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Abstract—A quasi-optimum receiver based on the generalized
approximate message passing (GAMP) concept is proposed for
constant envelope orthogonal frequency division multiplexing
(CE-OFDM) signals. Large modulation index results in large
power efficiency for CE-OFDM, but the phase modulator intro-
duces nonlinear distortion effects, precluding good performance
for a simple phase detector. Our simulation results show that
the GAMP receiver can achieve quasi-optimum performance and
it can outperform the linear OFDM and CE-OFDM with phase
detectors, for both additive white Gaussian noise (AWGN) and
frequency selective channels.

Index Terms—OFDM, phase modulation, GAMP, nonlinearity.

I. INTRODUCTION

O rthogonal frequency division multiplexing (OFDM) has
been widely adopted in communications systems due to

its robustness against multipath propagation, large spectral effi-
ciency and ease of implementation. Since OFDM suffers from
high peak-to-average-power (PAPR) [1], its use with highly
efficient nonlinear (NL) power amplifiers remains difficult. To
overcome these difficulties, constant envelope OFDM (CE-
OFDM) was proposed [2] and it was shown to outperform
the conventional linear OFDM [3]. In millimeter wave and
THz scenarios, which are of interest for the future 6G wireless
communications technology, the power constraints are really
severe so it is interesting to utilize energy efficient modulation
techniques such as the CE-OFDM, which is an interesting
alternative to classical OFDM. For low modulation index, the
phase modulation introduces a DC component that degrades
the performance, while for large modulation index, which is of
interest since it results in a larger energy efficiency [3], we have
phase excursions over ±π that lead to nonlinear distortions,
which degrade the performance of the phase detector used
with CE-OFDM [2]. State-of-the-art receivers for CE-OFDM
are proposed in [4], [5], based on three types: brute force
search (prohibitively large complexity), phase demodulator and
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linear receivers (both valid only for low modulation indexes).
However, nonlinear distortion effects can lead to performance
improvements, as shown in [6].

Several techniques have been applied to approach the op-
timum detection performance but they are limited by perfor-
mance or complexity [6]. A gaussian message passing for mas-
sive MIMO-NOMA is proposed in [7]. One of the most recent
receivers for nonlinear OFDM is based on the generalized
approximate message passing (GAMP) algorithm [8]–[10]. A
GAMP receiver for classical complex OFDM nonlinearities is
proposed in [8]. A fast GAMP (fGAMP), which approximates
some statistics to a normal distribution, thus degrading the
performance, is proposed for classical OFDM nonlinearities
[10]. However, the design of low complexity quasi-optimum
receivers for CE-OFDM is still an open issue.

In this paper, we consider CE-OFDM schemes with strong
non-linear distortion caused by large modulation indices and
present powerful receivers based on the GAMP and fast GAMP
algorithms which are able to approach the optimal performance.
Extending the GAMP and fGAMP [8], [10] to CE-OFDM
signals is not straightforward, and it is addressed in this
manuscript. Furthermore, the damped GAMP, which is not
always considered in the literature (e.g. [10]), is implemented
to avoid the instabilities of the GAMP and is adapted to suit the
particularities of CE-OFDM signals. We effectively implement
the damped GAMP for CE-OFDM signals and we show its
robustness against both AWGN and multipath channels, even
when imperfect channel estimation occurs, which is also not
considered in the literature. Our performance results show that
the proposed receiver can work well for CE-OFDM with large
modulation indexes and can outperform the linear OFDM for
the same spectral efficiency when channel coding is applied.
We also analyze the complexity of the proposed receivers and
compare them with the ones in the literature.

II. CE-OFDM SIGNALS AND OPTIMUM DETECTION

A. Signal Model

Each CE-OFDM symbol is composed of N complex data
symbols that form the block S = [S0, S1, · · · , SN−1]

T . To
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symbols are constrained to have Hermitian symmetry, which
means that Sm = 0 for m ∈ {0, N/2} and SN−m =
S∗
m, otherwise. The data symbols are selected from a K-

ary quadrature amplitude modulation (K-QAM) constellation.
The constellation is normalized to have a unit power. An
oversampled version of the CE-OFDM signal is obtained by
adding N(M − 1) idle subcarriers to the data block, i.e.,
with Sm = 0 for m = N, . . . , NM − 1, with M denoting
the oversampling factor. The frequency domain vector S is
transformed into the time domain via inverse discrete Fourier
transform (IDFT) operation s = FS = [s0, s1, · · · , sNM−1]

T ,
where F is an NM by NM matrix with elements

Fn,m =
1√
NM

e
j2πnm
NM , n,m = 0, . . . , NM − 1. (1)

A cyclic prefix (CP) of sufficient length is appended to the
time-domain vector. The n-th sample of s is approximately
Gaussian with zero mean and variance E[|sn|2] = σ2 =
(N − 2)/(NM)2, according to the central limit theorem
(CLT). These time-domain samples are submitted to a phase
modulator, giving the transmitted signal samples in time [3]
with f() denoting the phase modulation and b the modulation
index

yn = f(sn) = exp (j2πbsn/σ). (2)

Later, the signal is transmitted via a multipath channel with
impulse response {hn}. The received signal is represented as

rn = yn · hn + wn = exp (j2πbsn/σ) · hn + wn, (3)

where wn represents the n-th AWGN sample with zero mean
and variance E{|wn|2} = σ2

w = N0, with N0 the one-sided
noise power spectral density. A long enough cyclic prefix was
added to (2), so rn is represented in the frequency domain as

Rm = HmYm +Wm, (4)

where Rm, Hm, Ym and Wm, m = 0, 1, · · · , NM − 1 are the
DFTs of the signals rm, hm, ym and wm, respectively.

Typically, the detection of CE-OFDM in a multipath envi-
ronment is made via a frequency-domain equalizer (FDE) and
a phase detector, which can get a ”linear” version of the phase,
provided that there is no phase ambiguity [2]. Note that CE-
OFDM retains the robustness against multipath fading and ISI,
and high spectral efficiency of classical OFDM [2].

Although the amplification process of CE-OFDM signals
can be distortionless, the phase of these signals with high
modulation index results in a nonlinear distortion due to phase
excursions beyond ±π. They create an in-band distortion and
an out-of-band (OOB) radiation. Whilst the latter may be
mitigated through filtering, the former behaves as an additional
noise that degrades the performance [11]. While a Bussgang
receiver can reduce the in-band nonlinear distortion, it does not
take advantage of the inherent information [3].

B. Optimum Detection

The asymptotic optimum performance of a given modulation
is conditioned by the pairwise error probability (PEP) between
its symbols. In the presence of nonlinearities, the squared Eu-
clidean distance between two OFDM data sequences differing

in one bit is D2
NL =

∑NM−1
m=0

∣∣∣Y (2)
m − Y

(1)
m

∣∣∣2 = 4GEb, where
G = D2

NL/D
2 = D2

NL/4Eb, which represents the optimum
asymptotic gain [3] and can be computed as

G = σ2

∫∞
−∞ |f ′(s)|2 p(s)ds∫∞
−∞ |f(s)|2 p(s)ds

, (5)

where p(s) is the Gaussian probability density function (PDF)
associated to CE-OFDM signals and f ′(s) represents the first
derivative of f(s). The asymptotic gain depends only on the
modulation index, i.e. G = (2πb)2 [3]. Thus, the optimum
performance of the CE-OFDM is given by

Pb ≈ Q

(√
G
2Eb

N0

)
= Q

(√
(2πb)2

2Eb

N0

)
, (6)

where Eb is the average power times the bit duration.
A receiver based on the phase modulator is optimal only for

small modulation indexes (i.e. 2πb < 0.7). For greater values,
the phase modulator suffers from phase ambiguities, which
degrades the performance with respect to the optimum, as
shown in [3]. An optimum receiver based on the maximum like-
lihood detection makes a brute force search of all the possible
transmitted sequences in reception [4], and has an unfeasible
complexity of KN/2−1. Therefore, this letter presents a quasi-
optimum detector based on the GAMP algorithm, described in
the next section, which can outperform the phase modulator
and even the linear OFDM, while avoiding the unbearable
complexity of the brute force search algorithm.

III. SUB-OPTIMUM RECEIVER FOR CE-OFDM SIGNALS

A. Belief Propagation Receiver

The formulation and the derivations below are based on the
AWGN channel, and the case of the multipath channel will be
extended in Sec. III-D. The received signal (3) in vector form
is r = [r0, r1, . . . , rNM−1]

T , which is simplified to

r = f(s) +w = h⊗ f(FS) +w. (7)

Eq. (7) is equivalent to a general problem statement for the
GAMP algorithm [12], which belongs to a class of Gaussian
approximations of loopy belief propagation for dense graphs.
The GAMP sum-product variant approximates the minimum
mean-squared error (MMSE) estimates of y and S. The GAMP
algorithm with damping [12] is summarized in Algorithm 1.The GAMP algorithm presented is based on the one used in
[8] for classical OFDM, but it is adapted to the signal structure
particularities of CE-OFDM. They differ in the expectation and
variance in the output nonlinear step and the symbols placing.
Besides, the integral defined in (12) has a complex input and



Algorithm 1: Basic GAMP decoder with damping (β)
Input: r
Output: Ŝ
Parameters: tmax, F, gin(·), gout(·), σ2

w, β
1) Initialization:

1 t = 1, Ŝ(1) = S̃(1) = x̂(1) = 0NM,1, µS(1) = 1NM,1

2) Output linear step:
2 µq

n(t) =
1

NM

∑NM−1
m=0 µS

m(t), ∀n
3 q̂n(t) =

∑NM−1
m=0 Fn,mŜm(t)− µq

n(t)x̂n(t− 1), ∀n
3) Output non-linear step:

4 x̂n(t) = (1− β)x̂n(t− 1)− βgout(q̂n(t), µ
q
n(t), rn), ∀n

5 µx
n(t) = (1− β)µx

n(t− 1)− β
∂gout(q̂n(t),µ

q
n(t),rn)

∂q̂ , ∀n
4) Input linear step:

6 S̃m(t) = (1− β)S̃m(t− 1) + βŜm(t), ∀m

µv
m(t) =

(
1

NM

∑NM−1
n=0 µx

n(t)
)−1

, ∀m
7 v̂m(t) = S̃m(t) + µv

m(t)
∑NM−1

n=0 F ∗
n,mx̂n, ∀m

5) Input non-linear step:
8 Ŝm(t+ 1) = gin(v̂m(t), µv

m(t)), ∀m
9 µS

m(t) = µv
m(t) ∂

∂v̂ gin(v̂m(t), µv
m(t)), ∀m

6) Loop: t → t+ 1 and return to 2) until t = tmax.
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Output 
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step
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delay
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𝐫
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ෝ𝛍𝑞(t + 1)

Fig. 1. GAMP decoder architecture.

a real output and different integral limits and domain, which
differs from the implementation in [8]. Also, (18) and (19)
have complex values as input from the QAM constellation but
result in a real output and the scalar nonlinear functions gin(·),
g′in(·), gout(·) and g′out(·), depend on the employed modulation
format and the shape of the nonlinearity f(z). Each iteration
of the GAMP consists of four steps. The first one (output
linear) produces estimates of an intermediate vector {q̂n}
with corresponding variances {µq

n}. The second one (output
nonlinear) produces estimates of intermediate vector {x̂n} with
corresponding variances {µx

n}. The third one (input linear) pro-
duces estimates of intermediate vector {v̂n} with corresponding
variances {µv

n}. And the last one (input nonlinear) produces
estimates of vector {Ŝn} with corresponding variances {µS

n}.
Since F is the Fourier transform matrix, the input and output
linear steps can be efficiently implemented using fast Fourier
transform. A general architecture of the GAMP decoder is
illustrated in Fig. 1. In the following sections, we drop the
element indexes n and m and the iteration number t notation
for clarity.

B. Output nonlinear step

The output function gout(p̂, µ
p, r) of the sum-product loopy

belief propagation algorithm is given by [13]

gout(q̂, µ
q, r) :=

ŝ0 − q̂

µq
, ŝ0 := E[s|q̂, r, µq] (8)

and the negative derivative of gout(·) is given by [13]

− ∂

∂q̂
gout(q̂, r, µ

q) =
1

µq

(
1− var[s|q̂, r, µq]

µq

)
, (9)

where the expectation and variance over the distribution are

p(s|q̂, r, µq) ∝ exp

(
−||r − f(s)||2

2γσ2
w

− ||q̂ − s||2

2µq

)
. (10)

For the CE-OFDM nonlinear model (2), we can define

E[s|q̂, r, µq] =
I1
I0

and var[s|q̂, r, µq] =
I2
I0

−
∣∣∣∣I1I0
∣∣∣∣2 , (11)

where the integrals Iu, u = 0, 1, 2 are given by

Iu =

∫ ∞

−∞
sue

− ||r−f(s)||2

2γσ2
w

− ||q̂−s||2
2µq

ds. (12)

Eq. (12) is obtained using numerical integration since it
cannot be expressed in closed-form using elementary functions.
Nevertheless, E[s|q̂, r, µq] and var[s|q̂, r, µq] can be approxi-
mated following [10] for the fGAMP, as

E[s|q̂, r, µq] =
µqr + σ2

w q̂

µq + σ2
w

, var[s|q̂, r, µq] =
σ2
wµ

q

µq + σ2
w

(13)

when |q̂| ≤ 1, and when |q̂| > 1 we have

E[s|q̂, r, µq] =
µqr + t2σ2

w q̂

µq + t2σ2
w

, var[s|q̂, r, µq] =
t2σ2

wµ
q

µq + t2σ2
w

.

(14)

C. Input nonlinear step

The sum-product variant of the loopy belief propagation
algorithm for the input nonlinear step gin(·), g′in(·) is [13]

gin(v̂, µ
v) := E[S|v̂, µv] (15)

µv ∂

∂v̂
gin(v̂, µ

v) := var[S|v̂, µv]. (16)

In the GAMP algorithm, v is interpreted as a Gaussian noise
corrupted version of S with noise variance µv . Therefore, for
K-QAM modulation, the input nonlinear step is expressed as

E[S|v̂, µv] =

K∑
i=1

diP (di|v̂, µv), (17)

var[S|v̂, µv] =
K∑
i=1

|di − E[S|v̂, µv]|2 P (di|v̂, µv), (18)



where di, i = 1, 2, · · · ,K is the set of K-QAM constellation
points, e.g. d = 1√

2
[1 + j, 1 − j,−1 + j,−1 − j] for 4-QAM

constellation, and conditional probabilities

P (di|v̂, µv) =
exp

(
− |di−v̂|2

2µv

)
∑K

l=1 exp
(
− |dl−v̂|2

2µv

) . (19)

For OOB subcarriers, E[S|v̂, µv] = 0 and var[S|v̂, µv] = 0.

D. Equalization for frequency-selective channels

Canonical approximate message passing algorithms assume
that the underlying random variables are independent. In multi-
path channels this is not true, since statistical dependencies are
introduced between the elements of {rn}. We may solve this
issue by using the hybrid-GAMP [14] but is out of the scope of
the paper due to its complexity and we rely on combining the
canonical GAMP with a MMSE frequency-domain equalizer
(FDE) [15]. In the FDE equalizer, the vector r is transformed
into the frequency domain vector R = [R0, R1, · · · , RNM−1]
by means of DFT. The frequency-domain equalized signal
R

(eq)
m is given by

R(eq)
m = Rm

H∗
m

|Hm|2 + σ2
w

, m = 0, 1, · · · , NM − 1 (20)

where {Hm} is the DFT of the channel impulse response h
zero-padded to length NM . The output of the equalizer is used
as an input to the conventional GAMP (Algorithm 1). A similar
approach is often used in single carrier systems with cyclic
prefix or in constant envelope OFDM systems [2].

E. Complexity analysis

The complexity of the proposed GAMP decoder is mainly
dependent on the number of DFT/IDFT involved in each
iteration, the integrals and the complex products present in the
process. The complexity of the output linear step is conditioned
by the IDFT (implemented via IFFT), which has a total of
4NM log(NM) complex products. The output non-linear step
is conditioned by the 3 integrals (Eqs. (12) and (11)), with
each integral being solved numerically with a total of NS

samples, and each sample of the integral composed of 2
complex products, making a total of 6NS complex products
which are repeated for each subcarrier (total of NM ). The
input linear step is conditioned by the DFT (implemented via
FFT), with 4NM log(NM) complex products. Last, the input
non-linear step is limited by the calculation of a total of 2K
complex products in (18) and (19), which are repeated NM
times. The total number of complex products of one iteration
of the GAMP is repeated a maximum of tm times, so the total
complexity is

NCP = tmNM(8 log(NM) + 2K + 6NS). (21)

It is worth noting that the fGAMP is equivalent to the GAMP
with Ns = 0. Comparatively, the complexity of other tech-
niques such as the ones presented in [6] are proportional to

KNM (exponential with the number of subcarriers), demon-
strating that the proposed technique is much less complex.

IV. PERFORMANCE RESULTS

In this section we provide the BER performance results for
the receiver proposed in this paper for quasi-optimum detection
of CE-OFDM signals. We consider both an ideal AWGN
channel and a multipath channel with 16 symbol-spaced paths,
constant power delay profile (PDP), uncorrelated Rayleigh fad-
ing and no Doppler effects. We consider N = 1024 subcarriers,
with 4-QAM modulation and Gray mapping. An LDPC 1/2-rate
code is applied to account for the spectral inefficiency of CE-
OFDM and an output backoff (OBO) of 5dB is applied to ac-
count for the PAPR>1 of the linear OFDM. The selected OBO
is the minimum in practice [16], so the gains for the GAMP
are potentially larger. The different modulations account for the
spectral efficiency differences between linear OFDM and CE-
OFDM. The oversampling factor is M = 4 and we consider
the nonlinearly model defined in (2), which is assumed to be
known in the receiver. Contrarily to OFDM where the channel
coding is critical, we can have good CE-OFDM performance
without it, since the NL behaves as a kind of channel coding
[8], due to the implicit diversity effects [6]. Additional gains
would be achieved if a conventional code is employed with CE-
OFDM, since a concatenated coding scheme would result from
combining the conventional one and the inherent to the GAMP
with NL. We assumed perfect synchronization and channel
estimation at the receiver, unless otherwise stated by defining
a non-perfectly estimated channel as Ĥm =

√
1− eHm +He,

where He ∼ CN (0, e). The integration required by (12) was
performed numerically using the midpoint rule, with Ns = 60
samples. The maximum number of iterations of the GAMP
algorithms was set to tm = 50, although the algorithm can
stop before that if there are no errors, and the damping factor
was set to β = 10−δ·Eb/(10N0), with δ = 1.5 for the AWGN
channel and δ = 0.7 for the multipath channel. Please note
that the parameters give a trade-off between complexity and
performance, since the GAMP algorithm has several degrees of
freedom. The optimization of the parameters (i.e. an adaptive
damping factor) is still an open issue, and we could potentially
reduce the complexity and increase the performance, but this
is out of the scope of the paper. With our choice of parameters,
our goal is to show that the GAMP based receiver can work.

A. Optimal modulation index for minimum BER

Our first goal is to find the optimal modulation index b for
the CE-OFDM (2). If an optimal decoder is used at the receiver
side, the nonlinearly distorted OFDM signals can outperform
their linear counterpart, especially for larger modulation index
[6]. However, since the proposed GAMP receiver for CE-
OFDM signals is not necessarily optimal, it is reasonable to
assume there is an optimal modulation index. Fig. 2 shows
the BER performance for different Eb/N0 values versus the
modulation index for an AWGN channel and for a multipath



channel. The optimal modulation index depends on the Eb/N0,
and is found in the range 2πb = 1.3 − 1.4, values for which
the phase detector performs poorly (see [3] Fig. 1).

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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ρ=0 AWGN
ρ=4 AWGN
ρ=6 AWGN
ρ=1.5 MP
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ρ=5 MP

Fig. 2. BER for different Eb/N0 (ρ) ratios in dB and different modulation
indexes for both an AWGN and multipath (MP) channel.

B. BER vs Eb/N0 performance

The BER performance for CE-OFDM systems with the phase
detector, the proposed GAMP and the maximum-likelihood
[3] receiver is shown in Fig. 3. The GAMP approaches the
optimum performance in low and high modulation indexes
while the phase detector can only for low ones.

−2 0 2 4 6 8 10 12 14
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B
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PD 2πb=0.5
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Opt. [3] 2πb=0.5
PD 2πb=1.4
GAMP 2πb=1.4
Opt. [3] 2πb=1.4

Fig. 3. BER vs. Eb/N0 for low (2πb = 0.5) and high (2πb = 1.4) modulation
indexes (b) for the phase detector (PD), the GAMP, the optimal [3] receivers
for the AWGN channel.

Fig. 4 shows the BER performance of the CE-OFDM sys-
tems with the proposed GAMP-based receiver in an AWGN
channel. Clearly, the BER performance of CE-OFDM can
be significantly better than that of the linear OFDM. For

2πb = 1.4, at BER=10−6, a gain of about 6 dB is obtained
over the linear OFDM. With respect to the phase detector, the
gain is infinite, since the BER does not go below 5 · 10−2 for
any Eb/N0 value. It can be seen that the fGAMP [10] results
in a large performance degradation and a small complexity re-
duction for the CE-OFDM (GAMP 2 million complex products
per iteration and fGAMP 0.5 million).
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10−5

10−4
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B
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Linear OFDM
PD 2πb=1.4
GAMP 2πb=1.4
fGAMP 2πb=1.4
Opt [3] 2πb=1.4

Fig. 4. BER vs. Eb/N0 for different modulation indexes (b) for the GAMP,
phase detector (PD), fGAMP and the optimal [3] receivers for the AWGN
channel, comparing with linear OFDM with 1/2-rate LDPC with OBO 5 dB.

Fig. 5 shows the BER performance of the CE-OFDM system
in the multipath channel used in Fig. 2. The receiver combines a
GAMP-based decoding and MMSE frequency-domain filtering.
The CE-OFDM with MMSE FDE and GAMP receiver allows
a large gain when compared to linear OFDM, e.g. 5dB at
BER=10−4. The performance of OFDM schemes in frequency-
selective channels is improved by the inherent diversity effects
created by the nonlinear effects. Furthermore, there is a trade-
off between the complexity and the performance for the GAMP
parameters. When reducing tm, the performance and complex-
ity decrease, and when δ is reduced, there are instabilities and
the performance is potentially worse.

V. CONCLUSIONS

In this letter, we proposed a GAMP-based receiver for CE-
OFDM signals. It can be used when the modulation index of
the CE-OFDM signal is large, while the conventional phase
detector fails due to the phase ambiguity. Our performance
results show that the CE-OFDM with a GAMP-based receiver,
for large modulation indexes, outperforms a conventional linear
OFDM both for AWGN and multipath channels, provided that
an MMSE-based FDE equalizer is used in the latter. This is
something remarkable since these configurations are classically
regarded as unfeasible.
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[11] T. Araújo and R. Dinis, Analytical evaluation of nonlinear distortion
effects on multicarrier signals. CRC Press, 2015.

[12] S. Rangan, P. Schniter, A. K. Fletcher, and S. Sarkar, “On the Conver-
gence of Approximate Message Passing With Arbitrary Matrices,” IEEE
Trans. on Information Theory, vol. 65, no. 9, pp. 5339–5351, 2019.

[13] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in 2011 IEEE International Symposium on
Information Theory Proceedings, 2011, pp. 2168–2172.

[14] S. Rangan, A. K. Fletcher, V. K. Goyal, E. Byrne, and P. Schniter, “Hybrid
Approximate Message Passing,” IEEE Trans. on Signal Processing,
vol. 65, no. 17, pp. 4577–4592, 2017.

[15] D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson,
“Frequency domain equalization for single-carrier broadband wireless
systems,” IEEE Comm. Magazine, vol. 40, no. 4, pp. 58–66, 2002.

[16] H. Ochiai and H. Imai, “On the distribution of the peak-to-average power
ratio in OFDM signals,” IEEE Transactions on Communications, vol. 49,
no. 2, pp. 282–289, 2001.


	portadilla_postprint_IEEE
	López Morales, Manuel José; Dinis, Rui; García Armada, Ana. Near-Optimal Detection of CE-OFDM Signals with High Power Efficiency via GAMP-based Receivers.  In: 2022 IEEE Globecom Workshops (GC Wkshps) Proceedings, Rio de Janeiro, Brazil, 4-8 December ...
	DOI: https://doi.org/10.1109/GCWkshps56602.2022.10008696

	Letter_CE_OFDM_GAMP_IEEE_Globecom_2022_acceptedNOTpublishedVersion.pdf



