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Abstract

In this paper, we propose to model intervals of minimum/maximum tempera-
tures observed at a given location by fitting unobserved component models to bivari-
ate systems of center and log-range temperatures. In doing so, the center and log-
range temperature are decomposed into potentially stochastic trends, seasonal and
transitory components. We contribute to the debate on whether the trend and sea-
sonal components are better represented by stochastic or deterministic components.
The methodology is implemented to intervals of minimum/maximum temperatures
observed monthly in four locations in the Iberian Peninsula, namely, Barcelona,
Coruña, Madrid and Seville. We show that, at each location, the center temper-
ature can be represented by a smooth integrated random walk with time-varying
slope while the log-range seems to be better represented by a stochastic level. We
also show that center and log-range temperature are unrelated. The methodology is
then extended to model simultaneously minimum/maximum temperatures observed
at several locations. We fit a multi-level dynamic factor model to extract potential
commonalities among center (log-range) temperature while also allowing for hetero-
geneity in different areas. The model is fitted to intervals of minimum/maximum
temperatures observed at a large number of locations in the Iberian Peninsula.
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What we find more difficult to talk

about is our deep dissatisfaction with

the ability of our models to inform

society about the pace of warming,

how this warming plays out

regionally, and what it implies for the

likelihood of surprises.

Palmer and Stevens (2019)

1 Introduction

Climate change can be defined as the variation in the joint probability distribution that

describes the state of the atmosphere, oceans, and fresh water including ice; see Hsiang

and Kopp (2018). According to the latest fifth and sixth assessment reports of the In-

ternational Panel for Climate Change (IPCC, 2014, 2022), one of the most important

aspects of climate change is global warming, described by the evolving distribution of

temperature.

The stand of the literature using econometric models to describe the evolution of tem-

perature focuses on average temperature, which is obviously an important characteristic

of the distribution.1 However, average temperature alone is not enough to reflect the com-

plicated variations of climate. In an early paper, Katz and Brown (1992) show that the

frequency of extreme weather events is relatively more dependent on any changes in the

variability than on the mean of temperature, with this sensitivity being relatively greater

the more extreme the event. Consequently, policy makers should not rely on scenarios of

future temperature involving only changes in means.

Our paper contributes to the important literature on time series modelling of tem-

peratures in two main ways. First, instead of analysing average temperatures, we use

the rich joint information contained in the interval of minimum/maximum temperature,

analysing them as IVTS. By doing so, we add to the information of the average tempera-

1Although, we focus on econometric models, there is a large literature based on deterministic climate
models; see Diebold and Rudenbush (2022b) for a comparison between both types of models in the context
of measuring ice volume in the Arctic.
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ture, represented by the center of the interval, the information about the range between

the maximum and minimum temperatures and, consequently, information associated to

extreme temperatures.

In particular, we propose using a state space representation of the non-stationary and

seasonal center and log-range temperature in which both the trend and seasonal com-

ponents can be stochastic; see Harvey (1997) about the advantages of using unobserved

components models instead of widely used VAR models based on differencing and cointe-

gration and Pretis and Hendry (2013), who suggest using a state-space approach due to

the conflicting results often encountered when unit root and cointegration tests are used

in the context of monthly data. The unobserved component models framework allows

us to decide about the nature of the trends and seasonal components of the center and

log-range temperatures, using the Kalman filter and smoothing (KFS) algorithms to ex-

tract the components together with their uncertainty. Structural time series models have

been proposed before in the context of average temperatures by, for example, Bloomfield

(1992), Woodward and Gray (1993) and Zheng and Bahsher (1999) for annual data and

by Good et al. (2007) and Proietti and Hillebrand (2017) for monthly data and Stern and

Kaufmann (2000) for annual temperatures in the Northern and Southern Hemispheres.

Our methodology is closely related with the smoothing procedure proposed by Maia and

Carvalho (2011), who fit two independent models to the mid-points and ranges of the

intervals and estimate the smoothing parameters by minimizing the interval sum of one-

step-ahead forecast errors; see Harvey and Jaeger (1993), who show that the steady-state

Kalman filter for the local linear trend model takes the form of Holt’s recursions with

suitably defined smoothing constants. However, these latter authors do not consider the

seasonal component.

Finally, to deal with the heterogeneity in the joint evolution of minimum/maximum

temperatures observed at various locations, we propose using a multi-level Dynamic Fac-

tor Model (ML-DFM), which is estimated using the KFS algorithms. The ML-DFM

allows to represent the joint evolution of a large system of time series of center/log-range

temperatures assuming that some of the trends are common to all locations while others

may be common to some subsets of locations. Consequently, ML-DFM can represent

some commonality in the evolution of temperatures while allowing, at the same time, for
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some idiosyncratic movements that explain the heterogeneity often observed.

Our second contribution is the empirical analysis of monthly IVTS of minimum/maximum

temperatures observed at 68 locations spread all over the Iberian Peninsula over nearly

a century from January 1930 to December 2020. This analysis is of particular interest

because of the severe heat waves experienced in Southern Europe in recent years; see,

for example, Kew et al. (2017). After analysing minimum/maximum temperatures sepa-

rately in four selected locations, namely Barcelona, Coruña, Madrid and Seville, we show

that the main characteristics of the center temperature in each of these four cities can be

represented by a smooth stochastic trend. The fact that the slope of the trend changes

over time can explain why some authors find upward trends while others conclude about

the hiatus in warming (global mean temperature has not risen significantly over the last

two decades). Furthermore, we observe some heterogeneity in the trends of these four

cities, with the slope of the trend at the end of the observation period, in December

2020, being different in the four cities considered. In particular, the slope of the trend

is larger in Barcelona and smaller in Seville. We also show that the seasonal component

of the center temperatures has a stochastic behaviour. When looking at the log-range,

we conclude that it can be represented by a stochastically evolving level with stochastic

seasonality. As expected, at the end of the sample period, the log-range is clearly larger

in the two cities in the interior of the Iberian Peninsula, Madrid and Seville, and smaller

in the two coastal cities, Barcelona and Coruña. Another important conclusion from the

empirical analysis of the center and log-range temperatures in these four cities is that, in

each of them, the center and log-range temperatures are not correlated, allowing to model

both characteristics separately.

The rest of this paper is organized as follows. In Section 2, we briefly survey the

literature using econometric models to describe the dynamic evolution of temperatures

and the still open debates in this literature. Section 3 describes the methodology proposed

to model IVTS of minimum/maximum temperature. In particular, we describe how to

model and forecast temperature intervals at a given location using state space models and

the Kalman filter to estimate trends and seasonal components. We also describe ML-DFM

and the implementation of KFS to extract the common factors. Section 4 describes the

data and the main empirical characteristics of the IVTS of the center/log-range systems
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at Barcelona, Coruña, Madrid and Seville. Section 5 fits state-space models to extract

trends and seasonal components in each of these four locations of the Iberian Peninsula.

Finally, Section 6 concludes the paper with a summary of the main conclusions.

2 Open debates on the econometric modelling of tem-

peratures

When describing global warming, the interest is on the distribution of temperature either

a given location or jointly at several locations. However, the stand literature focus on

analysing the evolution of average temperature, i.e. the central tendency of the distribu-

tion, with a large variety of statistical and econometric approaches, periods and frequency

of observation, and locations to analyse it. Many of these studies find an upward trend in

average temperatures. Increasing trends are found by, for example, Deng and Fu (2019),

who compare several methods for extracting cycles from daily temperatures, and Bar-

bosa, Scotto and Alonso (2011), who also analyse daily temperatures in several locations

at Central Europe. These latter authors use quantile regressions to fit linear trends to

the quantiles of average daily temperature at each location. Note that, by doing this,

they are analysing the distribution of average temperature but not the distribution of

temperature it self. Similarly, Scotto, Barbosa and Alonso (2011) use Extreme Value

Theory (EVT) to analyse the extremes of the distribution of daily average temperature

in Europe and the spatial distribution of extreme events; see also Wang et al. (2021),

who use Generalized EVT to look for fingerprints on temperatures. A similar approach

is considered by Gadea Rivas and Gonzalo (2020, 2022), who use regressions to estimate

the full cross-sectional distribution of average temperatures or the distribution of average

daily temperatures within a given year. A very similar approach is taken by Chang et

al. (2020), who construct densities of global average temperatures in the Southern Hemi-

sphere (measured as anomalies with respect to average temperatures over the base period

1961-90) and conclude that there is more persistence in the mean while non-stationarity

is less evident in the variance. Although most evidence is about average temperature

having an upward increasing trend, it is important to point out that several authors de-

scribe what is known as the hiatus in warming; see, for example, Schmidt, Shindell and
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Tsigaridis (2014), Pretis, Mann and Kaufmann (2015), Medhaug et al. (2017) and Miller

and Nam (2020).

Although the literature focusing on average temperature is obviously relevant, there

is some agreement about average temperature alone not being enough to reflect the com-

plicated variations of climate. In an early paper, Katz and Brown (1992) show that the

frequency of extreme wheather events is relatively more dependent on any changes in the

variability than on the mean of climate, with this sensitivity being relatively greater the

more extreme the event. Consequently, policy makers should not rely on scenarios of

future climate involving only changes in means. In this direction, on top of modelling

average temperature, several authors have considered modelling the evolution of range

temperature, computed as the difference between the maximum and minimum temper-

atures within a given period of time. These studies often find a downward trend in

temperature variability although the evidence is not as clear as for the positive trend of

average temperature. For example, Vose, Easterling and Gleason (2005), Dupuis (2014),

Qu, Wan and Hao (2014) and Meng and Taylor (2022) show that increases in minimum

temperatures have been more important than increases in maximum temperatures in the

globe (the first), different regions of the US (the second and third), and four cities in

Spain (the last). Xu et al. (2013) analyse minimum and maximum daily temperatures

in 825 stations in China observed from 1951 to 2020, and conclude that the diurnal tem-

perature range has significantly decrease at 49% of the stations, with significant increases

being identified at 3% of them. Diebold and Rudebusch (2022a) propose modelling both

the average and range temperature using separate regressions with deterministic trends,

seasonal dummies and their interactions. The two univariate models are fitted to av-

erage and range temperatures observed daily in selected cities in the US since 1960 to

2017. Instead of considering separate regressions, Meng and Taylor (2022) propose two

alternative methods to model IVTS of minimum and maximum temperature. First, they

propose modelling each of the two time series separately by fitting models with determin-

istic trends and seasonal components and allowing for interactions between minimum and

maximum temperatures. Alternatively, IVTS of minimum and maximum temperature

are modelled by a bivariate VARMA-MGARCH model. Using daily data in four Spanish

cities observed from 1951 to 2015, their results also suggest a decrease in the diurnal
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temperature range and an increase in trend. Note that they do not restrict the model to

avoid crossing of minimum and maximum temperature at a given moment of time. The

authors recognise that, although unlikely, the temperatures may cross.

Several important debates about modelling the dynamic characteristics of average

and range temperature are going on in the related literature. First, there is a growing

literature about the nature of the trend in temperature; see, for example, the discussion

by Proietti and Hillebrand (2017). Within this literature, one of the most important

controversies is about whether trends in temperatures (or other climatological variables)

should be modelled by assuming that they are deterministic, as it is often done by many

authors, or stochastic. For example, Fatichi et al. (2009) examine trends of daily av-

erage temperatures recorded in 26 stations in Tuscany (Italy) and conclude that only

for a subset of 9 stations a deterministic trend can be regarded as the most appropriate

model. Kaufmann, Kauppi and Stock (2010), Kaufmann et al. (2013) and Chang et al.

(2020) are also among those who support the presence of stochastic trends in tempera-

tures. However, Gao and Hawthorne (2006), Gay, Estrada and Sánchez (2009) and Gadea

Rivas and Gonzalo (2020, 2022) argue that temperature series are better characterized by

trend-stationary processes. Furthermore, more recently, Chen, Gao and Vahid (in press)

support that global temperature can be represented by deterministic non-linear trends.

Seidel and Lanzante (2004), Estrada, Gay and Sánchez (2010), Pretis and Allen (2013),

Estrada, Perron and Mart́ınez-López (2013), Friedrich et al. (2020) and Kim et al. (2020)

further propose models with deterministic trends with breaks, while Friedrich, Smeekes

and Urbain (2020) and Friedrich et al. (2020) propose smooth non-parametric trends.2

There are also several proposals of modelling temperatures based on long-memory mod-

els; see, for example, Baillie and Chung (2002), Gil-Alana (2005), Ventosa-Santaularia,

Heres and Mart́ınez-Hernández (2014), Mangat and Reschenhofer (2020) and Vera-Valdés

(2021).

On top of trends, seasonal variation is the most prominent source of climate variability,

so climate change could also be reflected in it; see Pezzulli, Stephenson and Hannachi

2It is important to note that it is extremely difficult to stablish the nature of trend in a time series with
a finite sample and, consequently, there is still a debate about the power of tests for trend-stationarity or
difference-stationarity; see, for example, the general discussions by Diebold and Senhadji (1996), Phillips
(2005, 2010) and Rao (2010) and the comments by Stern and Kaufmann (2000) and Pretis and Hendry
(2013) in the particular context of climate variables.
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(2005) and Proietti and Hillebrand (2017) for its importance. Consequently, there is also

an interest about knowing the most appropriate model for the seasonal components of

temperature.

Finally, among the hazards encountered when modelling climate-related time series,

Pretis and Hendry (2013) point out the spatial variation of temperature trends, suggest-

ing that there may be unmodelled heterogeneity when this variability is not taken into

account. Dupuis (2014) and Scotto, Barbosa and Alonso (2011) also find heterogeneity,

analysing minimum and maximum temperatures observed in 12 locations in Southwestern

US and extremes in average daily temperature in Europe, respectively. Recently, Estrada,

Kim and Perron (2021) contribute to this debate by showing that the response of high-

latitudes to increases in radiative forcing is much larger than elsewhere in the world, with

a warming more than twice the global average. Other authors finding different trends

in average temperature depending on the location are Chang et al. (2020), Holt and

Teräsvirta (2020) and Gadea Rivas and Gonzalo (2022).3 The heterogeneity in climate

change may have important consequences for policy makers; see Kaufmann et al. (2017),

who argue that the scepticism about climate change could partially being caused by the

spatial heterogeneity of climate change, and Zaval et al. (2014) and Binelli, Loveless and

Schaffuer (in press), who causally link perceived changes in local temperature to changes

in global warming beliefs. Holt and Teräsvirta (2020) generalize univariate smooth tran-

sition models providing a multivariate generalization of the shifting-mean autoregressive

model to test and model whether series co-shift. They find evidence of co-shifting of hemi-

spheric temperatures which aligns with earlier evidence of Kaufmann and Stern (1997) on

the co-movement of hemispheric temperature evolution and the anthropogenic character

of climate change.

When modelling minimum/maximum temperature at several locations, one would

need to deal with non-stationary and potentially cointegrated VARs with strong seasonal

patterns; see, for example, Cheung (2007), Cheung, Cheung and Wan (2009) and Caporin,

Ranaldo and Santucci de Magistris (2013), who suggest cointegrated VAR models for

3It is also important to remark that, although in this paper we focus on urban stations, it could also
be interesting to extend the analysis to non-urban ones; see, for example, Hausfather et al. (2013) for an
analysis of the impact of urbanization on temperature trends and the discussion by Estrada and Perron
(2021).
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IVTS in the context of non-seasonal high and low financial prices.4 However, estimation

of seasonally cointegrated VAR models could be rather difficult; see, Darné (2004) for a

seasonal cointegrated model for monthly data and Seong et al. (2008) for issues related

with misspecification of cointegrating ranks. Cubadda (1999) for the alternative and more

complicated representation of seasonal cointegrated multivariate time series and He et al.

(2019, 2021) for seasonal VAR models with shifting means and covariances for monthly

temperatures.

3 State space models to represent temperature IVTS

In this section, we describe the methodology proposed to represent temperature IVTS,

which is based on unobserved components time series models and the use of the Kalman

filter and smoothing (KFS) algorithms to extract the unobserved trends and seasonal

components of the center/log-range temperatures. We first describe the models used to

represent center/log-range temperatures at a given location and, second, the ML-DFM

designed to represent them at several locations simultaneously.

3.1 Univariate models: temperature intervals at a given loca-

tion

It is important to take into account that IVTS models used to represent and predict the

temporal evolution of minimum/maximum temperature should be restricted in such a way

that the predicted maxima and minima do not cross. Consequently, in order to avoid the

potential crossing of minimum and maximum temperatures, we follow González-Rivera,

Luo and Ruiz (2020) and model the system of center/log-range at a particular location.

Denote by Xt = (Ct, Rt)
′, the 2×1 vector of the center and log-range temperature observed

4Alternatively, Maia and de Carvalho (2011) propose using multilayer perceptone neural networks and
exponential smoothing for non-stationary IVTS, while Xiong, Bao and Hu (2014) and Xiong, Li and Bao
(2017) use support vector regression and compare forecasts obtained using several procedures, among
them smoothing and cointegrated VARs. Although the procedure proposed by these latter authors have
good performance in terms of the interval average relative variance, the computational effort is rather
heavy. Recently, Zhang et al. (2020) have also proposed a hybrid model combining cointegrated VAR
models with AI to model intervals of pork prices. Alternatively, He et al. (2021) propose modelling
non-stationary IVTS using Autoregressive Conditional Internal (ACI) models. However, these models
are not taking into account the strong seasonality observed in temperature data.
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at a particular location at time t, which is modelled as the sum of the vector of trends,

µt = (µ1t, µ2t)
′, the vector of seasonal components, γt = (γ1t, γ2t)

′, and the vector of

irregular components, εt = (ε1t, ε2t)
′. Consider the following bivariate Frequency-Specific

Basic Structural Model (FS-BSM), with stochastic trends and seasonal components

Xt = µt + γt + εt, (1a)

µt = µt−1 + βt−1 + ηt, (1b)

βt = βt−1 + ζt, (1c)

γt =
6∑
j=1

γ
(j)
t , (1d)

γ
(j)
t = γ

(j)
t−1cosλj + γ

∗(j)
t−1 sinλj + ω

(j)
t , (1e)

γ
∗(j)
t = −γ(j)t−1sinλj + γ

∗(j)
t−1 cosλj + ω

∗(j)
t , (1f)

where λj = πj
6

, j = 1, ..., 6, are the seasonal frequencies in radians and βt = (β1t, β2t)
′ is the

vector of time varying slopes of the trends. εt is assumed to be white noise with covariance

matrix Σε with the elements in the main diagonal, denoted by σ2
1ε and σ2

2ε, representing the

variances of the transitory component of the center and log-range, respectively. The off-

diagonal element of Σε, denoted by σ12ε, represents the covariance between the transitory

components of the center and log-range temperature. The vectors of noises of the levels,

ηt = (η1t, η2t), of the slopes, ζt = (ζ1t, ζ2t)
′, and of the seasonal components, ω

(j)
t =(

ω
(j)
1t , ω

(j)
2t

)
and ω

∗(j)
t =

(
ω
∗(j)
1t , ω

∗(j)
2t

)
, are also assumed to be white noises with covariance

matrices Ση, Σζ , Σ
(j)
ω and Σ

(j)
ω∗ , respectively. The notation for the elements of these

matrices and their interpretations are analogous to those used for the elements of Σε.

Note that γ∗t appears as a matter of construction and its interpretation is not particularly

important; see Harvey (1989) for a more detailed description. It is assumed that Σ
(i)
ω =

Σ
(i)
ω∗ and that all disturbances in the model, εt, ηt, ζt, ω

(j)
t , and ω

∗(j)
t are mutually and

serially uncorrelated at all lags and leads. Note that the covariances in the matrices Σε,Ση,

Σψ and Σ
(i)
ω being all equal to zero, implies that the center and log-range temperatures

can be modelled separately by fitting univariate FS-BSM models to each of them.

The univariate analogue of the FS-SBM in (1), which implies a seasonal component

with six different variances, is described in detail by Hindrayanto et al. (2013). The BSM
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popularized by Harvey (1989) is obtained when the variances of the seasonal shocks are

equal to each other, i.e. σ
2(j)
ω = σ2

ω, for j = 1, ..., 6. Finally, note that given the need of

parsimony, and in the context of a univariate FS-BSM, Hindrayanto et al. (2013) propose

to reduce the number of seasonal variances to two, which are denoted by σ2
I and σ2

II . In our

context, we reduce the number of seasonal covariance matrices to Σ
(I)
ω = Σ

(1)
ω and Σ

(II)
ω =

Σ
(2)
ω = ... = Σ

(6)
ω . The trigonometric specification of the seasonal component is rather

popular when modelling climate-related monthly data; see Campbell and Diebold (2005)

and Dupuis (2012, 2014) for applications modelling the seasonal pattern of temperatures

and Friedrich, Smeekes and Urbain (2020) and Friedrich et al. (2020) for seasonal patterns

of ethane emissions.

Model (1) allows both the trend and seasonal components of the center and log-range

to evolve stochastically. Furthermore, if σ2
ζ1

= 0 (σ2
ζ2

= 0), then the slope of the trend for

the center (log-range) is constant and, therefore, β1 = ... = βT = β. If further, σ2
η1

= 0

(σ2
η2

= 0), then the trend is deterministic. Similarly, if the variances of the seasonal

components, σ
2(I)
ω1 , σ

2(I)
ω2 , σ

2(II)
ω1 and σ

2(II)
ω2 are zero, then the seasonal components of the

center and log-range temperatures are, respectively, deterministic.

If the parameters of the FS-SBM model in (1) were known, the Kalman filter and

smoothing (KFS) algorithms can be implemented to extract one-step-ahead, filtered and

smoothed estimates of the levels and seasonal components of the center and log-range.5

However, the variances and covariances involved in model (1) are unknown and should

be estimated before the KFS algorithms can be implemented. The parameters can be

estimated by Maximum Likelihood (ML) based on the Kalman filter; see Harvey (1989)

for a detailed description.

As discussed above, one important debate when modelling temperatures is whether

trends are deterministic or stochastic. In the context of model ()1, testing for a determin-

istic trend can be carried out as proposed by Nyblom and Harvey (2000a). Different tests

can be implemented depending on the particular model assumed for the trend. First, as-

suming that there is not seasonal component and the irregular component is white noise,

5Note that an appropriately modified Kalman filter can also be implemented to IVTS as proposed by
Chen, Wang and Shieh (1997) and Ahn, Kim and Chen (2012). However, after transforming the interval
into center and log-range, we implement the standard Kalman filter; see the Supplementary Appendix
for details.
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if σ2
ζ = 0, i.e. the slope is constant, βt = β, ∀t, they propose testing for a deterministic

trend, i.e. H0 : σ2
η = 0, using the following statistic

RW =
1

T σ̂2
e

T∑
t=1

[
t∑

r=1

er

]2
, (2)

where et are the Ordinary Least Squares (OLS) residuals of a regression ofXt on a constant

and a deterministic time trend and σ̂2
e = 1

T

∑T
t=1 e

2
t . Under the null, if β = 0, RW has a

Cramer von Mises (CvM) distribution with one degree of freedom, while, if β 6= 0, then

it has a second-level CvM distribution. In this latter case, the statistic in (2) is denoted

as RWD. Furthermore, in the context of the Integrated Random Walk (IRW), i.e. when

σ2
η = 0, testing for a deterministic trend implies testing for H0 : σ2

ζ = 0. In this case,

Nyblom and Harvey (2000a) propose the following statistic

IRW =
1

T 4σ̂2
e

T∑
t=1

[
t∑

s=1

2∑
r=1

er

]2
. (3)

The critical values of the RW and IRW tests are reported by Harvey (2001). Note that, in

the case of the IRW test, convergence to the asymptotic critical values is relatively slow

and, consequently, using the asymptotic critical values can lead to the IRW test being

oversized.

If the transitory component, εt, is not white noise, then one can use the same tests

described above with et and σ̂2
e substituted by νt and σ̂2

ν , respectively, where νt are the

standardized one-step-ahead errors and σ̂2
ν is their sample variance; see Harvey (2001) for

a discussion.

Note that Nyblom and Harvey (2000a) point out that the tests above can be imple-

mented in models that contain a non-stationary seasonal component.

Finally, when testing for a deterministic seasonal component can be carried out using

the CvM seasonality test proposed by Harvey (2001) and Busetti and Harvey (2003).

The CvM test statistic can be constructed using the one-step-ahead prediction errors

from the model with parameters that are estimated under the null hypothesis. For H0 :

σ
2(j)
ω = 0, the statistic follows a CvM distribution with two degrees of freedom for j =

1, ..., 5 and with one degree of freedom for j = 6; see Harvey (2001) for the critical
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values. Furthermore, Hindrayanto et al. (2013) show that, in the model with two seasonal

variances, the test for H0 : σ
2(II)
ω = 0 leads to a CvM test with nine degrees of freedom.

3.2 Multi-level Dynamic Factor Models

Consider now that the center/log-range temperature have been observed at each moment

of time t at N locations. If the center and log-range temperatures at each location were

mutually uncorrelated, then one could model separatelly the system of centers and the

system of log-ranges. Consider, for example, the system of centers.6 Given that our main

interest is separating the common and heterogenous behaviour of the trends in the center

temperatures at different locations, we consider the deseasonalized centers.7 Denote by

Yt = (y1t, ..., yNt)
′ the N × 1 vector of deseasonalized centers. We follow Rodŕıguez-

Caballero and Caporin (2019) and propose an innovative multi-level DFM what allows

decomposing the factor structure into different levels, with some factors associated with

the full cross-section of variables (pervasive factors), some other factors impacting a speci

c subset of variables (non-pervasive factors), and other factors impacting several sub-

sets of variables (semipervasive factors). As proposed by Hallin and Liska (2011), we

determine the factor structure of the multilevel DFM by analysing the pairwise correla-

tions between the factors extracted from each subset of variables separately

Tests of common stochastic trends: Nyblom and Harvey (2000)

4 Temperature intervals: Empirical characteristics

In this section, we describe the data used in this paper as well as their main empirical

characteristics.

4.1 The data

One very popular data base for temperature related variables is the Climate Research

Unit gridded Time Series (CRU TS) maintained by the university of West Anglia, which

is corrected to avoid inhomogeneities; see Mitchell and Jones (2005) and Harris et al.

6A similar analysis can be carried out for the system of log-ranges.
7Each center is deseasonalized using the seasonal component estimated at each location separatelly.
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Figure 1: The Iberian Peninsula and Mediterranean islands belonging to Spain with
locations where minimum and maximum temperatures are observed marked with blue
bullets. The red bullets represent the locations of the main cities in Spain and Portugal,
which are the capital of their corresponding provinces.

(2020) for descriptions, Chang et al. (2020) for a recent application using this data base

and Wijngaard, Klein, Tauk and Können (2003) for a discussion about homogeneity in

European temperature series.8 Intervals of minimum (ymint ) and maximum (ymaxt ) temper-

atures (measured in centigrades) are observed monthly from January 1930 to December

2020 (T = 1092) in 68 locations in Spain.9 Figure 1 represents the Iberian Peninsula as

well as some islands in the Mediterranean sea belonging Spain and the locations selected

for the analysis.

To analyse the main empirical characteristics of the temperature intervals observed

in the Iberian Peninsula over the last and present centuries, we select four particular

locations, which represent four different climates. The first location selected is Barcelona,

a highly populated city situated at the Spanish Mediterranean coast, which obviously

8https://sites.uea.ac.uk/cru/data
9The minimum and maximum temperatures are monthly means of the individual daily mini-

mum and maximum temperatures. They are not the overall minimum or maximum temperatures
recorded each month. Furthermore, we have not considered temperatures in some locations in the
Atlantic Ocean because they were rather irregular. Similarly, we found some irregularities in data
recorded before 1930. Alternatively, one can use the database E-OBS provided by the European Cli-
mate Assessment under the Copernicus project of the European Commission with daily observations
since 1950; see, for example, Meng and Taylor (2022) for an application using the E-OBS data set,
which can be found at https://cds.climate.copernicus.eu/cdsap#!/dataset/insitu-gridded-observations-
europe?tab=overview. However, the E-OBS data base may have issues related with inhomogeneity.
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has a Mediterranean climate. The second location is Coruña, a small city laid at the

Atlantic Northwest Spanish coast, with an Atlantic climate. The third location considered

is Madrid, the largest city in Spain, laid in the center of the Iberian peninsula, with a

continental climate. Finally, we consider minimum and maximum temperatures in Seville,

in the south of Spain, which has the hottest summer in continental Europe among all cities

with a population over 100,000 people; see Figure ?? for a map of the Iberian Peninsula

and the localization of the four cities considered.10

4.2 Descriptive statistics of minimum/maximum temperature

Next, we describe the main statistical characteristics of minimum and maximum temper-

atures in the four selected locations in Spain, which are plotted at panels (a) and (b)

of Figure 2, respectively. Due to the strong seasonal pattern in monthly minimum and

maximum temperature, they are plotted using seasonal polar plots instead of the more

popular time plots.11 First, looking at the minimum temperature plotted in panel (a) of

Figure 2, we can conclude that the seasonal patterns observed in Barcelona and Seville are

very similar, having the largest seasonal variations. The smallest seasonal variations are

observed in Coruña. Second, Figure ?? shows that, as expected, the annual variations of

minimum temperatures are larger in the two coastal cities (Barcelona and Coruña) than

in the cities located in the interior of the Iberian Peninsula (Madrid and Seville); see also

the sample standard deviations of the annual variations reported in Table 1. Moreover,

Figure ?? also suggests the possibility of climate change in the four locations considered

with minimum temperatures being larger in more recent years than at the beginning

of the 20th Century. Similar conclusions are obtained when looking at the polar plots

corresponding to maximum temperatures plotted in Figure ??.

Note that, even if the interest is on modelling IVTS of minimum/maximum tempera-

ture, as mentioned above, they cannot be modelled directly as a IVTS without imposing

restrictions to avoid their potential crossing at particular moments of time. Consequently,

10Meng and Taylor (2022) also consider minimum and maximum temperatures in Madrid and Seville.
Instead of analysing Barcelona and Coruña, they consider Cáceres and Albacete. Furthermore, note that
they consider daily data, for a shorter period from 1951 to 2015.

11The programs needed to obtain the empirical results in this paper has been developed by the first
author in R.
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we also describe the main statistical properties of the center and log-range temperature,

Ct =
ymaxt +ymint

2
and Rt = ln(ymaxt − ymint ), respectively; see panels (c) and (d) of Figure

2. The main conclusions for center temperature are similar to those described above for

minimum/maximum temperatures. With respect to the log-range temperatures, we can

observe that the patterns in the four locations are rather different. First, note that Fig-

ure 2b suggests periodic heteroscedasticity with the variance of the shocks being larger in

winter than in summer months; see Dupuis (2014) for the same conclusion when looking

at minimum temperatures in Southwestern US and Meng and Taylor (2022) for minimum

and maximum temperatures in the four cities in Spain mentioned above. Also note that

this pattern is more pronounced in the cities located in the interior of the Iberian Penin-

sula than in those at the coast. With respect to Coruña, the dispersion is smaller than

in the rest of the locations but with a very large variability during the years analysed.

Finally, the dispersion has decreased in time in Barcelona while, in the other three cities,

it seems to increase over the years.

Figure 2: Seasonal polar plots of center and log-range temperature in Barcelona, Coruña,
Madrid and Seville.

(a) Center (b) Log-range

As mentioned, Figure 2 suggests the presence of possible trends and strong seasonal

patterns, some of which may have changed over the last century. Consequently, we analyse

the stationarity of the minimum and maximum temperature, as well as of their centres

and log-ranges. Table ?? reports the p-values of the Augmented-Dickey-Fuller (ADF)

for a unit root at the zero frequency in a model with deterministic trend and seasonal

dummies (Fuller, 1976, Dickey and Fuller, 1979, McKinnon, 1991, and Cheung and Lai,
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1995) together with those of the test for seasonal unit roots proposed by Dickey, Hasza

and Fuller (1984) in a model with seasonal dummies, both implemented to minimum and

maximum temperatures at each location. In both cases, the number of lags is 12. It is

important to note that the results in Ghysels, Lee and Noh (1994) show the validity of

the ADF test for a unit root at the zero frequency in the presence of seasonal dependence

as far as the appropriate autoregressive correction terms are augmented to the model.

Table ?? shows that, while the null hypothesis of a unit root at the zero frequency is

always rejected, a seasonal unit root is never rejected.12 There is an ongoing controversy

on the relative merits of various alternative unit root and cointegration tests with results

potentially different depending on the particular tests used; see, for example, Diebold

and Sehadji (1996) and Rao (2010) and the references therein. Kaufmann, Kauppi and

Stock (2010) and Kaufmann et al. (2013) also discuss about conflicting results on the

characteristics of the trends when analysing temperature.

Table 1 reports several descriptive statistics of the annual differences of the center and

log-range at each of the four locations. In particular, it reports the sample mean, stan-

dard deviation, skewness and kurtosis, the last two together with their p-values obtained

according to the results of Bai and Ng (2005). Table 1 also reports the p-values of the

Bai and Ng (2005) test for normality in the presence of temporally correlated data and

of the Box-Pierce test for joint serial uncorrelation of the first 12 lags.

Figure 3 plots the pairwise correlations among the centers and log-ranges of temper-

ature at all 68 locations in the Iberian Peninsula. it suggests that, at each location, the

center temperature and its log-range are not correlated.

As also observed in Figure 2, the log-range variability is larger in Coruña. Furthermore,

the log-range series show excess kurtosis.

The polar plots in Figure 2 and the sample moments in Table 1 illustrate climate

heterogeneity within Spain. However, some of the patterns can be common at the four

locations considered.

Finally, we analyse the presence of clusters among the centers and among the log-

12Note that using the HEGY test proposed by Hylleberg et al. (1990), with trend a seasonal dummies
under the null, the seasonal unit root is always rejected. These results are available upon request. In any
case, one should be careful about the results of the HEGY test; see, for example, the Monte Carlo results
by Rodrigues and Osborn (2010).
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Figure 3: Map of correlations between the centers and the log-ranges in the 68 locations
in the Iberian Peninsula.

18



Table 1: Descriptive statistics of annual differences of center and log-range temperature:
sample mean (Mean), standard deviation (St. dev.), skewness and kurtosis together with
the corresponding p-values of the Bai and Ng () tests of the last two quantities. p-values
of the normality test (BN) and of the Box-Pierce test for 12 lags (Q(12)) are also reported.

Barcelona Coruña Madrid Seville Barcelona Coruña Madrid Seville
Center Log-range

Mean 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00
St. dev. 1.62 1.52 1.50 1.42 0.10 0.20 0.12 0.11
Skewness 0.01 0.02 0.09 0.01 -0.05 -0.10 -0.26 -0.16

(0.12) (0.42) (0.12) (0.46) (0.74) (0.87) (0.97) (0.90)

Kurtosis 3.13 2.85 2.87 2.71 3.32 3.55 4.54 4.33
(0.27) (0.79) (0.77) (0.97) (0.12) (0.02) (0.00) (0.00)

BN 0.48 0.56 0.17 0.04 0.16 0.00 0.00 0.00
Q(12) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 4: Correlation maps of center temperatures (left) and map of the Iberian Peninsula
with the resulting clustes (right).

range temperatures. Figure ?? plot the correlation maps for each of them. Using the

complete linkage method for hierarchical clustering, which defines the distance between

two clusters as the maximum distance between their components, we can identify 5 clusters

in the center temperature and 3 in the log-ranges.
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Figure 5: Correlation maps of log-range temperatures (left) and map of the Iberian Penin-
sula with the resulting clustes (right).

5 Empirical modelling of center and log-range tem-

perature at selected locations in the Iberian Penin-

sula

In this section, we model the system of center/log-range temperature at four selected

locations in the Iberian Peninsula, namely, Barcelona, Coruña, Madrid and Seville.

5.1 Barcelona

Consider first the system of center and log-range temperature observed at Barcelona.

The results of fitting model (1a) are reported in the on-line Appendix and show that the

shocks of the trend, seasonal and irregular components of the center and log-range are

uncorrelated.13 Consequently, we fit separate DF-BSM to center and log-range.

The estimated parameters of model (1a) are reported in Table 2.14 We can observe

that the trend of the center temperature is represented by an integrated random walk

with σ̂2
η being approximately zero, implying a smooth evolution, while the trend of the

log-range has a constant slope equal to zero, implying that µt is a random walk. Figure 22

plots the estimated trends of center and log-range temperature in Barcelona together with

13All calculations are carried out by the R programming environment using the free KFAS library
developed by Helske (2017).

14Note that, based on previous analysis not reported to save space, the seasonal variances of the last
five frequencies are assumed to be equal.
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their 95% confidence intervals obtained using the MSEs delivered by the Kalman filter.

We can observe an increasing trend of the center temperature over the last 90 years with

changes in the slope. The center temperature at Barcelona starts around 15◦C in 1930

while the estimated underlying trend in December 2020 is 17.298◦C. Note that even if we

take into account the uncertainty in the estimated trend, the increase of 2 degrees in the

center temperature over the last 90 years is clearly significant. With respect to the slope

of the trend, we can observe that between 1950 and 1980, the slope was approximately

zero. However, since the 80’s, we observe an acceleration of the slope of the trend, which

stops during the first decade of the XXI century. This dessaceleration is in concordance

with the hiatus of average temperature found by Schmidt, Shindell and Tsigaridis (2014),

Pretis, Mann and Kaufmann (2015), Medhaug et al. (2017) and Miller and Nam (2020),

among others. However, the trend of center temperature plotted in Figure 22 shows a

recent acceleration since the second decade of the XXI Century. The estimated slope of

the trend in December 2020 is 0.004.

Looking at the estimated trend for the log-range temperature in Barcelona, we can

observe a level that evolves randomly over time. Note that the fact that the level of

log-range is non-stationary, implies that minimum and maximum temperatures are not

cointegrated.

When looking at the results reported in table 2 for the seasonal component, the first

frequency also shows a smooth temporal evolution over the observed period. Figure 22,

which plots the estimated seasonal component for the center temperature, shows a very

smooth evolution with the seasonal components being slightly stronger than before; see

alos the results for the other three cities considered en Figures 15, 13.

Finally, to assess the adequacy of the specification, Figure 23 plots the QQ plot and

estimated autocorrelations of the standardized residuals. Not significant deviation from

the normality hypothesis and 21. Significant first order autocorrelations with the auto-

correlations being around 0.2 for the center and 0.1 for the log-range. The specification

seems to be adequate.
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Figure 6: Estimated trend (top row) together with 95% confidence intervals, seasonal
(middle row) and irregular (bottom row) of center (left column) and log-range (right
column) temperature in Barcelona.

Figure 7: Estimated trend (top row) together with 95% confidence intervals, seasonal
(middle row) and irregular (bottom row) of center (left column) and log-range (right
column) temperature in Coruña.
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Figure 8: Estimated trend (top row) together with 95% confidence intervals, seasonal
(middle row) and irregular (bottom row) of center (left column) and log-range (right
column) temperature in Madrid.

Figure 9: Estimated trend (top row) together with 95% confidence intervals, seasonal
(middle row) and irregular (bottom row) of center (left column) and log-range (right
column) temperature in Seville.
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Table 2: Estimation results of separate state space models fitted to center and log-range
temperature in four locations in the Iberian Peninsula: i) Estimated variances together

with statistics of tests for deterministic components: H0I : σ
2(I)
ω = 0 and H0II : σ

2(II)
ω =

0; ii) Estimated components at the end of the sample period together with standard
deviations in parenthesis.

Center Log-range Center Log-range
Barcelona Coruña

σ2
ε 1.264 0.004 1.141 0.018
σ2
η 1.14× 10−16 4.20× 10−6 1.50× 10−16 5.12× 10−5

σ2
ζ 7.85× 10−8 1.28× 10−33 1.24× 10−7 1.62× 10−33

σ
2(I)
ω 3.2× 10−4 7.53× 10−28 3.5× 10−4 9.22× 10−28

H0I 0.289 1.345∗∗∗ 0.151 0.798∗∗∗

σ
2(II)
ω 6.6× 10−25 6.26× 10−168 9.8× 10−25 2.11× 10−167

H0II 3.616∗∗∗ 1.373 2.292∗ 2.762∗∗

µT 17.294 2.198 14.301 2.176
(0.167) (0.170)

βT 0.004 3.15× 10−5 0.004 0.0001
(0.003) (0.003)

Madrid Seville
σ2
ε 1.111 0.007 1.001 0.006
σ2
η 1.52× 10−16 5.84× 10−6 2.03× 10−16 6.31× 10−5

σ2
ζ 1.13× 10−7 1.41× 10−33 1.10× 10−7 1.36× 10−33

σ
2(I)
ω 6.3× 10−4 8.14× 10−28 7.58× 10−4 7.89× 10−28

H0I 0.171 0.618∗ 0.112 1.479∗∗∗

σ
2(II)
ω 9.81× 10−25 1.00× 10−167 1.45× 10−24 8.27× 10−164

H0II 2.690∗ 1.305 2.326∗∗ 3.029∗∗∗

µT 15.889 2.483 18.896 2.572
(0.167) (0.160)

βT 0.003 0.0001 0.002 0.0001
(0.003) (0.003)

*: significant at 10% level; **: significat at 5% level; *** significant at 1% level.

6 Some conclusions

We observe that the shapr of the trends and volatilities of maximum and minimum tem-

peratures can be different in different locations of the Iberian Peninsula. The trends are

stochastic with positive slopes.
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Supplementary Material

A STATE SPACE MODEL

Consider model (1) for the center and log-range temperature. This model can be written

in state space form as follows

Xt = Zαt + εt, (A.1a)

αt = Tαt−1 + ηt, (A.1b)

where αt =
(
µ1t, µ2t, β1t, β2t, γ

(1)
1t , γ

(1)
2t , γ

∗(1)
1t , γ

∗(1)
2t , γ

(2)
1t , γ

(2)
2t , γ

∗(2)
1t , γ

∗(2)
2t ..., γ

(6)
1t , γ

(6)
2t

)′
is the

26× 1 vector of unobserved states, the 2× 26 observation matrix Z is given by

Z =
[
1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0
0 1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1

]
, (A.2)

while the 26× 26 transition matrix T is given by

T =



1 0 1 0 0 0 0 0 0 0 0 0 ··· 0 0
0 1 0 1 0 0 0 0 0 0 0 0 ··· 0 0
0 0 1 0 0 0 0 0 0 0 0 0 ··· 0 0
0 0 0 1 0 0 0 0 0 0 0 0 ··· 0 0
0 0 0 0 cosλ1 0 sinλ1 0 0 0 0 0 ··· 0 0
0 0 0 0 0 cosλ1 0 sinλ1 0 0 0 0 ··· 0 0
0 0 0 0 −sinλ1 0 cosλ1 0 0 0 0 0 ··· 0 0
0 0 0 0 0 −sinλ1 0 cosλ1 0 0 0 0 ··· 0 0
0 0 0 0 0 0 0 0 cosλ2 0 sinλ2 0 ··· 0 0
0 0 0 0 0 0 0 0 0 cosλ2 0 sinλ2 ··· 0 0
0 0 0 0 0 0 0 0 −sinλ2 0 cosλ2 0 ··· 0 0
0 0 0 0 0 0 0 0 0 −sinλ2 0 cosλ2 ··· 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 0 0 ··· cosλ6 0
0 0 0 0 0 0 0 0 0 0 0 0 ··· 0 cosλ6.


(A.3)

Finally, the covariance matrix of εt is assumed to be constant over time and given by

H =

[
σ2
ε1 σε12

σε12 σ2
ε2,

]
(A.4)

while the covariance matrix of ηt is given by

Q =



σ2
ν1 σν12 0 0 0 0 0 0 0 0 0 0 ··· 0 0

σν12 σ2
ν2 0 0 0 0 0 0 0 0 0 0 ··· 0 0

0 0 σ2
ζ1 σζ12 0 0 0 0 0 0 0 0 ··· 0 0

0 0 σζ12 σ2
ζ1 0 0 0 0 0 0 0 0 ··· 0 0

0 0 0 0 σ2
ω1 σω12 0 0 0 0 0 0 ··· 0 0

0 0 0 0 σω12 σ2
ω2 0 0 0 0 0 0 ··· 0 0

0 0 0 0 0 0 σ2
ω1 σω12 0 0 0 0 ··· 0 0

0 0 0 0 0 0 σω12 σ2
ω2 0 0 0 0 ··· 0 0

0 0 0 0 0 0 0 0 σ2
ω1 σω12 0 0 ··· 0 0

0 0 0 0 0 0 0 0 σω12 σ2
ω2 0 0 ··· 0 0

0 0 0 0 0 0 0 0 0 0 σ2
ω1 σω12 ··· 0 0

0 0 0 0 0 0 0 0 0 0 σω12 σ2
ω2 ··· 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0 0 0 ··· σ2

ω1 σω12
0 0 0 0 0 0 0 0 0 0 0 0 ··· σω12 σ2

ω2.



(A.5)
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Figure 10: Estimated trend (top row), seasonal (middle row) and irregular (bottom row)
of center (left column) and log-range (right column) temperature in Barcelona.

B Joint modelling of center and log-range temperature at se-

lected locations of the Iberian Peninsula

B.1 Barcelona

Table 3: Estimation results of the joint state space model fitted to maximum and minimum
temperatures in four locations in the Iberian peninsula.

Center Log-range Cov Corr Center Log-range Cov Corr
Barcelona Coruña

Measurement 1.302 0.005 0.015 0.186 1.096 0.017 0.021 0.154
Level 9.29×10−23 2.48 ×10−5 1.21 ×10−16 0.003 7.12× 10−14 5.67× 10−5 −5.65× 10−13 -0.000
Slope 1.92 ×10−36 1.60 ×10−10 1.73 ×10−23 0.987 8.33× 10−8 1.40× 10−11 −6.11× 10−10 -0.566
Seasonal 1 1.67 ×10−4 1.16 ×10−6 1.62 ×10−7 0.012 3.99× 10−7 3.75× 10−6 −1.34× 10−9 -0.001
Seasonal 2 1.47 ×10−40 1.57 ×10−10 1.52 ×10−25 1.000 1.50× 10−44 4.48× 10−12 −2.59× 10−28 -0.999

Madrid Seville
Measurement 1.062 0.006 0.011 0.138 0.979 0.006 0.004 0.052
Level 1.47× 10−19 1.60× 10−5 2.81 ×10−16 0.004 1.47 ×10−19 3.39 ×10−5 1.07 ×10−14 0.005
Slope 9.99× 10−8 2.78 ×10−10 5.19× 10−9 0.98 1.51 ×10−7 7.89 ×10−10 1.09 ×10−8 0.999
Seasonal 1 4.25× 10−4 2.07 ×10−6 3.39 ×10−7 0.011 3.10× 10−4 1.45× 10−6 4.91× 10−7 0.023
Seasonal 2 3.29× 10−33 2.70 ×10−10 9.42 ×10−22 0.999 4.45× 10−36 7.78× 10−10 5.89× 10−23 1.002

B.2 Coruña

B.3 Madrid

Table ?? reports the parameter estimates obtained when model (1) is fitted to the center

and log-range temperature system in Madrid. The estimates reported in Table ?? imply

that σ̂2
η1

is approximately zero while σ̂2
ψ1

is small. Consequently, the center temperature
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Figure 11: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Barcelona: Q-Q plot (left column) and auto-
correlations (right column).

Figure 12: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Barcelona: Q-Q plot (left column) and auto-
correlations (right column).
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Figure 13: Estimated trend (top row), seasonal (middle row) and irregular (bottom row)
of center (left column) and log-range (right column) temperature in Coruña.

Figure 14: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Coruña: Q-Q plot (left column) and autocor-
relations (right column).
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Figure 15: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Coruña: Q-Q plot (left column) and autocor-
relations (right column).

can be well represented by a Integrated Random Walk according to which the trend is

smoothly evolving over time. Figure 16, which plots the estimated level, illustrates this

smooth evolution of the trend of center temperature. Furthermore, Table ?? shows that

σ̂2

ω
(1)
1

is rather small while σ̂2

ω
(2)
1

is approximately zero. These estimates are reflected in

the very smooth evolution of the seasonal component of center temperature observed in

Figure 16. Figure 17, which plots the QQ plots and estimated autocorrelations of the

corresponding standardized residuals, does not show any sign of misspecification.

When looking at the results corresponding to the log-range temperature in Madrid,

Table ?? shows that all the estimated variances, although small, imply non-negligible

signal-to-noise ratios. Therefore, both the trend and seasonal components of log-range

temperature in Madrid are stochastic; see also their estimates plotted in Figure 16. The

diagnosis of the standardized residuals show that, although mostly uncorrelated, they are

characterized by a distribution with heavy tails.

Finally, a final remarkable result observed in Table ?? is that the estimated covariances

between the shocks of the center and log-range temperature imply correlations close to

zero. Note that although the correlations between the shocks to the slopes of the center

and log-range are close to 1, this is due to the extremely small estimated variances. The

same happens when looking at the correlation between the shocks to the first seasonal

frequency of the center and log-range temperature. An important consequence of this

result is that the center and log-range temperature can be modelled separately.

B.4 Seville

B.5 ANALYSIS FROM 1980 TO 2020
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Figure 16: Estimated trend (top row), seasonal (middle row) and irregular (bottom row)
of center (left column) and log-range (right column) temperature in Madrid.

Figure 17: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Madrid: Q-Q plot (left column) and autocor-
relations (right column).
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Figure 18: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Madrid: Q-Q plot (left column) and autocor-
relations (right column).

Figure 19: Estimated trend (top row), seasonal (middle row) and irregular (bottom row)
of center (left column) and log-range (right column) temperature in Seville.
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Figure 20: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Seville: Q-Q plot (left column) and autocor-
relations (right column).

Figure 21: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Seville: Q-Q plot (left column) and autocor-
relations (right column).
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Figure 22: Estimated trend (top row), seasonal (middle row) and irregular (bottom row)
of center (left column) and log-range (right column) temperature in Barcelona.

Figure 23: Diagnostics of standardized residuals of the SSM model for center (top row)
and log-range (bottom row) temperature in Barcelona: Q-Q plot (left column) and auto-
correlations (right column).
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Table 4: Estimation results of the state space model fitted to center and log-range tem-
peratures in four locations in the Iberian peninsula observed from 1980.

Center Log-range Covariance Correlation Center Log-range Covariance Correlation
Barcelona Coruña

Measurement 1.252 0.005 0.017 0.215 1.148 0.019 0.027 0.183
Level 3.32×10−6 2.04 ×10−7 4.94 ×10−8 0.060 2.16× 10−4 4.33× 10−7 2.33× 10−6 0.241
Slope 6.89 ×10−7 2.10 ×10−9 2.25 ×10−8 0.59 4.33× 10−10 2.51× 10−8 3.30× 10−9 1.001
Seasonal 1 3.62 ×10−4 3.53 ×10−8 5.16 ×10−7 0.144 4.76× 10−4 3.46× 10−6 2.59× 10−8 0.001
Seasonal 2 1.25 ×10−12 7.36 ×10−10 3.04 ×10−11 0.363 1.30× 10−13 5.71× 10−11 2.51× 10−8 -

Madrid Seville
Measurement 1.000 0.008 0.016 0.925 0.006 0.010
Level 4.61× 10−7 8.79× 10−6 7.37 ×10−6 3.38 ×10−6 4.82 ×10−10 5.14 ×10−8

Slope 7.14× 10−11 1.18 ×10−8 9.17× 10−10 8.88 ×10−5 1.24 ×10−9 6.14 ×10−10

Seasonal 1 8.73× 10−4 2.49 ×10−6 3.21 ×10−6 1.72× 10−3 1.36× 10−6 1.16× 10−6

Seasonal 2 7.15× 10−12 1.18 ×10−8 2.90 ×10−10 1.88× 10−12 7.82× 10−10 3.84× 10−11
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