain, not being specifically endothelial. Elbaz et al.
did study endothelial function in patients with non-ST segment
elevation myocardial infarction (NSTEMI), and showed endothelial
dysfunction in the NCA in 81% of patients [27]. Probably, the best
evidence of endothelial function in the NCA comes from the recent
FISIOIAM study [16]. We studied 84 patients a median of 48h af-
ter primary PCl, and found a 60% prevalence of macrovascular en-
dothelial dysfunction, and a 44% prevalence of microvascular en-
dothelial dysfunction. Interestingly, macrovascular vasoconstriction
affected the NCA plaque in 80% of the cases when a positive re-
sponse was observed. Globally, 70% of the subjects had an altered
endothelial study. This endothelial dysfunction selectively affecting
the NCA plaque may explain, at least in part, why some of these
lesions are prone to plaque rupture on follow-up.

Endothelial dysfunction in the course of AMI may improve over
time. In the study by Elbaz, which excluded STEMI patients, 77%
of vasomotion abnormalities during invasive assessment improved
after 6 months [27]. Normalization of endothelial function has also
been described by FMD, and has been found a predictor of lower
risk for MACE [24,25].

In summary, endothelial dysfunction itself, or as a marker of
cardiovascular disease, is a strong predictor of MACE in a wide va-
riety of clinical scenarios. In patients with STEMI, endothelial dys-
function affecting the NCA is a common finding, and it may have a
transient pattern. In any case, more evidence is required to define
the exact role of endothelial dysfunction assessment in patients
with STEMI, and the potential treatment implications of a positive
test.

Assessment of epicardial obstruction in the non-culprit artery

The decision to treat the NCA stenosis has been a matter of
debate in the last years. Initial observational studies suggested
that angiography-guided NCA revascularization was an indepen-
dent predictor of all-cause mortality during short-term follow-
up [28]. Accordingly, 2012 European Society of Cardiology and
2013 ACC/AHA clinical guidelines recommended that PCI should
be limited to the culprit vessel with the exception of cardiogenic
shock. However the PRAMI and CvLPRIT randomized trials recently
showed that a preventive-PCI strategy was associated with a lower
rate of MACE than a single culprit-vessel strategy [3,4]. The PRAMI
trial was prematurely stopped after a benefit in MACE was ob-
served in the preventive PCI arm (HR 0,32; p < 0,001). Of note,
NCA PCI was performed right after primary PCI [3]. In the CvL-
PRIT trial, revascularization could be performed during primary PCI
or in a second procedure; at 12 months, the composite primary
endpoint occurred in 10% of the complete revascularization group
versus 21,2% in the culprit-only group (HR 0.45; p=0.009) [4]. On
the other hand, in the context of cardiogenic shock, the CULPRIT-
SHOCK randomized trial found that preventive PCI in patients with
STEMI and multivessel disease was associated with a higher rela-
tive risk of death (HR 0.84; p=0.03) [29].

In our opinion this paradigm change is based on at least three
physiological reasons that may explain the benefit of NCA revascu-
larization in stable patients: first, some of these lesions are hemo-
dynamically significant despite asymptomatic, hence associated to
worse outcomes [5]; second, other lesions will tend to disrupt due
to local endothelial dysfunction and the systemic pro-inflammatory
environment associated to STEMI; and last some lesions are actu-
ally unstable plaques despite an angiographically intact endothe-
lium. This is supported by the fact that MACE curves in stud-
ies comparing single culprit-lesion versus multivessel PCI start to
separate from the very early phase after STEMI [3,4]. In fact this

rationale may not be helpful in patients with cardiogenic shock,
who probably require short and neat PCI procedures, avoiding pro-
longed revascularization-times and large amounts of contrast, that
may increase patient instability and need for renal-replacement
therapy [29].

Accordingly, current clinical guidelines support a routine com-
plete revascularization in stable patients [1,2]. Pending a random-
ized trial assessing the best timing for revascularization of the
NCA stenosis, current evidence supports a staged revascularization
strategy [30], with the second procedure preferably performed be-
fore discharge [2], or at least not delayed more than 1-2 weeks
[3,4]. Of note, in both PRAMI and CULPRIT trials, the decision
to undergo PCI was based on the angiographic severity appear-
ance. Next, we discuss the potential additional value of hyperemic
and non-hyperemic physiology indices of obstruction to guide NCA
revascularization (Fig. 2).

Theoretical and real limitations of an FFR-guided
revascularization strategy

FFR is an index of the physiological significance of a coronary
stenosis and is defined as the ratio of maximal blood flow in a
stenotic artery to theoretical maximal flow for such artery with-
out the stenosis. It can be easily estimated calculating the ratio of
distal coronary pressure to aortic pressure during maximal steady
hyperemia (Fig. 1) [5]. Typically, hyperemia is achieved using
adenosine, although other drugs such as papaverine, regadenoson
or nitroprusside can also be employed [8,9].

The theoretical FFR in a normal coronary artery is 1. A cutoff
value of 0.75 accurately predicts inducible ischemia, and a cut-
off of 0.8 is used for safe deferral of coronary intervention [5].
However, the ischemic risk of a lesion is inversely proportional
to FFR, as a continuous rather than dicotomic function. This fact
is of paramount importance, indicating that lower FFR values re-
ceive larger absolute benefits from revascularization [31]. A so-
called “grey-zone” with values between 0.75 and 0.80 has been
described [8], in which binary agreement is logically lower. In this
borderline FFR values, keeping a clinical perspective and weigh-
ing risks/benefits of revascularization is mandatory. As previously
pointed out, the presence of microvascular dysfunction and its lim-
itation to hyperemia may overestimate FFR values, leading to sig-
nificant stenosis being left untreated. Moreover, FFR values are in-
versely proportional to the amount of myocardium supplied and
may in this case overestimate stenosis severity in case the NCA is
supplying blood to the culprit territory [32].

In the context of STEMI, significant microvascular dysfunction
and stunned myocardium are common findings in the culprit
artery [10,13-15]. Measuring FFR in the culprit stenosis does not
have a clear rationale, but it may occur that another stenosis differ-
ent than the culprit is present in the same infarct-related territory.
In this context, major limitations for interpretation of FFR have
been reported. First studies in STEMI patients showed a severely
decreased vasodilatory capacity [33,34]. Tamita et al. found higher
FFR values in STEMI-related arteries compared to those of sta-
ble patients, after adjusting for stenosis severity (0.95 + 0.04 vs.
0.90 + 0.04; p=0.002) [35]. Also, FFR has been found to decrease
6-months after STEMI in the culprit vessel, especially in patients
with microvascular obstruction (A—0.08 + 0.07) [15]. Considering
all this evidence, FFR is not a reliable index of coronary severity
in culprit vessels in STEMI, at least in the first weeks after an AMI
when microvascular dysfunction is maximal.

As previously exposed, the extent of microvascular dysfunction
in the NCA territory is lower and may only affect around 25% of
the arteries [15-21]. Some studies have pointed out that patients
with ACS following an FFR-guided PCI strategy may have worse
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outcomes than those with stable angina. In this sense, Mehta et al.
found in ACS patients, but not in stable ones, that every 0.01 de-
crease in FFR was associated with higher rates of MACE (HR 1.08;
1.03-1.12; p=0.026) [36]. Some authors have proposed an alterna-
tive cutoff of <0.84 as the best to predict MACE in ACS, rather than
the standard cutoff of 0.8 in stable patients [37]. These studies do
not invalidate the use of FFR in the setting of ACS, but translate
the well-known worse outcomes associated to ACS as compared to
stable CAD [38].

In fact, several studies have confirmed the reliability of FFR in
this context. From a pre-clinical basis, in a recent study using a
porcine model, IMR-FFR values were not modified in the circumflex
artery after repeated injections of microspheres in the left anterior
descending artery [39]. Importantly, in an observational study in-
cluding 75 STEMI patients, FFR did not change in the NCA when
assessed 35 days later (0.77 + 0.13 vs. 0.77 4+ 0.13; p = NS) [22].
More recently, 2 studies have reported slight increases in FFR val-
ues (A+0.02) when measured 1-2 months after STEMI [19,40]. Of
note, in the study by Wood et al., only 3 patients moved from an
FFR>0.80 to <0.80, translating an excellent discrimination power.
In the study by Layland, a resistive reserve ratio (RRR; an index of
the vasodilatory capacity of a microcirculation) of 2.46 in patients
with NSTEMI was considered valid for FFR-guided PCI [34]. In this
sense, in the FISIOIAM and in van der Hoeven’s study mean RRR in
the NCA was 3.2 and 3.4 respectively, far exceeding the preserved
vasodilatory capacity cutoff [16,19]. Finally, in the recent study by
Choi et al., FFR values of NCA stenosis were even lower than those
of stable patients matched by coronary severity (0.80 + 0.11 vs
0.82 + 0.11) [18].

Accordingly, large randomized clinical trials have validated an
FFR-guided complete revascularization strategy, which is associated
to a lower incidence of MACE as compared to a single-culprit ves-
sel strategy [41,42]. However, it should be noted that the clini-
cal benefit is mostly driven by unplanned revascularization, and
that these studies did not compare FFR-guided revascularization

with angiography-guided revascularization. This comparison was
performed in a substudy of the FAME-1 trial, showing that patients
with acute coronary syndrome had the same risk reduction (19%)
from an FFR-guided revascularization as patients with stable CAD
[38].

In summary, the possibility of transient microvascular dysfunc-
tion in the NCA is a theoretical limitation of FFR in this context.
This is certainly important in the culprit artery territory, while it
seems more dubious in the NCA, where the vasodilatory capac-
ity of the microcirculation is less impaired. Importantly, two trials
have validated the clinical use of FFR-guided revascularization in
the NCA.

Non-hyperemic indices in the non-culprit artery

In the last years, several non-hyperemic indices have been de-
veloped in order to avoid adenosine-dependent hyperemia and its
concomitant transient side effects. The instantaneous wave-free ra-
tio (iFR) is calculated by measuring the resting pressure gradient
(Pd/Pa) across a coronary lesion during a specific part of the di-
astole [8]. Its measurement depends on the assumption that max-
imal flow and minimal resistance occur during a certain part of
the diastole. A cutoff value of <0.89 has been set to identify is-
chemia [6,7]. Recently, 2 other resting indices have been intro-
duced [43]: the resting full-cycle ratio (RFR) is based on the iden-
tification of the lowest Pd/Pa within the entire cardiac cycle; the
diastolic pressure-ratio (dPR) is the averaged Pd/Pa ratio during
the entire diastole. As these indices are novel, evidence support-
ing their use in ACS is limited. It is not unreasonable to think that
these resting indices may not be affected by microvascular dys-
function, as microvascular vasodilation is not required. However
baseline hemodynamics are altered after STEMI [21], and tachycar-
dia and flow acceleration mostly affect the diastole. Hence, resting
indices are not free of potential theoretical limitations in this con-
text.
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Preliminary data in AMI patients have shown slight changes in
mean iFR values when measured during primary PCI and at follow-
up (0.89 vs 0.91 [44]; 0.93 vs 0.94, p=0.12 [19]). As previously
described with FFR, iFR values were comparable in NCA versus
stable lesions after adjusting by angiographic severity [18]. Con-
cerning binary agreement in ischemic classification over time, the
study by van der Hoeven did not find differences between FFR
and iFR (FFR in the acute setting agreed with FFR on follow-up in
80.8%; for iFR it was 82.2%; p>0.99).

There are limited data on the clinical use of iFR in the NCA.
Recently, iFR-guided PCI has proven non-inferior to FFR-guided PCI
in patients with stable CAD in two large randomized trials [6,7].
However, patients with STEMI were minimally represented in these
trials. A subanalysis of patients with ACS from these two trials
showed similar outcomes when PCI was deferred based on FFR or
iFR [45]. To date, RFR and dPR have shown a good correlation with
iFR, but no data are available regarding their use in STEMI patients
[43].

In summary, non-hyperemic indices represent a promising al-
ternative in patients with CAD, especially if avoiding adenosine
is mandatory. iFR measurements appear to be minimally altered
by microvascular dysfunction or other disturbed hemodynamics in
STEMI. Although initial data suggest that the use of iFR in the NCA
may be accurate and safe, more evidence is needed in this specific
context to completely validate its widespread utilization.

Future perspectives

Despite major advances in recent years, in our opinion impor-
tant gaps in evidence are relevant and more research seems war-
ranted:

m The extent of microvascular dysfunction in the NCA and its
prognostic implication remain incompletely understood. The
same is true for its potential impact on the accuracy of FFR and
non-hyperemic pressure indexes. Long-term follow-up studies
comparing patients with and without microvascular dysfunc-
tion measured during the acute phase may help clarify these
issues.

m Similarly, the precise role of endothelial dysfunction in the con-
text of STEMI remains uncertain. In particular, we have yet to
clarify how persistent it is over time after ACS, and whether
it carries a higher risk of MACE. It is also uncertain whether
the finding of endothelial dysfunction in this context warrants
a specific treatment -for instance, withdrawal of betablockers
or use of calcium channel blockers to prevent epicardial spasm.

m We currently know that both angiography-guided and FFR-
guided multivessel PCI are superior to culprit-vessel only revas-
cularization. However these 2 strategies have not been com-
pared to date, which is fundamental to establish the gold-
standard strategy in patients with STEMI and multivessel
disease. The FRAME-AMI trial will shed light on this question
[46]. Also, the precise timing for multivessel revascularization
remains unknown. The MULTISTARS trial, currently recruiting,
will probably provide robust evidence in this context [47].

m To completely validate the use of resting indices in patients
with AMI, iFR will have to be compared to FFR. The INTERPRET
trial will provide more evidence in this respect [48].

Conclusions

The physiology of the NCA is complex and represents a chal-
lenge. Endothelial dysfunction is common and its measurement
using acetylcholine in the acute phase is safe. Microvascular dys-
function in the NCA seems to be mild, and its impact on FFR mea-
surements, although real, has not been proven clinically relevant to

date. Revascularization should be based on proven ischemia, and
thus a physiology-guided strategy may be the most appropriate.
Novel resting indices are a promising alternative and warrant fur-
ther studies.
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