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Abstract

Agents with independent risks (regions) often create unions and delegate re-
distributive power to a central institution (center) that provides risk-sharing through
costly transfers. However, there is the risk that regions free-ride on each other; this
risk may be exacerbated when the center cannot commit to future policies. We study
a differential game of two regions that make savings decisions and a benevolent cen-
ter that sets transfers but lacks commitment. One region always ends up bankrupt and
the center provides a bailout: as the poor regions enters bankruptcy, there is an up-
ward jump in transfers to the poor region that coincides with a downward jump in the
poor region’s consumption. Delegation to a center is Pareto-improving provided that
the center’s welfare weights reflect initial wealth differences between regions. How-
ever, once asymmetries in regions’ wealth and the center’s welfare weights become
large, dynamics become unstable, thus hastening impoverishment and bail-outs.
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1 Introduction
There is a number of economic situations in which agents face independent risks, giving
rise to welfare gains from risk-sharing through transfers from lucky to unlucky agents.
However, the prospect of such transfers usually entails moral hazard: agents may under-
invest, or provide low effort, when promised insurance transfers. In the face of such
situations, agents often create unions and delegate re-distributive power to a central in-
stitution (center). Some examples are i) the central government in fiscal federation of
regions (our main application), ii) the chief in a village of farmers, iii) the household head
in a family, or iv) the headquarter of a holding firm. While federal countries will be our
main application in this article, it should be obvious how to interpret our results in other
contexts.

Within federal states, and also within political unions of countries such as the Euro-
pean Union, there exists a tension between fiscal decentralization and sustainable borrow-
ing. When regions have fiscal independence, they have incentives to over-borrow and to
free-ride on the other members of the union. After all, the center will be tempted to bail
out regions in poor financial health. Recognizing these perverse incentives, centers often
announce that there won’t be future bail-outs and create rules that are supposed to rule
them out. However, when push comes to shove, such pre-commitments are often scrapped
and regions in trouble are eventually rescued.

In this paper, we provide a dynamic model of federations that captures these inter-
actions. We study a differential game of two regions that make savings decisions and a
central authority that sets (costly) transfers between the regions. We reduce the dimen-
sionality of the state space to the share of wealth held by the first region, exploiting ho-
mogeneity. We characterize how different transfer schedules distort the regions’ savings
decisions and lead to inefficiency in Markov-Perfect Equilibria.

We find that one region always ends up bankrupt and the center provides what resem-
bles a bailout (our main result): as the poor region enters bankruptcy, there is an upward
jump in transfers to the poor region that coincides with a downward jump in the poor
region’s consumption. This allocation is inefficient, but it is the only stable arrangement
close to the poor region’s constraint. We provide a novel cost-benefit interpretation of
the value-matching conditions at the constraint in a limit game. The limit-game analysis
shows that for the poor region, a discontinuous consumption path is optimal since the cen-
ter’s bail-out adds an additional disincentive to save, making earlier bankruptcy optimal.
For the center, an upward jump in transfers at the bail-out is optimal for the following
reason: Before the bail-out, the center takes the poor region’s consumption as given; once
the poor region hits the constraint, however, the center controls the poor region’s con-
sumption, thus giving it an additional motive to tax the rich region and prop up the poor
region’s consumption. In the center’s eyes, the poor region consumes too much just before
the bail-out, providing a further motive to hasten the bail-out by reducing transfers.

Our setting provides a theory of fiscal delegation. In a numerical exercise, we ask
under which conditions regions would prefer to delegate power to a center over staying in
autarky. We find that for any distribution of initial wealth between regions, there exists a
range of center’s welfare weights that make it optimal for both regions to join the union.
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The more unequal the initial wealth distribution, the more the center’s weights have to
tilt towards the rich/large region. This is against conventional wisdom, since it suggests
that even in very asymmetric situations delegation to a center can be Pareto-improving.
However, we also find that a tilted center is detrimental to stability in the following sense.
When the center’s weights on regions are equitable, there are stable dynamics on a large
interval of the state space and wealth shares tend to equalize. However, this interval with
stable dynamics disappears once the center’s weight tilts too much in favor of one region,
thus making impoverishment and a quick bail-outs more likely. Also, the inefficiency at
the bail-out is exacerbated: we find that both i) percentage decrease in the poor region’s
consumption and ii) the percentage increase in transfers at the bail-out are higher the
lower the center’s weight on the small/poor region is.

We carry out our analysis in continuous time, which has the main advantage that we
can use first-order conditions for the timing decision of the bailout. It should be mentioned
here that the usefulness of continuous-time games has been challenged by Simon and
Stinchcombe (1989); in a nutshell, the reason is that there is no notion of a ”last period”,
e.g. when constructing trigger strategies. Since we consider Markovian strategies as a
function of a joint state, the same line of defense applies as in Sannikov (2007), who
argued that the pitfalls of continuous-time games are circumvented by studying public
perfect equilibria (in which players’ strategies are functions of the public history of the
game).

The literature in political economy has studied dynamic models of federations, but has
focused on the allocation of federal spending to different goods rather than on regions’
savings decisions. Prominent examples are Battaglini and Coate (2007) and Battaglini
and Coate (2008), who study a dynamic political-economy model in which a central leg-
islature chooses expenditures on a productive public good versus inefficient pork-barrel
policies.

Furthermore, a recent literature on borrowing crises in currency unions relates to our
work. Our theory shares with this literature the prediction that regions have incentives
to under-save. Whereas this literature focuses on monetary policy (which we are silent
upon), our work puts the center’s commitment problem center-stage. Aguiar, Amador,
Farhi, and Gopinath (2015) find, as we do, that regions under-save, providing a rationale
for debt ceilings. Similar results were obtained earlier by Chari and Kehoe (2007) and
Chari and Kehoe (2008). Farhi and Werning (2017) show that there is a role for fiscal
intervention by the center (as there is in our setting), but they do not investigate lack of
commitment.

The literature on endogenous sovereign default has recently shown interest in bail-
outs, specifically in IMF interventions. Fink and Scholl (2016) find that IMF bailouts
have avoided sovereign defaults in the short-run but at the cost of increased sovereign risk
in the future. They model bail-outs as an exogenously-given arrangement, whereas we
endogenize the center’s decision. Also, we point out that in their model, a bailout means
an alternative source of financing with some conditionality attached, whereas we define
it as a jump discontinuity in transfers. Other papers on this front include Roch and Uhlig
(2018) and Boz (2011).

Finally, our model can be seen as is yet another instance of a second-best risk-sharing
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mechanism. The seminal contributions in this literature are Thomas and Worrall (1988)
and Kocherlakota (1996), who showed that lack of commitment entails incomplete insur-
ance. Ábrahám and Laczó (2018) extend the basic setting by a public storage technology,
thus studying a similar environment to ours. We find that delegation to a center provides
more insurance than is possible in Ábrahám and Laczó (2018): Our center can provide
insurance to an agent who is stuck with zero output forever, whereas limited commitment
rules out insurance in this situation (since the rich agent would leave the contract). Sim-
ilarly related is Attanasio and Pavoni (2011), who study market insurance under hidden
effort and hidden savings. Our results, as theirs, imply excess smoothness of consumption
(i.e. agents’ consumption does not react one-for-one to permanent-income shocks). How-
ever, in their setting storage is not used by agents in equilibrium, whereas in our setting
it is. Finally, our bail-out result, accompanied by an inefficient consumption path of the
poor region, is echoed in the altruism models of Barczyk and Kredler (2014a) and Bar-
czyk and Kredler (2014b), who study a model of two agents with altruistic preferences
that provide transfers to each other.

The rest of the article is structured as follows. Section 2 introduces our model and
Section 3 establishes some preliminary results that make the model tractable. Section 4
studies the case of costly redistribution and establishes the main result on bail-outs. Sec-
tion 5 studies the case in which redistribution is costless. Section 6 concludes, discussing
potential extensions to quantitative models.

2 Model

2.1 Physical environment
We consider an economy with three agents in continuous time, t ∈ [0,∞). There are two
regions and a center.1 We denote variables concerning Region 1 by plain letters (at, ct
etc.) and variables concerning Region 2 with primes (a′t, c

′
t etc.).

Laws of motion for regions’ assets. Each region possesses a stock of a productive
resource (the asset), denoted by at and a′t respectively.2 Assets grow at an exogenous
rate ρ > 0. At each t, the region decides on its flow consumption, ct ≥ 0, and is required
to make a transfer flow, τt, which the center sets. The transfer τt can be positive, in which
case it amounts to a tax, or negative, in which case it amounts to a subsidy. Furthermore,
there are Brownian shocks to the asset, giving rise to the flow budget constraints

dat = (ρat − ct − τt)dt+ s(at, a
′
t)dBt, [2.1]

da′t = (ρa′t − c′t − τ ′t)dt+ s(a′t, at)dB
′
t, [2.2]

where Bt and B′
t are uncorrelated Wiener Processes. The function s(·, ·), specified below,

determines the volatility of the shocks. The regions are subject to the natural borrowing

1Our language here always refers to the example of a fiscal federation; it should be clear how to apply
the model to other contexts, such as those mentioned in Section 1.

2In reality, we interpret at as the entirety of the region’s productive resources plus assets minus debt.
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limits

at ≥ 0, a′t ≥ 0 for all t. [2.3]

Volatility. We assume that volatility is a proportional to a geometric average between
the region’s own wealth and total wealth in the economy, At ≡ at + a′t, i.e.

s(a, a′) = σ
√
a
√
a+ a′, [2.4]

where σ > 0 is a parameter. This specification has two desirable features. First, it
removes portfolio effects in the social planner’s problem: A planner facing this type of
shocks has no preference over how total wealth is allocated between the two regions. This
is because aggregate risk only depends on total wealth At in the economy, but not on how
it is distributed, since Var(dAt) = Var

(
σ
√
at
√
AtdBt + σ

√
a′t
√
AtdB

′
t

)
= σ2A2

tdt.. A
second advantage of our specification is that it removes any systematic drift that shocks
have on wealth shares of the two regions, as will be evident from Eq. [3.4].3

Redistribution by the center. To simplify our analysis, we assume that the center can-
not save; it only re-distributes resources between the two regions. Thus at each t, one out
of τt and τ ′t is positive and the other negative. To allow for costs to this re-distributive
process, we specify the center’s flow budget constraint as

X

(
τt
Yt

)
Yt +X

(
τ ′t
Yt

)
Yt = 0, [2.5]

where Yt ≡ ρAt denotes total output in the economy and where X(·) is a twice differ-
entiable function that satisfies X(τ̃) = τ̃ for all τ̃ ≤ 0, X ′(0) = 1, and X ′′(τ̃) ≤ 0 for
all τ̃ > 0. The form of the budget constraint [2.5] entails that re-distributing the same
fraction of output costs the same share of output irrespective of the size of the economy.

In our main application (fiscal federations), it is reasonable to assume that redistribu-
tion is costly, as there are dead-weight losses to taxation (i.e. a Laffer Curve) and political
costs to re-distribution between regions. Our baseline assumption, invoked in Section 4,
is thus

Assumption 1 (Costly redistribution). X ′′(τ̃) < 0 for all τ̃ > 0 and lim
τ̃→∞

X ′(τ̃) = 0.

Section 5 briefly summarizes our results under the alternative assumption that trans-
fers are costless; the mathematicals details for this case are given in the Appendix 5.4

3We have also considered generalized geometric averages, i.e. s(a, a′) = σaξ(a+ a′)1−ξ for ξ ∈ [0, 1].
The case ξ = 1 corresponds to (at, a

′
t) following geometric Brownian Motions. Many of our results still

go through. However, the construction of smooth equilibria mentioned in Section 5 fails since these rely on
the center being indifferent about the distribution of wealth.

4We allow for mass transfers (i.e. a transfer that generate a discontinuity in the asset’s trajectory) when
redistribution is costless. Standard arguments imply that the center should not use mass transfers when
redistribution is costly.
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Figure 1: Tax distortions

In our numerical examples, we use the following parametric specification:

X(τ̃) =

{
τ̃ if τ̃ ≤ 0,
(1+ατ̃)1−κ−1

α(1−κ)
if τ̃ > 0.

[2.6]

Here, κ ∈ [0, 1) governs the curvature of X(·) and α > 0 determines how fast revenues
decrease when taxes increase. Figure 1 plots the function X(τ̃) and shows the possibility
frontier that X(·) induces for different tax-subsidy combinations. The plots are in terms
of tax shares τ̃ ≡ τ/Y and τ̃ ≡ τ ′/Y , i.e. they depict transfers as a fraction of aggregate
output. For κ = 0, there are no distortions and taxes τt are transformed one-for-one into
subsidies to the other region, i.e. −τ ′t = τt, corresponding to the 45-degree lines in the
graphs. For κ > 0, Ass. 1 holds and resources are lost in the redistributive process; the
higher taxes are, the lower is the marginal revenue, X ′(τ̃) = (1+ατ̃)−κ. In the example in
the graph, imposing a tax of 50% of total output on a region results leaves 45% of output
to give to the other region. The decreasing marginal return to taxation is also reflected in
the convex shape of the possibility frontier in the right graph.

Preferences. All agents maximize expected utility and discount at the common rate ρ.5

Regions’ instantaneous utility over consumption is assumed to be u(c) = ln(c).6 7 The
center has instantaneous utility

uc(c, c′) = µu(c) + (1− µ)u(c′), [2.7]

5For parsimony, we assume that the return to assets equals agents’ discount rates. Our results also
go through when specifying a return r ̸= ρ: Equilibrium strategies do not change, since substitution and
income effects cancel when preferences are logarithmic and income is linear in the state variable.

6The choice of log-utility is not essential for our analysis; what is essential is that utility is (i) increasing,
(ii) concave, (iii) homothetic, and that (iv) it satisfies the Inada condition limc→0 u

′(c) = ∞.
7For simplicity, we assume that each region consists of a measure 1 of households. It is easy to accom-

modate regions of varying size, re-parameterizing the weight µ = [µNN ]/[µNN + (1 − µN )(1 − N)],
where N and N ′ are the measure of households in each region and µN is the weight that planner puts on
Region 1 household.
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where µ ∈ [0, 1] is an exogenously-given weight the center places on Region 1. While
we specify the center’s criterion in an ad-hoc fashion, some political-economy models
with probabilistic voting endogenously generate decision-making according to a utilitar-
ian welfare criterion as in [2.7], see the overview by Persson and Tabellini (2002), Sec-
tion 9.

Timing and information structure. We assume the following timing protocol within
an instant [t, t+ dt):

1. (a) All agents observe current asset positions (at, a′t).

(b) The center sets transfers (τt, τ
′
t) subject to its budget constraint [2.5]. The

center cannot tax broke regions, i.e. we require that τt ≤ 0 if at = 0 and
τ ′t ≤ 0 if a′t = 0. Both τt and τ ′t are public information.

2. (a) Regions’ interim wealth is then: ât = at − τtdt and â′t = a′t − τ ′tdt.

(b) Regions choose consumption rates ct and c′t (observable only by themselves),
subject to the requirement that their consumption expenditures over the inter-
val do not exceed interim wealth:

ctdt ∈ [0, ât] , c′tdt ∈ [0, â′t]. [2.8]

3. Finally, flow utility is collected by all agents, returns to the assets accrue, and wealth
shocks are realized, giving rise to the following asset positions in the next instant:

at+dt = at + (ρat − ct − τt)dt+ s(at, a
′
t)ϵt

√
dt,

a′t+dt = a′t + (ρa′t − c′t − τ ′t)dt+ s(a′t, at)ϵ
′
t

√
dt, [2.9]

where ϵt, ϵ
′
t ∼ N(0, 1) are standard normal shocks that are independent across re-

gions and time. We assume that ϵt is only observable to Region 1 and that ϵ′t is only
observable to Region 2.

We study the limit of the game as dt approaches zero. It is important to note here that as
dt ↓ 0, a region will only face a restriction on its consumption flow once its beginning-
of-period asset stock at is exactly zero. A region with a positive asset stock at > 0 that
faces a fixed transfer flow τt = τ̄ > 0, can choose the consumption flow ct arbitrarily
large as we let dt → 0, as can readily be seen from [2.8].8 If at = 0, however, the center
can restrict Region 1’s consumption flow, i.e. it must hold that ctdt ≤ −τtdt. This point
in the state space will be of particular interest since it is the only state in which the center
can exert direct control on a region’s consumption. In summary, the restrictions on the
agents’ actions implied by our timing protocol are:

If at = 0 : τt ≤ 0 and ct ≤ −τt,

if a′t = 0 : τ ′t ≤ 0 and c′t ≤ −τ ′t . [2.10]
8This is not true any more if the center removes a lump sum from the stock at, as can occur when

redistribution is costless; in this case the term τtdt does not vanish.
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2.2 Agents’ problems and equilibrium definition
Given the information structure just laid out, the center faces an inference problem that
is familiar from principal-agent settings with moral hazard: A bad outcome at+dt for
Region 1 may have come about by reckless behavior (Region 1 choosing a large ct), but
may just as well be the result of bad luck (a low realization of dBt). It is thus natural
to assume that the center can only condition its actions on the current asset positions
(at, a

′
t) in the first stage. Formally, we restrict attention to Markov-perfect equilibria,

i.e. equilibria in which the center can only condition its strategy on the payoff-relevant
state (at, a′t).

9 Also, since regions’ feasible sets are affected by the center’s transfers once
they are broke, region’s policies must be made contingent both on (at, a

′
t) and on the

center’s action in the first stage, i.e. c and c′ may in general be functions of (at, a′t, τt, τ
′
t).

In Section 3.2 we derive results that allow us to restrict attention to (at, a
′
t) when both

regions have positive wealth.
We are now prepared to write down the problem faced by the regions and the center:

Region’s problem. Given transfer policies {τ(at, a′t), τ ′(at, a′t)} by the center and a
consumption policy c′(at, a

′
t; τt, τ

′
t) by Region 2, Region 1 chooses a consumption rule

c(at, a
′
t; τt, τ

′
t) to solve:

v(a0, a
′
0; τ0, τ

′
0) = max

c(·)
E0

∫ ∞

0

e−ρtu (c(at, a
′
t; τt, τ

′
t)) dt [2.11]

s.t. [2.1], [2.2], and [2.10], , a0, a
′
0 given.

First, note here that we do not impose the borrowing limit at ≥ 0 as a separate state
constraint since it is implied by the policy constraint [2.10]. Second, note that we require
the region to specify an optimal policy in response to any possible policy (τt, τ

′
t) that the

center may choose in the first stage of the game in each instant, i.e. we require Region 1 to
specify its best response in each subgame in Stage 2 of the instantaneous game; this will
turn out to be key to have well-defined best-response problem for the center. Region 2’s
problem is analogous to [2.11], making the obvious adjustments.

Center’s problem. Given regions’ policy rules {c(a, a′; τ, τ ′), c′(a, a′; τ, τ ′)}, the center
chooses policies {τ(a, a′), τ ′(a, a′)} to solve

w(a0, a
′
0) = max

{τ(·),τ ′(·)}
E0

∫ ∞

0

e−ρtuc
(
c(at, a

′
t; τt, τ

′
t), c

′(at, a
′
t; τt, τ

′
t)
)
dt [2.12]

s.t. [2.1], [2.2], [2.5] and [2.10], a0, a
′
0 given.

Equilibrium definition. The definition of equilibrium is then:

Definition 1. A Markov-perfect equilibrium (MPE) is a set of value functions {v, v′;w}
and policy functions {c, c′; τ, τ ′} such that:

9We note here that our results also characterize the Markov-perfect equilibria for the full-information
environment, i.e. one where the center is able to observe regions’ past consumption decisions.
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1. Given federal policies {τ, τ ′} and Region 2’s policy c′, {c, v} solve Region 1’s prob-
lem, [2.11].

2. Given {τ, τ ′} and c, {c′, v′} solve Region 2’s problem, i.e. the analog of [2.11] for
Region 2.

3. Given regions’ policies {c′, c}, {τ, τ ′, w} solve the federal government’s problem, [2.12].

In general, we restrict attention to equilibria with value functions that are smooth
(at least twice differentiable) on the interior of the state space, which is natural since
Brownian Motion is a strong smoother. We do allow for discontinuous policies at the
borrowing constraints, however, where the shock volatility is zero.

3 Preliminary results
In this section, we derive some preliminary results that are essential to make the problem
tractable. The first result allows us to reduce the state to one variable under a mild homo-
geneity assumption on strategies, invoking homothetic utility and linear returns to assets.
The second result allows us to focus on the Stage-1 state (a, a′) instead of interim assets
(â, â′) in Stage 2 of the instantaneous game, at least in the interior of the state space.
We then proceed to study two important benchmark allocations (efficiency and wealth-
pooling), showing that efficient allocations cannot be supported generically, even when
the center can commit to policies.

3.1 Exploiting homogeneity
Change of variables. We first define a new pair of state variables,

At = at + a′t , Pt =
at

at + a′t
. [3.1]

Here, At is total wealth in the economy and Pt is the wealth share of Region 1. Further-
more, we express policies as shares out of total wealth, defining

Ct = ct/At, C ′
t = c′t/At, Tt = τt/At, T ′

t = τ ′t/At. [3.2]

Applying the Itô Rule to the mapping defined in [3.1] and invoking the definitions in [3.2],
the law of motion for the new state variables becomes

dAt

At

=(ρ− Ct − C ′
t − Tt − T ′

t)dt+ σ [
√
PtdBt +

√
1− PtdB

′
t]︸ ︷︷ ︸

≡dBA
t

, [3.3]

dPt = [Pt(C
′
t + T ′

t)− (1− Pt)(Ct + Tt)] dt+ σ
√

Pt(1− Pt)
[√

1− PtdBt −
√

PtdB
′
t

]
︸ ︷︷ ︸

≡dBP
t

.

[3.4]
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It is worthwhile to pause here to gain a better grasp of these equations. We first comment
on the drift terms (those involving dt): i) The growth rate of total wealth, dAt/At, is
reduced one-for-one by the consumption shares of both regions, Ct and C ′

t, as well as
by the deadweight loss of taxation, Tt + T ′

t . ii) A high consumption share or a high tax
rate on Region 2 (C ′

t, T
′
t ) increase Region 1’s wealth share (Pt), whereas the opposite

is true for Region 1’s consumption share and tax rate (Ct/ Tt). iii) Terms relating to the
second derivatives of the function P (a, a′) cancel out due to our particular choice for
the volatility function s(·, ·), thus corroborating our previous claim that shocks do not
introduce any systematic drift in regions’ wealth shares.

We now turn to the shocks in [3.3] and [3.4], i.e. terms involving dBt and dBt. We
note that when P → 0, shocks to the rich region –in this case Region 2– mainly move
total wealth At, but not so much the wealth share Pt. Shocks to the poor region, however,
have a stronger impact on Pt than on At.10 Finally, we note that the change of variables
transforms the shocks (dBt, dB

′
t) from (a, a′)-space to a new pair of orthogonal shocks

(dBA
t , dB

P
t ) in (A,P )-space, as defined in [3.3] and [3.4]. 11 We use a shock process dBP

t

as an input into our numerical solutions, once we have reduced the state space to P , which
is what we now turn to.

Taking a step back and inspecting the right-hand sides of [3.3] and [3.4], we see that
both the growth rate of total wealth, dAt/At, and the change in the wealth share, dPt, are
independent of total wealth, At, as long as the policies {Ct, C

′
t, Tt, T

′
t} are. This forms

the basis of our dimension reduction strategy and motivates:

Definition 2 (A-linear strategies). c(·), c(·), τ(·), τ ′(·) are A-linear strategies if there exist
functions C(·), C ′(·), T (·), T ′(·) : [0, 1] → R+

0 such that c(a, a′) = C(P )A, τ(a, a′) =
T (P )A, etc. ∀(a, a′).

Intuitively, A-linearity requires that large and small economies look “proportionally
alike”. Strategies, when expressed as shares of total wealth At, should only depend on
a region’s wealth share, but not on the total size of the economy. We deem this assump-
tion natural, more so in the context of homothetic preferences and the linear production
technology.12 13

3.2 Recursive characterization
In this subsection, we recursively characterize agents’ problems and derive the Hamilton-
Jacobi-Bellman (HJB) and Euler equations. We do so using the transformed state vari-

10The same is true for consumption decisions: Since the poor region has lower wealth, its consumption
decision has a stronger impact on the wealth ratio.

11It can easily be verified that the processes BA
t and BP

t are independent Wiener Processes: (i) They
have zero drift, Et[dB

A
t ] = Et[dB

P
t ] = 0, (ii) they have unit variance, (dBA

t )
2 = (dBP

t )2 = dt, and (iii)
their covariance is zero, (dBA

t )(dB
P
t ) = 0.

12However, this restriction is not without loss of generality: It rules out equilibria in which the risk-
sharing arrangement changes in nature when At rises or falls. An example of a strategy profile that we
rule out is as follows: Both regions choose an efficient consumption rate while At ≥ Ā, but they give up
cooperation and choose an inefficiently high consumption rate once they observe At < Ā.

13Also note that since otal output, ρAt, is proportional total wealth, the policies Ct, C
′
t etc. map naturally

to GDP shares such as consumption/GDP, debt/GDP etc.

10



ables (At, Pt) and invoking A-linear strategies.

Region’s HJB. Bellman’s Principle for Region 1 at an interior point P ∈ (0, 1), over an
infinitesimal amount of time dt, is14

Ṽ (P,A) = max
C

{
ln(CA)dt+ e−ρdtEtṼ (Pt+dt, At+dt)

}
, [3.5]

where Ṽ (P,A) is the value function in terms of the new state variables and where we
denote partial derivatives by subscripts. We now take advantage of the logarithmic form
of utility to guess the following form of the value:

Ṽ (A,P ) = 1
ρ
+ 1

ρ
ln(A) + V (P ), [3.6]

where V : [0, 1] → R is a function that is to be determined. 15 We now use this guess and
write the continuation value to a first order in [3.5]. Invoking A-linear strategies, the terms
in A drop out (since we guessed the correct functional form) and we find the following
simplified HJB that depends exclusively on P :16

ρV (P ) = max
C∈C(P )

{
ln(C)︸ ︷︷ ︸

flow utility

− [C + C ′(P ) + T (P ) + T ′(P )]
1

ρ︸ ︷︷ ︸
run-down of common resource A

[3.7]

+
(
−(1− P )[T (P ) + C] + P [T ′(P ) + C ′(P )]︸ ︷︷ ︸

≡Ṗt (drift of P ): distributional concerns

)
VP (P )

}

+ σ2P (1− P )︸ ︷︷ ︸
volatility of P : distributional shocks

VPP (P ) −σ2

2ρ︸︷︷︸
shocks to common resource A

where we define C(P ) = [0,−T (0)] if P = 0 and C(P ) = [0,∞) otherwise. It is
worthwhile to pause here for a moment to grasp the meaning of the different terms in this
equation.

We start by discussing Region 1’s consumption choice, C, which plays out inside the
max-operator. The effects of C are threefold. First, there is the straightforward effect
that consuming more gives higher flow utility, ln(C). Second, an increase in C reduces
the aggregate resource A, which is valued marginally at 1/ρ. We see that Region 2’s
consumption and the dead-weight loss from transfers, T + T ′, are accounted for as well
in this term. Third, higher consumption decreases Region 1’s wealth share, as captured
by i) the drift of P and ii) the marginal valuation of this wealth share, VP (P ). Taking the
derivative with respect to C inside the max-operator, we obtain the following first-order
condition (FOC):

1

C(P, T )
≥ 1

ρ
+ (1− P )VP (P ), with equality if P > 0. [3.8]

14We neglect for now the constrained case, P = 0, but include it again in the HJB [3.7]. The adjustments
that have to be made in this case should be obvious.

15This guess can be arrived at naturally using A-linear strategies for all players to form the integral
Ṽ (A0, P0) = E0

∫∞
0

e−ρtln(C(Pt)At)dt and simplifying.
16The corresponding equation for Region 2 can be obtained making the obvious adjustments .
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It says that the marginal utility from increasing consumption should equal the marginal
cost of doing so, which, in turn, is given by marginal value of the common resource,
1/ρ, plus the marginal cost of a decrease in the wealth share. Note that if P = 0, the
FOC may hold as an inequality, in which case Region 1 is constrained and consumes the

subsidy −T (0) received from the center. Denoting by Cunc =
[
1
ρ
+ (1− P )VP (P )

]−1

the unconstrained-optimal consumption rule that obtains from solving the FOC [3.8] with
equality, Region 1’s best response in the consumption stage is thus given by the following
simple rule:

C(P, T ) =

{
Cunc(P ) if P > 0,

min{Cunc(0),−T (0)} if P = 0,
[3.9]

This result shows that Region 1’s consumption is independent of the center’s transfer
whenever P > 0, which simplifies computation of equilibrium enormously. The eco-
nomic reason is that policies of the other players do not change Region 1’s marginal value
of savings to a first order.17

We now turn to discussing the terms in the last row of the HJB [3.7], which capture the
two orthogonal risk components. The first term isolates shocks to the wealth distribution:
The more risk-averse the region is regarding the wealth distribution (i.e. the higher VPP ),
the lower the region’s flow value, ρV , will be. The last term isolates shocks to total
wealth; since regions are risk-averse this effect is always negative.

Center’s HJB. We now turn to the recursive representation for the center’s problem.
Denoting the center’s value function by W and following the same steps as for the regions’
problem, the center’s HJB is found to be (suppressing again function arguments)

ρW = max
T,T ′

{
µln(C) + (1− µ)ln

(
C

′
)
−
[
C + C

′
+ T + T ′

] 1
ρ

[3.10]

+
(
− (1− P )[T + C] + P [T ′ + C

′
]
)
WP

}
+ σ2P (1− P )WPP − σ2

2ρ
,

s.t. X(T/ρ) +X(T ′/ρ) = 0, T ≤ 0 if P = 0, T ′ ≤ 0 if P = 1,

where regions’ consumption rates C and C ′ are determined by best responses in the con-
sumption stage, Eq. [3.9].

In the center’s HJB [3.10], we recognize the corresponding terms from Region 1’s
HJB [3.7], however now both regions’ flow utilities enter into the center’s value. The
center takes a region’s contemporaneous consumption decisions as given while the region
has positive wealth. Once a region is broke, however, the center’s marginal calculus
changes since it can restrict the region’s consumption: for example, the center effectively
sets Region 1’s consumption for small enough subsidies, T < Cunc(0). Furthermore,
given our assumption on shocks, the last term of the HJB (which stems from volatility of
At) is invariant in P and thus there is no portfolio effect entering the center’s redistribution
decision. We only state the HJB here and analyze the first-order conditions separately for
the different cases (constrained versus unconstrained regions) in the following sections.

17This is, in fact, a pervasive feature of savings games with Brownian noise, see also Barczyk and Kredler
(2014b).
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3.3 Two benchmarks: Efficient allocations and wealth pooling
Before turning to equilibria of the full game, we study two interesting benchmarks that
can be solved in closed form and will aid our understanding. Proofs for this section and
further results are provided in the Appendix, Sections F and G.

Efficiency. In the case in which redistribution is costless, the efficient allocations can be
tightly characterized using a social planner’s problem. In a nutshell, given the volatility
specification [2.4] the planner is indifferent when it comes to deciding in which region’s
asset to invest, thus transfers T, T ′ and the evolution of Pt are indeterminate. However, ef-
ficiency imposes tight restrictions on consumption rules and on the evolution of aggregate
wealth, which we summarize in the following proposition:

Proposition 1 (Efficient allocations under costless redistribution). Assume that there are
no distortions from taxation, i.e. X(τ̃) = τ̃ . Then there is a continuum of Pareto-efficient
allocations, parameterized by µ̂ ∈ [0, 1]. For given µ̂, the efficient consumption paths
satisfy Ceff (µ̂) = µ̂ρ and C ′eff (µ̂) = (1 − µ̂)ρ. In all efficient allocations, total wealth
is driftless, i.e. Ȧeff

t = 0 ∀t.

When redistribution is costly (under Ass. 1), however, the planner’s problem is more
complicated, since then the efficient allocation can no longer be independent of Pt. In-
tuitively, the social planner would like to avoid transfers since they involve dead-weight
loss, but is forced to use transfers once a region has run out of wealth.

In general, however, the efficient consumption allocation cannot be sustained in this
environment; this is true even if redistribution is costless and even if the center can commit
to future transfer policies. This is because there is tension between two forces: Efficiency
requires that consumption shares C and C ′ be constant over time. In other words, regions
should be insured against shocks to their wealth shares (dBP

t ) and their consumption
should only vary in response to aggregate shocks (dBA

t ). However, this obviously kills
savings incentives for regions and makes them over-consume.

Proposition 2 (Generic inefficiency). Suppose that σ > 0 and restrict attention to bounded
transfer flows by the center. Then the consumption allocation Ct = Ceff (µ̂) and C ′

t =
C ′eff (µ̂) for all t cannot be supported as an equilibrium whenever µ̂ ∈ (0, 1).

There are two exceptions to this non-existence result that are illustrative, yet somewhat
obvious: i) If µ = 0 or µ = 1, then the center can implement its preferred allocation by
immediately expropriating the less-liked region. ii) If there are no shocks –and thus no
gains from risk-sharing–, then a center with commitment can implement any efficient
allocation by an initial mass transfer and committing to zero transfers thereafter. This
exception, however, crucially hinges on commitment.

Wealth pooling. Second, consider the following modified wealth-pooling (WP) envi-
ronment. There is no center, i.e. we set Tt = T ′

t = 0 for all t. Both regions consume out
of the common resource, Awp

t , which evolves according to

dAwp
t = (ρ− Ct − C ′

t)A
wp
t dt+ σ2(Awp

t )2dWt,
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where Wt is a standard Wiener Process. We note here that this modified environment is a
standard game of strategic resource extraction.

Proposition 3 (Wealth pooling). In the wealth-pooling environment, regions’ equilibrium
strategies are Cwp = C

′wp = ρ and the common resource is run down at the (inefficiently
high) rate Ȧwp

t /Awp
t = −ρ .

Inefficiency arises due to a classical tragedy of the commons: regions fail to take into
account the negative externality they exert on each other by consuming out of the common
resource. The WP allocation is interesting because it gives us an upper bound on what a
region may reasonably want to consume out of the common resource. This can be seen
by from Region 1’s FOC [3.8]. Region 1 chooses Cwp either (i) if indifferent with regard
to its wealth share, i.e. VP = 0, or (ii) if it owns all wealth in the economy, i.e. P = 1. In
turn, Region 1 chooses a lower rate, C < Cwp, whenever it prefers to increase its wealth
share, i.e. if VP > 0 and P < 1.

4 Costly redistribution: bail-out equilibria
This section analyzes (A-linear) MPEs assuming that redistribution is costly, which is our
baseline Assumption 1. We start by solving for the center’s best response, first on the
interior and then at the boundaries of the state space. We then describe the equilibrium
using a numerical example. This equilibrium features bail-outs, which we define as an
upward jump discontinuity in subsidies to the poor region when it hits the constraint. The
sharp increase in subsidies coincides with a sharp drop in consumption of the poor region.
Finally, we introduce a limit game that gives a marginal-cost-benefit interpretation of
agents’ value-matching condition at the constraint and state our main result on bail-outs.

4.1 Center’s problem
We will only discuss the aspects of the center’s problem here that are economically most
relevant; we refer the reader to Appendix A for the details.

Unconstrained problem. First, consider the center’s problem for a fixed P ∈ (0, 1) on
the interior of the state space. Leaving out all terms in the Hamiltonian in [3.10] that the
center cannot affect, the center’s problem reduces to

max
T,T ′

{
− ( T + T ′︸ ︷︷ ︸

dead-weight loss

)1
ρ
+ [PT ′ − (1− P )T ]WP (P )︸ ︷︷ ︸

gains from re-distribution

}
[4.1]

s.t. X(T/ρ) +X(T ′/ρ) ≥ 0; P,WP (P ) given,

To understand the trade-off that the center faces, consider a situation in which WP (P ) >
0, i.e. the center wants to re-distribute towards Region 1. The second term in the crite-
rion encodes the center’s gains from increasing P , which it weighs against the costs of
redistribution (the first term). This cost is the dead-weight loss from taxation, T + T ′,
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valued at the marginal value of common resources, 1/ρ. Since the marginal dead-weight
loss increases as the center redistributes more, the optimal T ′ is increasing in WP ; see
Appendix A for the detailed solution.

Constrained problem. We now shift our attention to the boundary P = 0, where Re-
gion 1 may be borrowing-constrained.18 In this case, the center can effectively control the
broke region’s consumption, which alters the center’s trade-off completely.

We will first solve an auxiliary (constrained) problem at P = 0, pretending that Re-
gion 1 always consumes the entire transfer provided by the center and saves nothing; this
problem is convenient to solve and is guaranteed to have an interior solution. Then, we
combine the auxiliary problem with the unconstrained problem [4.1] to solve the center’s
actual problem at P = 0. For ease of interpretation, we write the center’s problem in the
variable S ≡ −T (0), which is the subsidy to the broke region and thus positive. From the
center’s HJB [3.10] (omitting again terms the center cannot affect), the center’s constrained
problem is

max
S≥0

{
µln(S) + (1− µ)ln(Cwp)−

[
Cwp + T̃ (S)

]
1
ρ

}
[4.2]

where we define the tax revenue needed to cover the subsidy from the center’s constraint
in problem [4.1] by the function T̃ (S) = ρX−1(S/ρ) . 19 Since Region 1 does not save
by assumption, the aggregate resource decreases by Cwp + T ′. Taking the derivative with
respect to S in [4.2], one obtains the FOC that pins down the optimal constrained subsidy
Scon:20

1

ρ︸︷︷︸
MC of taxing

=
µ

Scon︸︷︷︸
center’s MU from R.1 consuming S

X ′(T̃ (Scon)/ρ
)︸ ︷︷ ︸

marginal tax revenue

. [4.3]

The left-hand side captures the marginal cost of taxing Region 2, which is given by the
marginal cost of resources. This marginal cost equals the marginal benefit, which consists
in the marginal utility that the center obtains from Region 1 consuming the marginal tax
revenue.

Center’s problem at P = 0. The unconstrained and constrained problems above can
be combined to characterize the solution to the center’s true problem at P = 0. In Ap-
pendix A, we write this combined problem in the single choice variable S. Recall now
that Region 1’s best response in the consumption stage is to consume the entire subsidy
as long as S ≤ Cunc(0), but to save any additional subsidy beyond this level. Thus, the
center’s payoff equals that of the constrained problem for S ≤ Cunc(0), while it equals
that of the unconstrained problem for S > Cunc(0). The payoff function is concave on
the two parts and continuous at S = Cunc(0), which allows a simple characterization of

18The analysis for the point P = 1 is analogous, making the obvious adjustments.
19For the sake of exposition, we have maintained the terms in Region 2’s consumption in the center’s

problem although the center cannot affect the optimal choice C ′(0) = Cwp.
20Note that the center’s criterion in [4.2] is strictly concave in S, since concavity of X(·) implies that

convexity of X−1(·) and thus convexity of T̃ (·). Thus the FOC is necessary and sufficient.
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the center’s optimal strategy. In our numerical solutions, we find that the center’s optimal
subsidy always occurs on the constrained part.

4.2 Equilibrium dynamics
We solve numerically for the MPE of the economy using a standard Markov-chain ap-
proximation on a grid for P ∈ [0, 1] using a centered differencing scheme. We iterate
the game backwards in time until policy functions converge, finding a unique equilibrium
from a variety of final guesses for policies. The equilibrium is found in less than a sec-
ond on a standard computer. For details on the computation and additional results, see
Appendix E.

To parameterize our baseline economy, we choose a standard discount rate ρ = 0.04
(one time unit corresponding to a year). We set µ = 0.5, meaning that the center does
not favor any of the two regions.The shock volatilityis set to σ = 0.1. We adopt the
specification [2.6] for X(·), setting the curvature parameter to κ = 1.5. Given this value,
we then choose α = 8.3 such that the subsidy to a constrained broke region (which is the
maximal subsidy in equilibrium) is 10% of aggregate output. To get a sense on how large
the costs to redistribution are, observe that our parameterization of X(·) that the maximal
dead-weight loss (occurring again at the constraint) is 13.2% of aggregate GDP.

Figure 2 shows the equilibrium outcomes. As expected, regions’ value and policy
functions are strictly increasing in their wealth share. The center, however, always prefers
to balance the wealth distribution; it enjoys maximal utility at wealth parity, where re-
gions’ utilities are equalized and the dead-weight loss from redistribution is zero. Zoom-
ing in at the boundaries, we can see the bail-out at play: The broke region’s consumption
jumps down and the center’s subsidy jumps up at the constraint; we will analyze this point
in detail in the next section.

Remarkably, the model generates non-linear dynamics, as can be seen from the drift,
Ṗ , in the lower right panel. There is a large stable region with (stochastic) steady state
P = 1/2 in the interior of the state space. In this stable region, the center chooses a
redistributive tax policy that is successful in counteracting the impoverishing dynamics
that are induced by regions’ free-riding behavior (see the decomposition of the drift into
consumption and transfer components in the lower right panel).21However, once wealth
inequality is high, excessive consumption by the impoverished region generate a drift
towards bankruptcy, generating two impoverishment intervals close to the boundaries. In
terms of efficiency, notice that depletion of total resources (dA/A) is lowest, and closest
to the efficient benchmark Ȧeff = 0, at P = 1/2, but increases towards the boundaries
(bottom-left panel).22 In what follows, we will characterize the bail-out at the boundary
in detail.

21To give a sense of the stability around P = 1/2, we calculate that it takes around 150 years in expec-
tation for one region to end up in bankruptcy from this point, see Appendix J for details.

22This discontinuity in asset depletion in the frontier is smaller that the jump in consumption of the poor
region, as the discontinuous increase in transfers exacerbates the deadweight loss.
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Figure 2: Equilibrium with bail-outs under costly redistribution.

Model parameters: ρ = 0.04, σ = 0.1, µ = 0.5, κ = 1.5, α = 8.3. Grid size: N = 101. The two
circles at the boundaries depict a variable’s value on the second-to-last grid point (empty circle) and the
last grid point (solid circle), indicating continuity of the variable at the boundary. Flow utility includes
losses from run-down of aggregate wealth, e.g. for Region 1 we plot ln(C)− (C +C ′ + T + T ′)/ρ. Panel
Drift decomposes the drift Ṗ , defined in Eq. [3.7], into terms concerning consumption (consumption drift:
−(1− P )C + PC ′ and terms in transfers (tax drift: −(1− P )T + PT ′). The equilibrium with µ = 0.4 is
shown in Figure 5.

4.3 Bail-outs
The previous analysis shows that both the poor region’s and the center’s problem change
in nature at the boundary P = 0: the poor region suddenly faces a constraint on consump-
tion, and the center can suddenly dictate the poor region’s consumption, at least on some
range. This explains why optimal policies can display jump discontinuities at P = 0,
even if value functions must be continuous at this point. Mathematically, equilibrium re-
quires that all agents’ HJBs be fulfilled both at P = 0 itself and in the limit as P ↓ 0;
continuity of the value functions then implies value-matching conditions for all players
in the limit as P ↓ 0.23 In this section, we show that these value-matching conditions

23There are no smooth-pasting conditions on the value-function derivative since the constrained interval,
i.e. the set {P : P = 0} is degenerate, thus no value function derivative exists within this regime.

17



can be understood economically as optimality conditions in a limit game played between
Region 1 and the center when Region 1’s wealth is almost run down. In this limit game,
agents optimally time the point at which the boundary is hit, taking as given the policies
of the other players; this concept is novel to the best of our knowledge.

The section proceeds in three steps. We first define the limit game. Second, we show
that agents’ optimality conditions in the limit game imply the value-matching conditions,
thus providing us with a marginal-cost-benefit interpretation for the latter. Third, we
characterize the best responses of the poor region and the center and summarize our main
result on bail-outs in a proposition.

4.3.1 Defining the limit game

To define the limit game, we first derive how the time interval until the constraint is
hit (time-to-broke) is affected by agents’ decisions. We then analyze the center’s and
Region 1’s best responses and show that they imply the value-matching conditions when
we convert the marginal calculus from quantities (C, S) to a timing decision.

Time-to-broke. Consider the game between Region 1 and the center when only a small
quantity of wealth ∆P is left for Region 1.24 The choice variables in the game are thus
consumption C for Region 1 and the subsidy S = −T the center pays to Region 1. We
limit our analysis to policies that lead the economy to P = 0.25 The drift converges to
Ṗ lim(C, S) ≡ S − C as P → 0 by [3.4]. Let us denote by b(C, S)∆P the expected time
that is left until Region 1 is broke given a pair of policies (C, S), for fixed P = ∆P
(small). Since the drift dominates as the volatility of the process approaches zero at
P = 0, this time-to-broke can be approximated by26

b(C, S)∆P =
∆P

−Ṗ lim(C, S)
=

∆P

C − S
for any C > S. [4.4]

From this equation, we obtain the time-to-broke function b(C, S) = 1/(C − S) as the
inverse of the absolute drift. As is intuitive, higher consumption by the poor region hastens
bankruptcy, whereas higher subsidies delay it.

24Note that Region 2 will optimally choose C ′ = Cwp in the limit by its FOC [3.8], thus we can fix its
policy.

25The boundary behavior of the stochastic process Pt at P = 0 is anything but trivial since the volatility
of the process approaches zero at the boundary in a square-root shape. In particular, it is not guaranteed
that the system reach the boundary in finite time. In Appendix I, we show that two cases of boundary
behavior are possible. First, for low drifts (limP→0 −T (P ) − C(P ) < σ2/2), the boundary is hit almost
surely in the limit and the expected exit time converges to zero as P → 0. Second, for high-enough
drifts (limP→0 −T (P ) − C(P ) ≥ σ2/2) the probability of hitting the boundary is zero. Importantly, our
assumptions thus allow for the possibility that the poor region stays solvent forever; however, this does not
occur in the equilibrium we find.

26Section I in the Appendix derives the precise expressions for the expected exit times, which also contain
terms in the volatility. However, we present a heuristic argument here, which is simpler and also leads to
the correct value-matching conditions.
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Towards a definition of the limit game. Now, consider Region 1’s problem, fixing a
subsidy S by the government. We limit attention to consumption rates C ≥ S + ϵ to
ensure that the economy converges to P = 0, where ϵ > 0 is a (small) constant. Taking
as given the value V (0) that Region 1 obtains when broke, its limit problem is

V (∆P ) = max
C≥S+ϵ

{
U lim(C, S)b(C, S)∆P + e−ρb(C,S)∆PV (0)

}
, where

U lim(C, S) = ln(C)− (C + Cwp + T̃ (S)− S)1
ρ
. [4.5]

This is reminiscent of the Bellman principle [3.5], b(C, S)∆P playing the role of dt and
instead ∆P being fixed. The second term in the definition of U lim has the same interpre-
tation as in the HJB [3.7], capturing the run-down of common resource A.

We now write Region 1’s payoff, i.e. the term in brackets in [4.5], as a function of C
and S. Approximating e−ρb(C,S)∆P ≃ 1− ρb(C, S)∆P and as ∆P → 0, Region 1’s limit
objective function is

vlim(C, S) ≡ lim
∆P→0

V (∆P )− V (0)

∆P
=

U lim(C, S)− ρV (0)

C − S
, for C ≥ S + ϵ. [4.6]

This says that Region 1’s payoff in the limit game is proportional to i) time to broke and
ii) the differential of flow utility before broke over the flow value once broke. Note here
that vlim is identical to the derivative of the value function at P = 0, which is intuitive:
Region 1 sets C to maximize the value just before being broke, taking as given V (0), thus
maximizing the slope of the value function.

Figure 3: Illustration of Region 1’s value-matching condition in terms of marginal cost and
marginal benefit

Region 1’s limit payoff vlim is graphically represented in the left panel of Figure 3.
For a fixed S, the hyperbola in the graph traces out all combinations of flow utility,

19



U lim(C, S), and time-to-broke, b = 1/(C − S), that obtain when Region 1 varies C.
Higher C increases the flow value U lim that Region 1 receives above the bankruptcy
value ρV (0) –the height of the shaded rectangle–, but shortens time-to-broke b (the width
of the rectangle). Region 1 optimally chooses C to maximize the rectangle under the
curve U lim(C, ·), i.e. the flow-value differential to bankruptcy multiplied by how long
this differential is enjoyed.

We now turn to the center’s problem. Following the same steps as for Region 1, the
center’s limit objective function is

wlim(C, S) ≡ lim
∆P→0

W (∆P )−W (0)

∆P
=

U c,lim(C, S)− ρW (0)

C − S
for S ≤ C − ε,

[4.7]
where again we bound away S from C to have a well-defined problem. Here, the center’s
flow utility is defined as

U c,lim(C, S) = µln(C) + (1− µ)ln(C)wp −
[
C + Cwp − S + T̃ (S)

]
1
ρ
. [4.8]

We then define the limit game and its equilibrium as:

Definition 3 (Limit game). The limit game at P = 0 is given by the pair of problems
maxC vlim(C, S) for Region 1 and maxS w

lim(C, S) for the center. An equilibrium of the
limit game is a pair of best responses (Clim, Slim) satisfying Clim = argmaxC vlim(C, Slim)
and Slim = argmaxS w

lim(Clim, S).

4.3.2 Value-matching conditions

We now proceed to show that an equilibrium of the limit game implies the value-matching
conditions at P = 0. Lemma 1 in the Appendix B formalizes this equivalence.

Region 1. We first explain Region 1’s marginal-cost-benefit analysis, depicted in the
right panel of Figure 3. Given a fixed S, Region 1’s first-order condition (FOC) for C is
obtained by taking the derivative with respect to C in Eq. [4.6] as[

U lim
C (C, S)

C − S

]
︸ ︷︷ ︸

MB

=

[
U lim(C, S)− ρV (0)

(C − S)2

]
︸ ︷︷ ︸

MC

. [4.9]

The left-hand side of this equation gives the marginal benefit (MB) of increasing con-
sumption by dC, which is represented by the area MB in the figure. MB equals the
marginal increase in flow utility, U lim

C , multiplied by the time over which this benefit
accrues. The right-hand side of [4.9] represents the marginal cost (MC) of increasing con-
sumption by dC, represented by the area MC. This marginal cost consists of giving up the
utility differential U lim − ρV (0) over a time interval |db| = |(C − S)2dC|, whose length
is determined by how much time-to-broke decreases due to dC. In the optimum, it must
be that MC=MB, i.e. that the areas have the same size.
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Now, multiply Eq. [4.9] by (C − S)2 and invoke Region 1’s FOC for C to obtain
Region 1’s value-matching condition at P = 0:27

(C − S)U lim
C (C, S)−

[
U lim(C, S)− ρV (0)

]︸ ︷︷ ︸
≡NMB(C,S)

= 0, [4.10]

where the left-hand side defines Region 1’s net marginal benefit (NMB). We note here
that when multiplying by (C − S)2 we have changed the units in the marginal calculus:
Since db/dC = −(C − S)2, the value-matching condition [4.10] corresponds to Region 1
making infinitesimal changes to time-to-broke, b. This may also be seen from the right
panel in Fig. 3. If Region 1 shortens time-to-broke by a marginal unit, −db, it incurs a
marginal cost of [U lim − ρV (0)]db, corresponding to the term in brackets in the value-
matching condition [4.10]. The marginal decrease of time-to-broke, −db, translates into
an increase in consumption of dC = (C − S)2db that is enjoyed over a time interval of
length b = 1/(C − S), corresponding to the product (C − S)U lim

C in [4.10] .

Center. We now proceed analogously for the center. Taking the derivative of wlim with
respect to S in [4.7] and setting equal to zero, we find[

U c,lim − ρW (0)

(C − S)2

]
︸ ︷︷ ︸

MBc

=

[
−U c,lim

S (C, S)

C − S

]
︸ ︷︷ ︸

MCc

. [4.11]

The marginal cost of an increase dS in the subsidy (right-hand side) is given by the
marginal increase in the deadweight loss, −U c,lim

S = (T̃ ′(S) − 1)/ρ ≥ 0, which occurs
over time-to-broke 1/(C − S). The marginal benefit of increasing S is that it delays the
bail-out (i.e. it decreases time-to-broke) by dS/(C −S)2, enabling the center to enjoy the
utility differential U c,lim − ρW (0) over the bail-out for longer (note that this differential
must be positive, otherwise there is no trade-off). To obtain the center’s value-matching
condition at P = 0, again multiply Eq. [4.11] by (C − S)2, invoke the center’s FOC and
re-arrange:

U c,lim(C, S)− ρW (0) + (C − S)U c,lim
s (C, S)︸ ︷︷ ︸

≡NMBc(C,S)

= 0, [4.12]

which now has the interpretation that the center’s net marginal benefit (NMBc) of in-
creasing time-to-broke by a marginal unit db must be zero in the optimum.28

4.3.3 Best responses and equilibrium

Armed with the value-matching conditions, we are now prepared to characterize the best
responses of the impoverished region and the center in the limit game. We find two

27To see that this is the value-matching condition at P = 0, take the limit P → 0 in Region 1’s HJB,
Eq. [3.7], and note that U lim

C (C, S) = 1/C − 1/ρ = limP→0 VP (P ) by Region 1’s first-order condi-
tion [3.8].

28To see that [4.12] is the value-matching condition, take limits of the center’s HJB [3.10] as P → 0 and
observe that the center’s FOC [A.1] for the subsidy, when written in terms of S and taking the limit P → 0,
becomes WP =

[
T̃ ′(S)− 1

]
1
ρ .
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Figure 4: Limit game between Center and Region 1 at P = 0.
Model parameters as in Fig. 2. C- and S-axis are drawn on same scale. The upper panel shows level
lines of vlim(C, S), i.e. Region 1’s indifference curves, and level lines of wlim(C, S), i.e. the center’s
indifference curves in the limit game, where V (0) and W (0) are values of playing the constrained allo-
cation (Ccon, Scon) forever at P = 0. The shaded area indicates Pareto improvements over the equilib-
rium (Clim, Slim). Lower panel plots best responses, which coincide with allocations that satisfy agents’
value-matching conditions.

equilibrium candidates: smooth paths and the (non-smooth) bail-out equilibrium. We
show that only the bail-out equilibrium is stable. This section contains all arguments of
the proof of our main result, Prop. 4, giving the economic intuition for each step; we
provide a concise mathematical proof in Appendix D.

Region 1’s best response. Figure 4 depicts preferences (upper panel) and best responses
(lower panel) in the limit game, fixing the policies at P = 0 to the constrained levels
(C(0) = Ccon and S(0) = Scon). In the upper panel, the spiral-shaped solid lines are Re-
gion 1’s indifference curves. Region 1 prefers policies towards the north, where subsidies
are high. For fixed S, Region 1’s best response occurs at the tangency of the iso-S lines
with its indifference curves (circles in the upper panel, solid line in the lower panel). We
see that whenever the center sets a subsidy S < Scon below the bail-out level, Region 1

22



responds with a downward-jumping consumption trajectory, i.e. C > Ccon. We will now
explain why this is the case.

We first establish that Region 1’s net marginal benefit (NMB) in Eq. [4.10] is decreasing
in C, as one would expect. Since marginal utility of consumption is decreasing, we have

NMBC(C, S) = (C − S)U lim
CC (C, S) = −C − S

C2
< 0 for all C > S. [4.13]

We now show that whenever the center sets a subsidy below the bailout level, i.e. S <
Scon, this makes Region 1’s NMB at C = Ccon positive. Again from [4.10], we obtain that
the marginal effect of a decrease in S on NMB is

−NMBS(C, S) = U lim
C (C, S) + U lim

S (C, S) =
1

C
− T̃ ′(S)

ρ
. [4.14]

Lowering S has two opposing effects on Region 1’s NMB. First, a lower S hastens the
bail-out and makes it more costly for Region 1 (in terms of C) to delay the bail-out, thus
making marginal-utility considerations more important in Region 1’s marginal calculus.
This effect is captured by the term U lim

C in [4.14], which is positive. A second effect (U lim
S )

goes in the opposite direction, but turns out be weaker: A lower subsidy S implies a
lower deadweight loss from taxation, which increases Region 1’s pre-bailout utility and
thus makes Region 1 want to delay the bail-out (and thus decrease C). We will now
show that the first effect is dominant, unless Region 1’s and the center’s preferences are
perfectly aligned.

Note that we can read the last equality in Eq. [4.14] as follows: Lowering S increases
Region 1’s NMB if and only if 1/C > T̃ ′(S)/ρ, i.e. if and only if Region 1 benefits from
an increase in C that is financed by taxing Region 2. But now, the center’s FOC in the
bail-out, see Eq. [4.2], is

µ

Ccon

− T̃ ′(Scon)

ρ
= 0.

So if µ < 1 (i.e. if the center places at least some weight on Region 2), this directly implies
that −NMBS > 0 in Eq. [4.14] for C = Ccon and all S ≤ Scon. Thus, MNB(Ccon, S) >
0 for all S ≤ Scon, which implies that Region 1’s best response to S < Scon is some
C > Ccon (since NMBC < 0, as was established before). As is intuitive, Region 1 has
an incentive to increase its consumption before the bail-out since in its eyes the bail-out
subsidy is too low. Interestingly, there must be a conflict of interest between the center
and Region 1 (non-identical preferences, µ < 1),) for the reasoning to go through.

Center’s best response. Now, turn to the center. In Fig. 4, the center’s indifference
curves in the limit game (the thin dash-dotted lines) trace out circles that move ever closer
to the bail-out configuration (Ccon, Scon) as utility levels increase. This is not surprising,
since the center is in charge in the bail-out and sets both S and C at its preferred level. The
center’s best response occurs where the highest indifference curve is reached at the point
of tangency with the iso-C lines. We see that whenever Region 1 over-consumes before
the bail-out and sets C > Ccon, the center reacts with an upward jump of the subsidy upon
the bail-out, i.e. S < Scon. We now show and explain why this is the case.
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From [4.12], we see that the center’s net marginal benefit decreases in S, as we expect:

NMBc
s(C, S) = (C−S)U c,lim

ss (C, S) = −(C−S)
T̃ ′′(S)

ρ
< 0 for all C > S, [4.15]

since the marginal tax required to additional subsides is increasing, i.e. T̃ ′′(S) > 0. An
increase in Region 1’s consumption C affects the center’s NMB as follows:

NMBc
c(C, S) = U c,lim

c (C, S) + U c,lim
s (C, S) =

µ

C
− T̃ ′(S)

ρ
. [4.16]

There are again two effects of C on the center’s NMB, the first being positive (at least for
C close to Ccon) and the second being negative. As for the first effect, note that if µ > 0
we have

U c,lim
c (Ccon, Scon) =

µ

Ccon

− 1

ρ
>

µ

Ccon

− T̃ ′(Scon)

ρ
= 0. [4.17]

Here, the inequality follows from T̃ ′(S) > 1 for Scon > 0 (for which it is required
that µ > 0) and the last equality is the center’s FOC in the bail-out. Since U c,lim

c (·) is
continuous, [4.17] implies that U c,lim

c > 0 for C close to Clim, meaning that the effect
is initially positive.29 Intuitively, the center gains utility from Region 1 increasing its
consumption marginally above the bail-out level since this consumption is taken out of
Region 1’s wealth and thus entails no deadweight loss. Higher pre-bailout utility gives
the center incentives to delay the bail-out, i.e. to increase S.

However, there is a second, negative effect, captured by the term U c,lim
s . Higher C

hastens the bail-out and makes it more costly for the center (in terms of S) to delay the
bail-out, making marginal-utility considerations more important in the center’s marginal
calculus. These considerations tell the center to decrease S to minimize the dead-weight
loss, since U c,lim

s = −[T̃ ′(S)− 1]/ρ < 0.
Similar to what occurred for Region 1, observe in [4.16] that a hike in C increases

the center’s NMB if and only if the center would benefit from an increase in C that is
financed taxing Region 2, i.e. if and only if µ/C > T̃ ′(S)). Now, when fixing S = Scon

and increasing C above Ccon, the center’s bail-out FOC implies that NMBc
c(C, Scon) =

µ
C
− T̃ ′(Scon)

ρ
< µ

Ccon
− T̃ ′(Scon)

ρ
= 0. This implies that the center best-responds setting S <

Scon to any C > Ccon, since −NMBc
S < 0. Intuitively, if Region 1 overconsumes in the

eyes of the center (C > Ccon), then the center has an incentive to minimize tax distortions
and hasten the bail-out by lowering the subsidy below the bail-out level (Slim < Scon).

Equilibrium. The unique intersection of the two best responses in Fig. 4 occurs at
(Clim, Slim), which is the Nash equilibrium of the limit game. We see that a lens opens
northwest of the equilibrium with allocations that Pareto-dominate the Nash equilib-
rium.30 This is not surprising, since any efficient allocation should satisfy smoothness

29The effect then turns negative for values C > µρ.
30Note that in fact any allocation in the limit game is Pareto-dominated by some allocation closer to

(Ccon, Scon).
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of consumption paths and tax distortions. The existence of the Pareto lens tells us that
both parties would benefit from binding agreements that i) lower Region 1’s pre-bailout
consumption and ii) increase the center’s pre-bailout subsidies. However, our model tells
us that any such pre-bailout agreements would be feeble (as indeed they are in reality)
since at least one party is prone to deviate from the agreement. Consider, for example,
agreements on the center’s best response north-east of the bail-out equilibrium; under
these, Region 1 would have incentives to unilaterally deviate and increase its consump-
tion. On the other hand, agreements in the Pareto lens that lie on Region 1’s best response
would be immune to consumption deviations by the poor region, but the center would
be tempted to tax (and re-distribute) below the agreed-upon level. Once the bail-out oc-
curs, efficiency is restored: The poor region being borrowing-constrained gives the center
the leverage to control the poor region’s consumption and thus the incentive to tolerate a
higher tax burden on the rich region.

Instability of smooth paths. Figure 4 shows that a bail-out with discontinuous C- and
S-paths is one possible equilibrium outcome at P = 0. However, the figure also insinuates
that there is, of course, the possibility that both agents’ policies are continuous, In fact,
such smooth paths are consistent with value-matching.31 In our numerical simulations,
however, we never find such smooth equilibria. The reason is that the smooth equilibrium
is unstable. Note in the lower panel of Figure 4 that if the center sets a subsidy slightly
below Scon, then Region 1 reacts with a large increase in consumption. The center, in turn,
reacts with a further decrease of the subsidy, the dynamics leading towards the stable
bail-out equilibrium. In fact, Region 1’s best response has infinite slope at the smooth
equilibrium, whereas the slope of the center’s response is finite. This can be shown taking
a second-order Taylor expansion of Region 1’s value-matching condition [4.10], which
shows that along Region 1’s best response it holds that

NMB(Ccon + dC, Scon − dS)
≃NMBC(Ccon, Scon)︸ ︷︷ ︸

=0

dC −NMBS(Ccon, Scon)dS + 1
2
NMBCC(Ccon, Scon)dC2

−NMBCS(Ccon, Scon)dCdS + 1
2
NMBSSdS2 = 0. [4.18]

This equation implies that if the center deviates below Scon by a dS of order ∆2, then
Region 1 responds in the limit by a dC that is of order ∆.32 In Appendix C, we show that
in turn the center’s best response is approximated, to a second order, by a line with finite
slope.

Main result. We summarize the above discussion in the following proposition, which
is our main result. The logic of the proof is fully contained in the previous analysis;
however, we also provide a more concise mathematical proof in the appendix.

31But note that smooth paths are not an equilibrium of the limit game since payoff is ill-defined if Ṗ = 0.
32The highest-order term in dS is the one in dS1. The highest-order term in dC is the one in dC2, which

implies the claim.
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Proposition 4 (Bail-Outs). Assume that redistribution is costly (Ass. 1) and that µ ∈
(0, 1). In any A-linear MPE in which P = 0 is locally approached, i.e. Ṗlim ≤ 0, and
in which Region 1 consumes at least what the center would assign to it when broke, i.e.
C(0) ≥ Scon, we have Ṗ (0) = 0 and S(0) = C(0) = Scon. Also, one of the following
must occur:

1. (non-smooth paths) We have Ṗlim < 0. Then (Clim, Slim) are an equilibrium of the
limit game. In the limit game, a bail-out is the best response to a consumption drop
by Region 1, i.e. a strategy such that

Clim = lim
P→0

C(P ) > C(0) = Scon, [4.19]

has the center best-responding by

Slim = lim
P→0

S(P ) < S(0) = Scon. [4.20]

Vice versa, a downward drop in consumption is Region 1’s best response to a bail-
out, i.e. given that the center plays a strategy satisfying [4.20], Region 1’s best re-
sponse is such that [4.19] holds.

2. (smooth paths) We have Ṗlim = 0 and Clim = Slim = Scon. However, this allocation
is unstable in the limit game in the following sense. A second-order decrease of
the subsidy to Scon − ∆2, for ∆ small, entails a first-order increase in Region 1’s
consumption as a best response (Ccon + O(∆)), to which the center would react
with a further contraction in subsidies (and so forth).

4.4 Biased center
So far, our numerical results were limited to the case where the center puts equal weight
on both regions. In this section, we explore how the equilibrium changes when the cen-
ter is biased towards one region. Such a bias could be due to one region having larger
population (and thus rational from a utilitarian perspective) or a bias in the political pro-
cess. Fig. 5 shows the equilibrium for µ = 0.4, i.e. when the centers is biased towards
Region 2. Fig. 6 shows how selected predictions change when varying µ ∈ [0.2, 0.8].0 0.2 0.4 0.6 0.8 1

Value functions
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Flow utility
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Figure 5: Equilibrium with bail-outs with µ = 0.4 . Rest of parameters as in Fig. 2
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Dynamics. Fig. 5, right panel, reveals important changes to the dynamics with respect
to the symmetric case: i) the interior stable steady state moves towards P = 0, ii) the im-
poverishment interval of Region 1 grows, whereas iii) the impoverishment interval of the
favored Region 2 shrinks. Fig. 6 (bottom-center) shows that the stable central steady state
moves left faster than µ as the weight on Region 1 decreases and eventually disappears
entirely once the center favors one region too much. In this sense, our model predicts that
political balance between regions lowers the likelihood of bail-outs and favors stability.

Bail-outs. Unsurprisingly, the center provides a more generous bail-out to the favored
region than to the less-liked region (Fig. 5, center panel, and Fig. 6, top right), which
causes the depletion of resources (−Ȧ) to be most severe when the favored region is
bailed out (Fig. 6, top center). Interestingly, the size of the jump discontinuities at the
bail-out, measured in percentage terms, decrease as the center puts more weight on a
region and the interests of the two players become more aligned (Fig. 6, bottom right).

Free-riding. Returning now to the stable region at the interior of the state space, the
left-bottom panel of Fig. 6 shows that the maximum value of the center is attained when
taxes are zero and the deadweight loss vanishes, which occurs close the the P = µ line.
The same panel shows that close to this point free-riding of regions, as measured by asset
depletion −Ȧ, is also minimized. The top-center panel of Fig. 6 shows that the economy
that gets closest to efficient resource use (Ȧ = 0) is the one in which the center is balanced
(µ = 1/2), again confirming that balance between regions’ political power is desirable.
We conjecture that this relative efficiency is due to the fact that regions expect transfers
to be low for a long time; Appendix J derives a Kolmogrov Backward Equation for the
expected time to the first bail-out and shows that it is maximized (at about 150 years)
when µ = 1/2 = P , confirming this intuition.

27



Value of the center

P

Value of the center

P

Steady states

Asset depletion Consumption

Boundary discontinuities

Figure 6: Comparative statics in µ. Model parameters as in Fig. 2, varying µ ∈ [0.2, 0.8].
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4.5 Voluntary participation
Finally, it is interesting to ask under which conditions it is optimal for regions to delegate
authority to a central authority. In other words, we ask: How large are the gains in risk-
sharing that a central authority in our setting can offer compared to the costs implied by
the loss of sovereignty? To answer this question, we compare the value of participating in
a union with weight µ (which we will interpret as Region 1’s political power) and the value
in an environment with the center is committed to zero transfers forever (independence
thereafter).33
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Figure 7: Voluntary participation by P and µ. Model parameters as in Fig. 2. In the
independence scenario, regions have access to emergency resources of 10−6CWP when
broke.

The left panel of Fig. 7 shows for which values of µ an agreement between the two
regions is possible for fixed values of initial relative wealth P . Given initial wealth share
P , Region 1 is willing to participate in a union if given political power above the threshold
µ̂1(P ), which is increasing in P . Similarly, Region 2 (with initial wealth 1 − P ) is only
willing to join the union if Region 1’s political power is below µ̂2(P ). The existence
of a wide shaded region (in which a union is preferable for both regions) shows that the
risk-sharing agreement is very valuable under our numerical specification.

The right panel of Fig. 7 quantifies Region 1’s benefit of joining the union, showing
the relative increase in consumption under independence (for all time and all states of
the world) needed to match the welfare that Region 1 obtains by joining the union. We
trace out this consumption equivalent variation (CEV) following the dashed blue and red

33We note here that independence does not mean that the two regions’ problems are entirely separate in
this environment. Under our volatility specification, [2.4], the other region’s wealth influences the shock
variance and thus the other region’s wealth remains a state. Also, for computational reasons, we add a small
exogenous endowment at the boundaries, ensuring that regions can have positive consumption when broke.
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lines in the left panel. The following results stand out: First, CEVs are large, indicating
the high value of the risk-sharing agreement implied by delegation to the center, despite
the bail-out inefficiency. Second, political power (higher µ) is highly valued by regions.
Third, and very interestingly, the gains from joining the union for a poor region (e.g.
P = 1/4) are very large, the CEV exceeding 1.3 when approaching a political weight
of µ = 1/4 (which Region 2 would still accept). These gains by far exceed the gains of
equally rich regions (P = 1/2) entering a symmetric risk-sharing agreement (µ = 1/2),
which are only about a third as large (CEV≃ 1.1). However, once the wealth distribution
is so imbalanced that an early bail-out becomes very likely, it becomes hard to convince
the rich region to join the union, even when offering it large political power.

5 Costless redistribution: expropriation and indetermi-
nacy

Assuming costly redistribution is reasonable in our main application of a fiscal federation,
but it looses appeal in applications where resources can be transferred without major costs
between two parties (say in family or in a firm). In Appendix K, we study a setting with
costless redistribution, i.e. X(τ̃) = τ̃ .

We find two kinds of equilibria. In the first, the center immediately expropriates
the less-liked region, using a large lump-sum transfer. In a second type of equilibrium,
bankruptcy can be avoided. However, this type of equilibrium is fragile: It exists only
in the knife-edge case that the center puts exactly the same welfare weight on both re-
gions (µ = 1/2). We show that there exists a continuum of such equilibria, varying in the
generosity of transfers to Region 1.

Our results thus indicate that delegating power to a center with a cheap transfer tech-
nology can be dangerous for politically weak agents, as the center has incentives to ex-
propriate weak agents in order to control their actions.

6 Conclusions and outlook
This paper has provided a tractable setting to study the interaction of two regions and
a center in a fiscal federation. The simple set-up here allowed us to reduce the dimen-
sionality of the game’s state space to one, thus allowing for tight characterizations of
non-classical behavior at the boundaries. Our main finding is that inefficient bail-outs
–sudden drops in consumption, paired with a sudden increase in transfers– occur. Despite
these inefficiencies, there is still ample room for welfare gains from risk-sharing; our set-
ting provides a theory for when economic agents find it optimal to delegate power to a
central authority.

The techniques used here make the model amenable to extension; the most natural
extension is arguably a mean-reverting productivity state for regions, say in the form
of a Poisson process on a finite set of states. We conjecture that this extended model
would feature temporary bail-outs: A poor region with low productivity would enter a
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bail-out regime when hitting the borrowing constraint, but leave this the regime once it
switches to a higher productivity.34 The numerical techniques used here (Markov-Chain
Approximation Methods) carry over, being both easy to implement and highly efficient.
This opens the door for a more serious quantitative model of fiscal federations.

A Center’s problem

Unconstrained problem. Consider the center’s problem at P ∈ (0, 1) in [4.1]. We note
that the objective function in the problem is linear and the set of admissible controls is
strictly convex, since X(·) is strictly convex. Hence the first-order conditions (FOCs) are
both necessary and sufficient:

WP > 0 : X ′(T ′
unc/ρ) = B(P,WP ), [A.1]

WP ≤ 0 : X ′(Tunc/ρ) =
1

B(P,WP )
, [A.2]

where B(P,WP ) =
1/ρ−PWP

1/ρ+(1−P )WP
. Since X ′(·) is a decreasing function, these first-order

conditions uniquely pin down the tax on the region that the center wants to distribute
away from.35 The transfer to the other region can then be obtained from the government’s
budget constraint. The comparative statics are as expected (focus on the case WP > 0):
The higher WP , the more the center wants to re-distribute to Region 1, and the lower
B(P,WP ) is. In the optimum, the center tolerates a lower marginal revenue from taxing
Region 2, corresponding to a higher tax on Region 2 (T ′

unc), see [A.2].
Under the parametric specification [2.6] for the tax-revenue function X(·) that we use

in the numerical simulations, we obtain the following closed-form solutions for transfers:

WP > 0 : T ′
unc =

ρ

α

[
B(P,WP )

−1/κ − 1
]
, −Tunc =

ρ

α(1− κ)

[
B(P,WP )

− 1−κ
κ − 1

]
;

WP ≤ 0 : Tunc =
ρ

α

[
B(P,WP )

1/κ − 1
]
, −T ′

unc =
ρ

α(1− κ)

[
B(P,WP )

1−κ
κ − 1

]
.

[A.3]
We will now derive these solutions for the case WP > 0; the case WP ≤ 0 can be solved
in an analogous manner. Given the particular form of the tax-revenue function in [2.6], the

34In a similar vein, Barczyk and Kredler (2014b) showed how to extend a stylized one-dimensional model
of two altruistic savers to a four-dimensional setting, in which the state consists of both agents’ wealth and
income.

35Note that it is in principle possible that B(P,WP ) ≤ 0. Then, if the marginal revenue from taxation
is always positive, i.e. limτ̃→∞ X ′(τ̃) ≥ 0 (which is indeed the case for the specification we choose in
our numerical solutions, where this limit is zero), a maximizer does not exist – it becomes unboundedly
large. This corresponds to a situation in which the center is so keen to re-distribute towards Region 1 that
the center would even take away output from Region 2 output and destroy it; in our numerical simulations
this situation never occurs. Existence of a bounded maximizer can be guaranteed when specifying X(·)
such that the limτ̃→∞ X ′(τ̃) = −∞; this could be rationalized as a Laffer Curve under which the negative
effect of taxation on output becomes very strong at some point. Numerically, we experimented with a
quadratic Laffer curve, i.e. the specification X(τ̃) = τ̃ − βτ̃2 with β > 0. However, this specification led
to less-stable solutions, presumably since the curvature was too weak.
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first-order condition [A.1] implies that for the optimal tax T ′
unc on Region 2 we have

1 +
αT ′

unc

ρ
= B(P,WP )

−1/κ. [A.4]

Solving for T ′
unc immediately gives us the solution for T ′

unc for the case WP > 0 in
Eq. [A.3]. To solve for Tunc, note that the government budget constraint tells us that
−Tunc/ρ = X(T ′

unc/ρ) and thus

− Tunc/ρ =

(
1 + αT ′

unc/ρ
)1−κ − 1

α(1− κ)
. [A.5]

Now, use Eq. [A.4] to find the closed form solution for Tunc in the case WP > 0 in [A.3].

Center’s combined problem at P = 0. Under Ass. 1, the constraint problem has
a unique (positive) solution that can be found substituting the budget constraint S =
ρX(T ′/ρ) into the FOC [4.3].

Writing the center’s payoff at P = 0 as a function of S and taking into account the
poor region’s response in the consumption stage from [3.9], we obtain that the center aims
to maximize the following Hamiltonian) function H0(S):

H0(S) =µln(min{S,Cunc(0)}) + (1− µ)ln(Cwp)

− [Cwp +min{S,Cunc(0)}+ T̃ ′(S)− S]1
ρ
+max{0, S − Cunc(0)}︸ ︷︷ ︸

=Ṗ

VP (0),

[A.6]
where Cunc is the solution to [3.8] and Cwp is wealth pooling consumption (= ρ). At the
point S = Cunc(0), where the poor region starts saving, the function H0 generically has a
kink (but is continuous); the left and right derivative at this point are

∇−H0(Cunc) =
µ

Cunc

+D, ∇+H0(Cunc) = VP (0) + 1/ρ+D,

where the term D = (dT̃ ′/dS)/ρ is the same on both sides of the kink. Thus the function
H0 may kink upward, downward, or be smooth at S = Cunc, depending on the sign of
VP (0)+1/ρ−µ/Cunc. In general, H0 may attain its global maximum at a local maximum
on the range S ∈ (0, Cunc), at the point S = Cunc (in case there is an upward kink), or at
a local maximum on the range S > Cunc. If µ > 0, the corner S = 0 cannot be optimal
by the Inada condition on the utility function.

B Equivalence of limit-game and value-matching condi-
tions

Lemma 1 (Limit game and value-matching conditions). Consider a profile of A-linear
policies and value functions, P = {V, V ′,W ;C,C ′, T, T ′} . Denote Clim = limP→0 C(P ),
Slim = − limP→0 T (P ) etc. Assume that Clim > Slim and that all agents’ policies sat-
isfy their FOCs approaching P = 0, i.e. 1/Clim = 1/ρ + VP (0), 1/C ′

lim = 1/ρ and
X ′(−Slim/ρ) = 1/(1 + ρWP (0)). Then the following two statements are equivalent:
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1. (Clim, Slim) is an equilibrium of the limit game given boundary values V (0) and
W (0).

2. P satisfies value-matching at P = 0, i.e. V (0) = Vlim, W (0) = Wlim, and P
satisfies all players’ HJBs in the limit as P → 0.

Proof:
We will show that Statements 1 and 2 in the lemma are equivalent to the pair of
equations [4.10] and [4.12] holding.

First, note that both players’ payoffs in the limit game are strictly concave on
the range range that the limit game considers (C > S), as evidenced by Eq. [4.13]
and [4.15]. Thus the limit-game FOCs [4.9] for Region 1 and [4.11] for the cen-
ter are necessary and sufficient for a limit-game equilibrium, which shows that
Statement 2 is equivalent to [4.10] and [4.12] holding.

Second, Statement 2 implies [4.10] and [4.12] when invoking the limiting FOCs
1/Clim = 1/′ρ+ VP (0) and X ′(−Slim/ρ) = 1/(1 + ρWP (0)). The converse also
holds, since we restrict attention tor profiles for which the limiting FOCs to hold.

■

C Approximation of limit-game responses

Lemma 2 (Limit-game best responses). Given the allocation (Ccon, Scon) at P = 0,
second-order accurate approximations for (Ccon+dC, Scon−dS) in the limit game yield:

1. Region 1’s best response is approximated by

dC = −dS +

√√√√2C2
con

(
1

Ccon

− T̃ ′(Scon)

ρ

)
dS +

(
1 +

T̃ ′′(Scon)C2
con

ρ

)
dS2,

[C.1]

thus dC ∝
√

dS for small dS and the best response has infinite slope at (Ccon, Scon).

2. The center’s best response is approximated by

dS =

(√
1 +

µρ

C2
conT̃

′′(Scon)
− 1

)
dC [C.2]

and is locally linear with finite negative slope.
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Proof:
Region 1’s best response. Calculating the derivatives in the second-order expan-
sion [4.18] for Region 1’s best response and multiplying by −C2

con yields

1
2
dC2 + dSdC + C2

con

[
T̃ ′(Scon)

ρ
− 1

Ccon

]
dS − 1

2

T̃ ′′(Scon)

ρ
C2

condS2 = 0.

For given dS, solve for dC using the quadratic formula to obtain [C.1].36 dC ∝√
dS follows since below the square root in [C.1] the term in dS dominates, from

which the claim on the infinite slope immediately follows.
Center’s best response. A second-order Taylor expansion of NMBc(·)

gives37

NMBc(Ccon + dC, Scon − dS) ≃ NMBc
C(Ccon, Scon)︸ ︷︷ ︸

=0

dC −NMBc
S(Ccon, Scon)︸ ︷︷ ︸

=0

dS

+ 1
2
NMBc

CCdC2 −NMBc
SCdCdS + 1

2
NMBc

SSdS2

=− 1
2

µ

C2
con

dC2 +
T̃ ′′(Scon)

ρ
dCdS + 1

2

T̃ ′′(Scon)

ρ
dS2 = 0.

[C.3]
Calculating the derivatives and multiplying by ρ/T̃ ′′(Scon) yields the quadratic

form
1
2
dS2 + dCdS − 1

2

[
µρ

C2
conT̃

′′(Scon)

]
︸ ︷︷ ︸

≡Zcon

dC2 = 0, [C.4]

where Zcon > 0 since T̃ ′′ > 0. Solving for dS given dC yields38

dS =
(√

1 + Zcon − 1
)

dC, [C.5]

Eq. C.5 together with Zcon > 0 implies the claims about the finite slope and linear-
ity. ■

D Proof of Prop. 4 (main result on bail-outs)

We will first show that S(0) = C(0) = Scon. Ṗlim ≤ 0 reveals that the center is not
interested in creating a positive drift at zero, i.e. it implies that the center’s payoff H0

in the problem [A.6] is decreasing for S ≥ Cunc(0) and so that the center optimally sets
S(0) ≤ Cunc(0) = Clim. Now, since we assumed C(0) ≥ Scon, it must be that Cunc(0) ≥
Scon by Region 1’s optimality at P = 0, see [3.9]. It then follows that on the range
S ∈ [0, Cunc(0)], the center’s payoff H0 is uniquely maximized at S = Scon, see the
center’s constrained problem [4.2]. From this we conclude that S(0) = Scon = C(0) and
thus Ṗ (0) = 0.
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1. Non-smooth paths: We first cover the case when Ṗlim < 0. Clim and Slim are an
equilibrium of the limit game by Lemma 1.

We will now show that setting Clim > Scon is a best response to a subsidy Slim < Scon.
Region 1’s best response is characterized by NMB(Clim, Slim) = 0, see [4.12]. Note that

−NMBS(Ccon, S) =
1

Ccon

− T̃ ′(S) >
µ

Ccon

− T̃ ′(Scon) = 0 for S > Scon, [D.1]

where the inequality follows from the assumption µ < 1 and the fact that T̃ (·) is convex;
the last equality follows from the center’s first-order condition in the constrained problem
at P = 0, Eq. [4.3]. It thus follows that NMB(Ccon, S) > 0 for S < Scon. Since
NMBC < 0 by Eq. [4.13], it follows that Region 1’s best response satisfies Clim >
Ccon = Scon.

Finally, we show that the center best-responds by setting Slim < Scon to any Clim >
Scon in the limit game. A best response satisfies NMBc(Clim, Slim), see Eq. [4.12]. Now,
NMBc(C, Scon) < 0 for any C > Scon since

NMBc
C(C, Scon) =

µ

C
− T̃ ′(Scon)

ρ
< 0, [D.2]

where the inequality follows again from the center’s FOC [4.3]. Since NMBc
S < 0 by

Eq. [4.15], this implies that the center’s best response satisfies Slim < Scon.
2. Smooth paths: Since we assumed Ṗlim ≤ 0, the only case that remains to cover is

Ṗlim = 0. Ṗlim = 0 immediately implies Slim = Clim by the law of motion [3.4]. From
optimality of Region 1’s consumption at P = 0, it follows that Clim = Cunc(0) ≥ C(0),
see [3.9]. We will now rule out that Clim > C(0). Since Ṗlim = 0, this would imply
that Slim > S(0). So Slim > S(0) attains the maximum in the center’s unconstrained
problem [4.1] at P = 0; but note that this means that the center should also prefer Slim

over S(0) at zero, since both options lie on the unconstrained part of the center’s problem.
This is a contradiction and we conclude that Clim = C(0 = Slim = S(0).

The claims about instability follow directly from the approximations of the best re-
sponses in Lemma 2 together with the lower panel of Fig. 4. ■

E Computational appendix

We solve for the equilibrium using the Markov-chain approximation method.39 We use an
equally spaced grid for P with 101 grid points. The method approximates the diffusion
for P by a trinomial process, i.e. a Markov chain on the grid for P that either stays at the
same grid point or jumps to one of the two adjacent states. The transition probabilities
are chosen such that the first and second moments of the innovations are matched to the
underlying diffusion. The method is equivalent to an explicit finite-difference method
with centered differencing for both first and second derivatives.

39See Barczyk and Kredler (2014b) and their computational appendix for an introduction to the the
Markov-chain approximation methods with an application to a continuous-time savings problem.
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To obtain a final guess for the value functions, we use a consumption function that
is linear in P with end points C(0) = Ccon (where Ccon comes from the center’s con-
strained problem [4.2]) and C(1) = Cwp = ρ. We choose a linear consumption function
constructed for Region 2 with C ′(0) = Cwp and C ′(1) = C ′

con, where C ′
con comes from

the center’s constrained solution at P = 1. We choose the tax on the rich region be
linearly connecting T = 0 at P = 0.5 with Tcon at P = 1 (the tax on the rich region
in the center’s constrained solution at P = 1), or with T ′

con at P = 0. We then back
out the corresponding subsidy to the poor region from the government budget constraint.
Given these policy guesses, we calculate the value functions for all agents that result from
these policies being played forever, which can be efficiently solved for by solving a sparse
system of equations.

We then go backward in time from the final guess, choosing the maximal time incre-
ment that satisfies the Courant-Friedrich-Lewy stability condition (which simply says that
no jump probability of the Markov chain can be negative). In line with our specification
of the approximating chain, we calculate centered difference quotients to approximate
the first value-function derivatives within the state space. At P = 0, we use the upward
quotient and at P = 1 the downward quotient. Given these derivatives, we obtain agents’
optimal policies for all interior grid points from the FOC [3.8] of Region 1, the one for
Region 2 and [A.1] for the Center.

At the boundary P = 0, we proceed as follows (the computations at P = 1 are anal-
ogous). We obtain Cunc(0) from Eq. [3.9], which completely characterizes R1’s response
in the consumption stage. Region 2’s policy is always C ′(0) = ρ. To obtain the center’s
policy, following the results in Appendix A, we first calculate the payoffs H0 defined in
Eq. [A.6] for the following three scenarios:

1. Obtain the Scon that solves the constrained problem [4.2] by solving Eq. [4.3] with a
root-finding routine. This step can be done outside the time loop. If Scon ≤ Cunc,
this is a local maximum and we obtain its payoff Hcon = H0(Scon). If Scon > Cunc,
then the center is better off giving a subsidy on the range S ≥ Cunc and we assign
Hcon = −∞.

2. Obtain the payoff H0(Cunc) at the kink.

3. Obtain the Sunc that solves the problem when Region 1 is unconstrained from
Eq. [A.3]. If Sunc ≥ Cunc, this is a local maximum and we assign Hunc = H0(Sunc).
If Sunc < Cunc, the center will be better off giving a subsidy on the range S ≤ Cunc

and we assign Hunc = −∞.

Finally, pick the maximum out of Hcon, H0(Cunc), and Hunc and the associated maximizer
as the center’s equilibrium policy S(0). Then back out the corresponding tax on Region 2,
T ′(0), from T̃ (S) = ρX−1(S/ρ).

Given agents’ policies, calculate the drift at each grid point from Eq. [3.4]. Given the
drift and the volatility, see Eq. [2.4], the jump probabilities for the approximating Markov
chain are calculated and all value functions are updated.

Go backward in time until a convergence criterion for policies is met.
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F Efficient allocations and (non)-existence of efficient equi-
libria

Proof of Proposition 1
Consider a social planner who puts weight θ on Region 1, weight θ′ on Region 2,
and weight (1− θ− θ′) on the center, where θ, θ′ ∈ [0, 1] and θ+ θ′ ≤ 1. Thus the
planner’s criterion is

E0

∫ ∞

0

e−ρt
{[

θ + (1− θ − θ′)µ︸ ︷︷ ︸
≡µ̂

]ln(ct) +
[
θ′ + (1− θ − θ′)(1− µ)︸ ︷︷ ︸

=(1−µ̂)

]ln(c′t)
}
dt.

[F.1]
Note that we have introduced here the parameter µ̂ from the proposition. Clearly,
any pair of permissible weights (θ, θ′) maps to a unique value for µ̂ and we have
µ̂ ∈ [0, 1]. Also, any value of µ̂ ∈ [0, 1] is associated to some permissible planning
weights, as may be readily seen by setting θ = µ̂ and θ′ = 1− µ̂.

We now turn to the resource constraint in the planner’s problem. By Eq. [3.3],
aggregate wealth evolves according to

dAt = (ρ− Ct − C ′
t)Atdt+ σAt[

√
PtdBt +

√
1− PtdB

′
t︸ ︷︷ ︸

≡dWA
t

], [F.2]

where we have written consumption strategies out of total wealth (i.e. ct = CtAt)
and where the term T + T ′ cancels since X(T ) = T by Ass. 2. Now, observe
that the shock to aggregate wealth defined in the last equation, dWA

t , is a standard
Wiener Process: We have EtdW

A
t = 0 and (dWA

t )
2 = (Pt + 1− Pt)dt = dt. It is

thus inessential which path {Pt} the planner chooses; the stochastic properties of
the resulting paths {At} for aggregate wealth will be the same and depend solely
on the consumption paths {Ct, C

′
t}.

Maximizing [F.1] subject to the resource constraint [F.2] is a standard Merton-
type consumption-savings problem. The associated HJB is

ρW µ̂(A) = ln(A)+max
C,C′

{
µ̂ln(C)+(1−µ̂)ln(C ′)+(ρ−C−C ′)AW µ̂

A(A)
}
+σ2A2W µ̂

AA(A),

where W µ̂(A) is a µ̂-planner’s value of having on hand aggregate wealth A. We
now guess the functional form W µ̂ = α + βln(A); from Eq. [3.6], it is also clear
that we must have β = 1/ρ. Using this guess in the HJB, we verify that it has
the correct form and find the optimal consumption rates given in the proposition,
Ceff (µ̂) = µ̂ and C ′eff (µ̂) = (1− µ̂)ρ. The claim on the drift of At then follows
directly from the law of motion [F.2]. ■
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Proof of Theorem 2(Generic Inefficiency):
By contradiction. Suppose that the efficient allocation with weight µ̂ was imple-
mented in an equilibrium. By Prop. 1, this implies that Ct = µ̂ρ and C ′

t = (1−µ̂)ρ
for all t with probability one.

We will first rule out that the economy spends time at the bounds of the state
space and then turn to the interior of the state space. Suppose that the economy
spent a positive amount of time at Pt = 1 with positive probability. Then, by
Region 1’s FOC [3.8] and since we assumed µ̂ ∈ (0, 1), we have C(1) = ρ > µ̂ρ
, which violates efficiency. In the same fashion, the economy spending time at
Pt = 0 can be ruled out by Region 2’s FOC.

Consider now, without loss of generality, the case in which Pt̄ ∈ (0, 1) for
some time t̄ ≥ 0. Since T (·) and T ′(·) are bounded and σ > 0, the path {Pt}∞t=t̄

will cover some neighborhood P = (Pt̄ − ϵ, Pt̄ + ϵ) around the initial state, see
the law of motion [3.4]. Clearly, the consumption and value functions in P must
then be constant and equal to the efficient levels in this neighborhood. Now, this
means VP (P ) = 0 for all P ∈ P , which in implies that the optimal policy is
C∗(P ) = ρ for all P ∈ P by the FOC for consumption, Eq. [3.8]. But this again
gives a contradiction, since C∗(P ) = ρ > µ̂ρ. ■

(Non)-existence of efficient equilibria It is important to note here that inefficiency
hinges crucially on the existence of shocks and the lack of commitment. If there is no
uncertainty, the center can indeed achieve efficiency by committing not to transfer any re-
sources ever. Another exception to the non-existence result for efficient equilibria occurs
at the extremes of the Pareto Frontier, where only one region consumes.

G Wealth pooling

Proof of Proposition 3
The HJB for Region 1, taking as given a strategy C ′(A) by Region 2, is

ρṼ wp(A) = ln(A) + max
C≥0

{
ln(C) + [ρ− C − C ′(A)]AṼ wp

A

}
+ σ2A2Ṽ wp

AA(A).

Guessing that the value function is of the form Ṽ wp = α + ln(A)/ρ, where α
is a coefficient that is to be determined, we find the optimal consumption rule
Cwp = C

′wp = ρ given in Proposition 3. It can then be verified that if Region 2
follows the same strategy and sets C ′(A) = ρ and that Region 1’s HJB holds. We
have thus found a symmetric equilibrium with value function

Ṽ wp(A) =
1

ρ
+

ln(A)
ρ

+
ln(ρ)
ρ

− 2ρ+ σ2

ρ2︸ ︷︷ ︸
≡V wp

. [G.1]
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Here, the constant V wp allows comparison to the equilibrium value function V (P ),
see again Eq. [3.6]. Region 2’s value is identical to Region 1’s. ■

A question that arises naturally is if the WP consumption allocation can be supported as
an equilibrium in the original game, i.e. when regions’ property rights are intact. Indeed,
we show that the WP consumption allocation cannot be supported as a MPE, i.e. in the
case when the center chooses transfers optimally and lacks commitment.40 The reason
is that the center would use its power to discipline a region that has hit the borrowing
constraint, at which point WP breaks down.

Proposition 5 (No MPE with WP). The WP strategies C(P ) = C ′(P ) = Cwp for all P
cannot be supported as a MPE when the center lacks commitment.

Proof:
Suppose, by way of contradiction, that there was a MPE in which regions play
C(P ) = C ′(P ) = Cwp for all P . Suppose that µ > 0 (otherwise, consider the
equivalent argument for Region 2). Then, consider the center’s problem at P = 0.
Since consumption is constant, it must be that the center’s value function satisfies
WP = 0. Now, from the center’s HJB [3.10] it follows that the center’s optimal
strategy is to set T (0) = −µρ once Region 1 is broke, which obliges Region 1 to
set C(0) = µρ < ρ = Cwp. Thus the equilibrium is not WP – a contradiction.

■

H Comparative statics for volatility
In Fig. 8 we explore how the size of the shocks σ affects the equilibrium. As seen in
the right panel, when uncertainty is sufficiently high, the stable equilibrium at P = 1/2
vanishes.

As expected, the value for the center decreases as uncertainty increases (left panel).
Maybe surprisingly, the asset depletion decreases with σ. This suggest that regions have
more incentives to save when wealth is evenly split. The reason is that the stakes are
much higher when the stable dynamics around P = 1/2 disappear and regions are eager
to avoid a situation in which the drift push them towards bankruptcy.

40However, it can be proven that the WP allocation can be supported as an equilibrium in the game
between the regions if the center can commit to future (non-optimal) policies. For this, transfers to the
broke region at the constraint have to be high enough such that Cwp is feasible for the broke region.
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Value of the center

P

Steady statesAsset depletion

Figure 8: Comparative statics (σ). Model parameters as in Fig. 2 with σ ∈ [0.1, 0.5].

I Boundary behavior
It turns out that it is quite complicated to determine if the process Pt ever reaches the
boundary P = 0 or not. In this appendix, we derive a condition on the limiting drift
Ṗlim = limP→0 Ṗ (P ) that determines if P = 0 is reached or not.

In general, we will consider a diffusion process Pt on the interval (0, 1) induced by
agents’ policies according to the law of motion [3.4]. We will consider subsets of the state
space, intervals (a, b) with 0 ≤ a < b < 1, and study how long it takes the process
to exit the interval and at which bound the process exits, i.e. we let P0 ∈ (a, b). In the
following, denote by T(a,b) the first (random) exit time of the process Pt from the interval
(a, b), which is possibly infinite.

We first consider a simple process with constant drift and an approximating function
for volatility and derive the condition on the drift; we then approximate the law of motion
in the neighborhood of zero by this simple process. The following lemma follows Helland
(1996), who provides a nice overview of the mathematical results that are available for
the boundary behavior of one-dimensional diffusion processes (thus it is essential that
we have reduced the dimensionality of the problem to 1). Intuitively, they rely on space
and time transformations that are judiciously chosen so that the transformed process is a
standard Wiener Process.41 We reformulate the proof here for our convenience, explaining
the key steps in more detail than the original text, which is quite dense; consult the original
text and the sources cited therein, such as the classic probability textbook Breiman (1992),
to fill in the details.

Lemma 3. Let dPt = µdt + σ
√
PtdWt be a diffusion on the interval (0, b) with initial

condition P0 ∈ (0, b). Let T be the random (possible infinite) exit time from the interval.
Define the expected time to exit the interval from the point P0 as S(P0) = E0[

∫ T

0
dt].

Then:

1. If µ ≥ σ2/2, then the boundary P = 0 is inaccessible, i.e. for all P0 ∈ (0, b) we

41See also the online lecture notes ”Tricks for exit times and probabilities” by Matthias Kredler for a
(hopefully) intuitive explanation of these methods that is based on approximating discrete Markov chains.
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have
Prob(exit at 0|P0) = 0.

2. If, however, µ < σ2/2, then P = 0 is accessible. Specifically:

(a) S(P0) is finite for all P0 ∈ (0, b) and as P0 → 0, S(P0) → 0.

(b) The exit probabilities from the interval (0, b) are

Prob(exit at b|P0) = (P0/b)
1−2µ/σ2

,

P rob(exit at 0|P0) = 1− (P0/b)
1−2µ/σ2

,

and thus the probability to exit at 0 approaches 1 as P0 → 0.

Proof of Lemma 3

Space transformation: We will first look for a monotone transformation of
space (P ) that converts the process Pt into a martingale (or brings it to ”natural
scale”, in the language of the mathematical literature on diffusions). Precisely, we
look for an increasing, twice differentiable function v(·) such that the transformed
process Ut ≡ v(Pt) has the representation

dUt = su(Ut)dWt, [I.1]

i.e. Ut is driftless, and where su(·) is to be determined.42 Applying the Itô Rule to
v(·), we have

dUt = dv(Pt) = v′(Pt)
[
µdt+ σ

√
PtdWt

]
+

1

2
v′′(Pt)σ

2Ptdt. [I.2]

Since we want Ut to be driftless, we now impose Et[dUt] = 0. Then, since
Et[dWt] = 0, Eq. [I.2] implies that v′(·) must satisfy the following ODE for all
P ∈ (0, b):

v′′(P ) = −µ̃
v′(P )

P
, where we define µ̃ ≡ 2µ

σ2
.

A monotone increasing solution to this ODE is

v(P ) = c1

{
ln(P ) if µ̃ = 1,
P 1−µ̃

1−µ̃
if µ̃ ̸= 1.

+ c0 [I.3]

For simplicity, we choose constants c1 = 1 and c0 = 0 (note that we have to choose
c1 positive since we wanted v to be monotone increasing). We already see that the
space transform v(·) has very different properties in the two cases distinguished
by the proposition: If µ ≥ σ2/2 (µ̃ ≥ 1), then the transformed process Ut has no
lower bound, i.e. limP→0 v(P ) = −∞. If, on the other hand, µ < σ2/2 (µ̃ < 1),
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then the process Ut is lower-bounded and limP→0 v(P ) = 0.43 In the following,
we will also need the inverse of the space transformation, which is given by

P = v−1(u) =

{
exp(u) if µ̃ = 1,

(1− µ̃)
1

1−µ̃u
1

1−µ̃ if µ̃ ̸= 1.
[I.4]

Now, the variance of the process Ut can be obtained from [I.2] as

[su(Ut)]
2 = [su(v(Pt))]

2 = [v′(Pt)σ]
2
Pt

Kolmogorov Backward Equations: We will now study expected exit times and
exit probabilities of the process Pt from intervals (a, b), where a ∈ [0, b). In our
argument, we will first choose a positive lower bound, a ∈ (0, b), since this yields
a well-behaved problem, and then take the limit a ↓ 0 to learn about the process’s
behavior at the boundary. Note here that the exit times and probabilities of Ut

from (v(a), v(b)) are one-for-one related with the exit times and probabilities of
Pt from (a, b), since v(·) is monotone increasing. Let us now consider functions
F (·) defined by integrals of the form

F (U0) = E0

∫ T(v(a),v(b))

0

f(Ut)dt+ E0[g(UT (v(a),v(b)))], [I.5]

where T(v(a),v(b)) is the first exit time of Ut from the interval (v(a), v(b)) – which
is a random variable – and where f(Ut) and g(Ut) are arbitrary functions. Note
now that setting f(u) = 1 and g(u) = 0, F (U0) is the expected exit time from the
interval (v(a), v(b)) given that the process is started at U0. On the other hand, when
setting f(u) = 0, g(v(a)) = 0, and g(v(b)) = 1, F (U0) gives us the probability
that Ut exits the interval (v(a), v(b)) at the upper end (again given that the process
is started at U0).

Since Ut is a diffusion, we can now derive the Kolmogorov Backward Equation
for F (·) from [I.5]. For any interior Ut ∈ (v(a), v(b)) and dt small, we have
F (Ut) = f(Ut)dt + Et

[
F (Ut+dt)

]
. By the Ito Formula, we get Et

[
F (Ut+dt)

]
=

F (Ut) +
1
2
F ′′(Ut)[s

u(Ut)]
2dt (note that the term in F ′ is zero since Ut is driftless).

Thus we obtain the following second-order ODE for F that has to hold for all
u ∈ (v(a), v(b):

F ′′(u) = − 2f(u)

[su(u)]2
. [I.6]

Exit probabilities: For the case of the exit probability, we are almost done.
Since we set f(U) = 0 in this case, Eq. [I.6] tells us that we need to find a function
F (·) with zero second derivative everywhere – a line – that links the boundary
points F (v(a)) = 0 and F (v(b)) = 1. At least for a > 0, this is a well-behaved
problem and the solution for the exit probability at the top is given

P (Ut exits (v(a), v(b)) at v(b)|U0 = v(P0)) =
v(P0)− v(a)

v(b)− v(a)
[I.7]

= P (Pt exits (a, b) at b|P0) ∀P0 ∈ [a, b],∀a ∈ (0, b),
[I.8]
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Now, taking the limit as a → 0 gives us the statements about the exit probability
in the proposition. Consider first the case µ̃ ≥ 1: Since, for fixed U0, we certainly
have P (Pt exits (0, b) at b) ≥ P (Pt exits (a, b) at b) – any path that exits (a, b)
above certainly also exits (0, b) above–, and since the probability of exiting (a, b)
above approaches one as a → 0, we must conclude that the probability of exiting
(0, b) at the top must be one, from which it follows that the probability of exiting
at the bottom zero. Thus P = 0 is not accessible if µ̃ ≥ 1, as is claimed in Point 1
of the proposition. If µ̃ < 1, however, as v(a) → 0 the probability of exiting at the
top approaches v(P0)/v(b) and the probability of exiting at the bottom approaches
1− v(P0)/v(b), which yields the claims in Point 2.(ii) of the proposition.

Expected local time and Green Functions. We now go back to the ODE [I.6] for
the – more interesting – case where f(U) ̸= 0. We will, however, set the boundary
conditions zero from now on: F (a) = F (b) = 0. Note that we are not setting
f(U) = 1 for now since we still can glean some interesting insights from main-
taining a general f(·): We will be able to infer how much time the process spends
in different areas of the state space. Since f(·) and su(·) are known functions, the
ODE [I.6] is a standard problem that can be solved by Green-Function techniques.
Define the Green Function for the interval [a, b] as

Ga,b(X0, x) =

{
(X0−a)(b−x)

b−a
if X0 ≤ x,

(x−a)(b−X0)
b−a

if X0 > x.
[I.9]

Intuitively, the Green Functions are basis ”hat” functions in x that have zero second
derivative everywhere except at the kink point X0.44 The solution to the ODE [I.6]
is then given by

F (U0) =

∫ v(b)

v(a)

f(u)

≡L(u|U0): expected local time at u given U0︷ ︸︸ ︷
Gv(a),v(b)(U0, u)

2

[su(u)]2
du︸ ︷︷ ︸

speed measure

[I.10]

Note how this solution combines the Green basis functions and weighs them by
the size of the second derivative specified in the ODE [I.6] for each point. Now it
pays off that we have maintained an arbitrary function f(·): By setting indicator
functions f(u) = I(u ∈ C) for subsets C ∈ (v(a), v(b)) of the state space, F (U0)
becomes the expected time that Ut will spend in the set C before exiting the inter-
val. Thus, the function L(u|U0) is a ”time density”: It tells us the expected time
Ut will spend around u (given initial condition U0). L(u|U0) consists of two com-
ponents: First, the Green Function Gv(a),v(b)(U0, u), which is expected local time
at u in the case that U0 is a standard Wiener Process (with su = 1). The second
component is the so-called speed measure 2/[su(u)]2du that tells us how quickly
the process leaves the neighborhood of u: If the process has high variance at u,
it will leave the neighborhood of u quickly and thus spend less time there than

43



standard Brownian Motion; Ut will tend to be trapped more in the neighborhood
of u if the variance is low, however. We will now see that for high-enough drift,
the process can be trapped for very long time close to zero, which can make the
expected exit times grow unbounded.

Expected exit time. What is left to show is Point 2.(ii) in the proposition, i.e.
that the expected exit time is finite and converges to zero as P0 → 0 in the case
µ̃ < 1. We now set f(u) = 1 in Eq. [I.10] in order to find the expected exit time.
To be specific, denote by Sa(P0) the expected time of exit of the process Pt from
the interval (a, b) given that it is started at P0. For convenience, we change the
variable of integration from u back to P :

Sa(P0) =

∫ b

a

2v′(P )

σ2Pv′(P )2
Gv(a),v(b)(v(P0), v(P ))dP =

∫ b

a

2Gv(a),v(b)(v(P0), v(P ))

σ2P 1−µ̃
dP,

[I.11]
where we note that the change of variable required us to set du = v′(P )dP in
the first step. Now, as we let a → 0, µ̃ < 1 implies v(0) = 0 and thus Sa(P0)
converges to (use Eq. [I.3] and [I.9] to show this):

S0(P0) =
2(b1−µ̃ − P 1−µ̃

0 )

b1−µ̃σ2

∫ P0

0

1dP +
2P 1−µ̃

0

b1−µ̃σ2

∫ b

P0

b1−µ̃ − P 1−µ̃dP. [I.12]

The first integral evaluates to P0 and the second integral is clearly bounded since
the integrand can be bounded on the range of integration, thus S0(P0) is finite for
any P0 ∈ (0, b). Also, both terms in Eq. [I.12] converge to zero as P0 → 0, which
concludes the proof.45

■

Now that the heavy lifting is done, we can use the above lemma to characterize the
boundary behavior for an arbitrary drift by approximating it close to the boundaries:

Lemma 4. The boundary P = 0 is called accessible if it can be reached in finite time
with positive probability.

1. If limP→0[T (P ) − C(P )] ≥ σ2

2
, then P = 0 is inaccessible, i.e. the boundary is

never reached.

2. If limP→0[T (P )−C(P )] < σ2

2
, then P = 0 is accessible and is reached immediately

for small P , i.e. P ( exit (0, b) at 0|P0) → 0 as P0 → 0, and E0[T(0,b)|P0] → 0 as
P0 → 0.

Proof of Lemma 4
By the law of motion for Pt, Eq. [3.4], the drift of Pt converges to µ ≡
limP→0[T (P ) − C(P )] as P → 0. Again by Eq. [3.4], the variance of Pt is
σ2P (1− P ) = σ2(P − P 2); keeping only the highest order term this approaches
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σ2P as P → 0. For small ϵ, on the interval (0, ϵ) the process Pt is thus well ap-
proximated by dPt = µdt+σ

√
P tdWt . The results in the proposition then follow

from Lemma 3. ■

J Exit times and probabilities
This section shows how we compute the expected time to bankruptcy of one of the regions
and the probability that Region 1 is the one that ends up broke46, always considering the
equilibrium in which this eventually occurs.

First, consider the probability that Region 1 ends up broke, i.e. that stochastic process
ends up at P = 0. Denote this probability by Q(P ). If both boundaries P = 0, 1 are
accessible, then we have lim

P→0
Q(P ) = 1 and lim

P→1
Q(P ) = 0. For interior Pt ∈ (0, 1),over

a small-enough time interval dt the probability satisfies the martingale property

Q(Pt) = Et [Q(Pt+dt)] . [J.1]

We can approximate this Backward Equation over a discrete grid PN
i=1 as:

Q(Pi) = ∆t [wuQ(Pi+1) + wdQ(Pi−1) + (1− wu − wd)Q(Pi)+] ∀i ∈ {2, . . . , N − 1}
Q(P1) = 1, Q(PN) = 0

[J.2]
where wd and wu are the probabilities that the process goes up (or down) one position in
the grid over the interval ∆t. [J.2] is sparse linear system of N equation with N unknowns
that can be solved efficiently.

The right panel of Fig. 9 plots the probability that Region 1 ends up broke starting from
three different points (P = 1/2, 1/3, 1/10) as we vary µ. As expected, this probability is
higher when i) Region 1 is less liked by the center or ii) when the starting point is closer
to P = 0.
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Figure 9: S(P ) and Q(P ) as a function of µ. Model parameters as in Fig. 2

46See Appendix I for a formal characterization of these variables.
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Similarly, the expected time to bankruptcy from an interior point Pt ∈ (0, 1) has to
satisfy the backward equation

S(Pt) = dt+ Et [S(Pt+dt)] , [J.3]

the boundary conditions being lim
P→0

S(P ) = lim
P→0

S(P ) = 0. The numerical approximation
over a grid is analogous to [J.2]. The left panel of Figure 9 reveals that the expected time
to exit from P = 1/2 is maximal when the two regions are equally liked.

Figure 10 shows the expected time to exit (left panel) and the probability of exiting
at P = 0 (i.e. the probability of region 1 ending in bankruptcy) as a function of the
volatility σ. On the later, we can see that, as expected, the probability does not change
when the starting point is P = 1/2. However, as we start closer to P = 0 the probability
of bankruptcy of region 1 is slightly lower for low values of σ, as it is easier for the center
to balance wealth. Regarding the expected time, it decreases with the volatility and as we
get closer to the boundary.
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Figure 10: S(P ) and Q(P ) as a function of σ . Model parameters as in Fig. 2

K Costless redistribution
In this section we remove our assumption on costly transfers and replace it by:

Assumption 2 (Frictionless redistribution). X(τ̃) = τ̃ .

In this frictionless setting we find two novel types of equilibria. In the first, the center
immediately expropriates the less liked region. The second type, which we call smooth
equilibria, only exists in the knife-edge case when the two regions are equally liked by
the center and features consumption policies that are increasing in the wealth share.

K.1 Expropriation equilibrium
First, notice that under Ass. 2, the center may potentially use mass transfers. In the
reduced state space, a mass transfer induces a jump in the trajectory of P :

lim
dt→0

Pt+dt = Pt − Tm [K.1]
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For clarity, we will treat mass transfers (Tm) and flow transfers (Tf ) as different mathe-
matical objects.47 Doing this we follow Barczyk and Kredler (2014a); we also use their
extended equilibrium concept with mass transfers. We will see that, under certain condi-
tions, the center wants to transfer all wealth to one region instantaneously, which we call
expropriations:

Definition 4 (Expropriation). An expropriation policy are transfer rules that immediately
remove all wealth from on Region, i.e. Tm(P ) = P for expropriation of Region 1, or
T ′
m(P ) = (1− P ) for expropriation of Region 2.

In the following proposition we show that, in the case of frictionless transfers, the
center immediately expropriates the less liked region and spoon-feeds it thereafter. That
is, the center implements flow transfers that provide the less-liked region by the amount
preferred by center, which is part of the center’s preferred efficient allocations, see Propo-
sition 1. However, the better-liked region overconsumes according to the wealth-pooling
allocation (see Proposition 3), thus the resulting equilibrium is inefficient:

Proposition 6. If µ ≥ 1/2, an equilibrium exists in which the center expropriates the less
preferred Region 2 (setting Tm = −(1 − P )), implementing the allocation C = ρ and
C ′ = (1− µ)ρ.
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Figure 11: Expropriation equilibrium. Dashed blue line (red) represents the marginal ben-
efit (for the center) of one extra unit of transfer to Region 1 (Region 2) if the center could
control its consumption. Dotted black line represents the marginal utility of one extra unit
of consumption for any region if it is not constrained.

The intuition of the proof is as follows. First, notice that in the expropriation equilib-
rium, all players’ value functions are independent of P , since the center will intermedi-
ately make a mass transfer to bring the economy to a desired level of distribution P −Tm.

47It can be proven that, under Costly Redistribution (Assumption 1), mass transfers are ineffectual, where
by ineffectual we mean that mass tax to one region will generate no revenue.
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Now, if this level was in the interior, no region would be constrained and they will con-
sume as in the wealth pooling scenario, resulting in a welfare loss for the center equaling
the area 2A+B in Fig. 11 (with respect to the center’s ideal allocation). If, however, the
center expropriates Region 2 (setting P − Tm = 1), then Region 1 optimally consumes
C = Cwp = ρ. However, Region 2 being broke can consume only the flow transfer that
the center provides, which the center optimally sets to C ′ = (1 − µ)ρ, i.e. smaller than
what Region 2 would prefer. Expropriating Region 2 thus yields a welfare loss equaling
A in the figure. Similarly, we obtain the allocations C = µρ and C ′ = Cwp = ρ if the
center expropriates Region 1, leading to a welfare loss of A+B for the center. Thus, the
center’s minimal welfare loss is A and thus it expropriates the less-liked Region 2.

Formal proof of Proposition 6
For clarity, assume that σ = 0. For the case σ > 0, the proof is identical, since the
extra terms that appear in the HJB’s vanish. Given transfers Tf (·), Tm(·) and the
other region consumption C ′(·), Region 1 solves:

V (Pt) = max
C∈C(P,Tm)

ln(C(·))dt−
[
C(·) + C

′
(·) + Tf (Pt) + T ′

f (Pt)
] dt
ρ

+ e−ρdtV (Pt+dt)

s.t Pt+dt = Pt +
[
−(1− P )(Tf (Pt) + C) + P (T ′

f (Pt) + C ′)
]
dt− Tm

where C(P, Tm) = [0,−Tf (0)] if P − Tm = 0 and [0,∞) otherwise. When we
substitute the linear approximation e−ρ∆tV (Pt+∆t) ≈ (1 − ρdt)V (Pt − Tm) +
VP (Pt − Tm)(dPt) + o(∆t) , differently to the case of only flow transfers, (dt)0

terms do not cancel out. Therefore, to find the optimal choices we have to look
separately at (dt)0 and (dt)1 terms. Isolating (dt)0 terms, we find that the policies
have to satisfy the order-0 requirement:

V (P ) = V (P − Tm) [K.2]

which implies that the value function is flat in P . Terms up to order (dt)1 give us
the order-1 requirement:

ρV (P ) = max
C

ln(C(·))dt−
[
C(·) + C

′
(·) + Tf (P ) + T ′

f (P )
] 1
ρ

+
[
−(1− P )(Tf (P ) + C) + P (T ′

f (P ) + C ′)
]
VP (P − Tm)

Using the fact that Tf = −T ′
f (balanced budget) and that Vp(P ) = 0 (by [K.2]):

ρV (P ) = max
C

ln(C(·))dt−
[
C(·) + C

′
(·)
] 1
ρ

If the region is not broke after the mass transfer Tm, the FOC [3.8] tell us that the
region it will consume the wealth pooling allocation C = ρ. If the region is broke,
however, it may be limited by the flow transfer −Tf .

C(P, Tf , Tm) =

{
ρ if P − Tm > 0

min{ρ,−Tf} otherwise
[K.3]
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Similarly for Region 2 (just change the signs of transfers and replace P by 1−P ).
We can proceed analogously with the center’s problem. The order-0 requirement
in this case is:

W (P ) = max
Tm

W (P − Tm) [K.4]

which implies WP (P − Tm) = 0. Terms up to order (dt)1 (order-1 requirement)
determine Tf and Tm:

ρW (P − Tm) = max
Tf=−T ′

f

Tm=−T ′
m

[
µln(C(C;P, Tf , Tm)) + (1− µ)ln

(
C

′
(C ′; 1− P,−Tf ,−Tm)

)]
−
[
C(·) + C

′
(·) + Tf (P ) + T ′

f (P )
] 1
ρ
+WP (P − Tm)Ṗ

where Tm = arg maxT̃m
W (P − T̃m). Notice last term vanish by [K.4].

Looking at the consumption policies of the regions [K.3] we can see that there
are three scenarios depending on the mass transfer:

1. P − Tm ∈ (0, 1). No region is constrained and both consume the wealth
pooling allocation. Tf , T

′
f are undetermined. The payoff of the center is:

ρW = ln(ρ)− 2.

2. Tm = −(1− P ). Region 1 (the preferred by the center) takes all the wealth
and Region 2 is broke and consumes C ′

= −T ′
f = (1 − µ)ρ, the preferred

allocation by the center. The payoff of the center is: ρW = ln(ρ) + (1 −
µ)ln(1− µ)− (2− µ).

3. Tm = P . Region 2 takes all the wealth and Region 1 is broke and consumes
C = −Tf = µρ. The payoff of the center is: ρW = ln(ρ)+µln(µ)−(1+µ).

Now, for µ > 1/2 it is clear that ρW is higher in scenario 2. ■

K.2 Smooth equilibria
In this section we construct an equilibrium in which the center only uses flow-type (smooth)
transfers. It turns out that this equilibrium only exist in the knife-edge case of equal wel-
fare weighs (µ = 1/2). In these smooth equilibria, regions follow a consumption policy
increasing in P that coincides at the boundaries with the consumption allocations in the
expropriation equilibrium. There is a continuum of transfer policies T (P ) that sustain
this allocation, giving rise to multiplicity of equilibria. Different transfer schemes lead to
different dynamics in P , different ergodic distributions and different value function for
regions. The set of transfer policies spans between two extremes that resemble the expro-
priation equilibria, passing through a symmetric equilibrium in which regions avoiding
bankruptcy.
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K.2.1 Equilibrium candidates

We first derive three conditions for the consumption allocation in a smooth equilibrium:
center’s indifference condition, best responding condition and the frontier condition(s).

Center’s indifference condition First, for the center to use flow-type transfers (and no
mass transfer at any P ), the center has to be indifferent between all P , implying that
W (P ) = const for all P .48 Since WP = 0 and WPP = 0, the center’s HJB, Eq. [4.2], then
implies

ρW̄ = µln(C(P )) + (1− µ)ln(C ′(P ))−
[
C(P ) + C ′(P )

]
1
ρ
. [K.5]

This, in turn, means that regions’ consumption policies have to trace out an indifference
curve in the planner’s utility, see Fig. 12.

Best responding condition Furthermore, the planner’s value is a weighted sum of the
regions’ values,

W (P ) = µV (P ) + (1− µ)V ′(P ).

Differentiating with respect to P , using Regions’s FOCs [3.8] and the fact that WP (P ) = 0
gives us the restriction:

1

C ′(P )
− 1

ρ︸ ︷︷ ︸
≡M ′(P )

=
P

1− P

µ

1− µ

(
1

C(P )
− 1

ρ

)
︸ ︷︷ ︸

≡M(P )

for all P ∈ [0, 1]. [K.6]

Threfore, marginal utilities are related one-to-one (when fixing a value of P ): If Region 1
perceives a high value of owning more of the cake, then also Region 2 must perceive a
high value of owning more, and both will choose lower consumption (and thus higher
marginal utility).

Conditions at the frontier Now, consider the center’s problem at P = 0. From Re-
gion 2’s FOC, we know that C ′(0) = ρ = Cwp. Since Region 1 is broke, its consumption
will be the minimum of the solution of its FOC [3.8] Cunc and the flow transfer −Tf (0)
provided by the center. Noticing that WP (0) = 0, the problem of the center is:

max
−Tf (0)≥0

{
µln(min{Cunc(P ),−Tf (0)})+(1−µ)ln(Cwp)−

[
min{Cunc(P ),−Tf (0)}+Cwp

]
1
ρ

}
,

This criterion is concave in −Tf (0) on the part where −Tf (0) ≤ Cunc and it is invari-
ant in −Tf (0) on the range −Tf (0) ≥ Cunc. If Cunc ≥ µρ, the center can set Region 1’s
consumption to the desired level and set −Tf (0) = µρ. If Region 1’s plan is to consume
less than µρ, then the center should set −Tf (0) = Cunc0 since the criterion is decreasing

48Formally, this result arises from the order-0 requirement of the problem of the center when mass trans-
fers are allowed; see Eq. [K.4] in the expropriation equilibria proof.
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Figure 12: Smooth equilibria
Smooth equilibrium candidates for κ = 0, µ = 0.5, σ = 0.02, ρ = 0.04. The origin represents the wealth
pooling allocation. Dashed/pointed black lines are the efficient allocations that cross at the center’s bliss
point. Solid blue lines trace out the indifference curves of the center (center’s indifference condition), bold
dashed vertical lines the frontier conditions and red dashed diagonal lines the best response conditions for
different values of P .

in −T . Using the analogous reasoning for Region 2 in the case P = 1, we conclude that
in equilibrium it must be that the following frontier conditions are satisfied:

C(0) ≤ µρ, ⇐⇒ M(0) ≥ µ− 1

ρµ
[K.7]

C ′(1) ≤ (1− µ)ρ ⇐⇒ M ′(1) ≥ µ

ρ(1− µ)
[K.8]

We note that all conditions that we have found so far are independent of the strength
of shocks, σ.

These conditions are graphically represented on the marginal utility (M,M ′) space in
Figure 12 for the case of identical regions (µ = 0.5). Equilibrium candidates in the figure
trace out the center’s indifference curves (center’s indifference condition), connect the
vertical black dash-dotted line and the horizontal black pointed line that pass through the
WP allocation (frontier conditions) and pass through regions where red (dash-dot) lines
exist (region’s are best responding).

We see that there is exactly one equilibrium candidate to the lower left of the center’s
bliss point. This equilibrium candidate is such that regions’ consumption functions are
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Figure 13: Smooth equilibrium candidates for µ = 0.6. See legend of Figure 12

increasing in their wealth share (M increases in P and thus C decreases in P , whereas
M ′ decreases in P ). We call this equilibrium candidate the monotone one. Notice that for
this candidate,

C(0) = C ′(1) =
ρ

2
; C(P ), C ′(P ) ∈

[ρ
2
, ρ
]
∀P ∈ (0, 1) [K.9]

However, there is also a continuum of equilibrium candidates that pass above and to
the right of the center’s bliss point, out of which one is marked with a dashed line. We call
these candidates the non-monotone ones, since consumption functions are not monotone
in wealth shares for these candidates. For low values of P , M is increasing in P (the
area to the lower right of the center’s bliss point), and thus C becomes decreasing in P .
However, for higher values of P , C(P ) is increasing. Similarly for Region 2. Finally,
note that no equilibrium candidates can be constructed that go through the north-west and
south-east quadrant since none of the red dashed diagonal lines (best response conditions)
passes through these.

For the asymmetric case, in which the center favors one region over the other, the
monotone candidate equilibrium disappears, since it is impossible to connect the black
lines that represent the center’s best-response restrictions at P ∈ {0, 1} by an indifference
curve without leaving the north-east quadrant, meaning that the monotone equilibrium is
a knife-edge result: it can only exist for µ = 1/2. The continuum of non-monotone
candidates to the top right of the center’s bliss point persist, however, See Figure 13
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K.2.2 Existence of Smooth equilibria

Notice that, so far, we have not derived any restrictions on the transfer function T (P ).
However, the slope of the transfer function has to give regions the right incentives to save:
regions’ Euler Equations (EE) imply restrictions in the form of an ordinary differential
equation for T (·). Region 1’s EE is obtained differentiating its HJB [3.7] with respect to P
and using the FOC [3.8]:

0 = −Ṗ VPP − σ2P (1− P )VPPP︸ ︷︷ ︸
=−AVP

−σ2(1−2P )VPP +
1
ρ
C ′

P +VP

[
ρ−C−C ′+TP −PC ′

P

]
[K.10]

where we have suppressed the function arguments and their derivatives for readability. It
turns out that we do not need the EE of Region 2, since it can be shown to be implied
by [K.10].

Using the law of motion Ṗ , [K.10] then implies that the transfer function T (·) obeys

TP (P ) = −γ(P )T (P ) + F (P ). [K.11]

This is a first-order ODE for T with decay rate γ(P ) ≡ VPP/VP and forcing vari-
able F (P ).49 The solution of this ODE can be written as (with T (0.5) being a constant):

T (P ) = exp

(
−
∫ P

0.5

γ(y)dy

)
︸ ︷︷ ︸

≡Γ(P )

T (0.5) +

∫ P

0.5

exp

(
−
∫ P

x

γ(y)dy

)
F (x)dx︸ ︷︷ ︸

≡Tsymm(P )

, [K.12]

i.e. T is a sum over the forcing variable F , which is compounded by γ. The following
proposition summarizes the results on the monotone equilibria.

Proposition 7. Suppose that µ = 1/2 and that transfers are frictionless. If Tsymm(1) ≥
ρ/2, then there exist a continuum of smooth monotone equilibria. Allocations {C(P ), C ′(P )}
are given by [K.5], [K.6] and [K.9]. Transfer schemes {T (P ), T ′(P )} satisfy [K.12] with
boundary conditions T (0.5) ∈ [Tmin(0.5), Tmax(0.5)], where:

Tmin(0.5) =
Tsymm(1)− ρ

2

Γ(1)
; Tmax(0.5) = −Tmin(0.5). [K.13]

K.2.3 Multiplicity of equilibria: Transfer schemes

Fig. [14] depicts the set of smooth equilibria under a reasonable parameterization. The
bottom left panel shows that the consumption allocation is unique and increasing in the
share of wealth, as described before. At the boundaries, consumption approaches the ex-
propriation allocation. The depletion of total resources (bottom right panel) in the interior
is slightly faster than in the expropriation equilibria. This is expected, since the center
cannot control the regions when they are not constrained.

49Where F =
[
PC ′− (1−P )C−σ2(2P −1)

]
VPP

VP
+C+C ′−ρ+C ′

P [P − 1
ρVP

]+σ2P (1−P )VPPP

VP
.
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Figure 14: Smooth monotone equilibria for κ = 0, µ = 0.5, σ = 0.02, ρ = 0.04.

As for transfer schemes T (P ) (see upper left panel), they appear in a band around
Tsymm(P ) (black line) and delimited by Tmin and Tmax (blue lines), which denote the least
and most favorable tax scheme for Region 1 that constitute equilibria. By construction,
Tsymm(0) is zero at P = 1/2 and, crucially, is more generous to the broke region at the
boundaries than the expropriation equilibrium. The law of motion for P (upper right)
induces one unstable steady state at P = 1/2 and two stable ones close to the boundaries.
50

The ergodic distribution generated by this law of motion (middle right panel) is cen-
tered these two stable steady states. When started at P = 1/2, luck determines which
region turns poorer, the center not taxing aggressively enough to balance the wealth dis-
tribution. Once one region turns poor enough, savings incentives for the poor region are
strong enough to avoid bankruptcy, which gives the poor region a higher value than under
expropriation (middle left). Interestingly, at P = 1/2 both regions are indifferent between
the symmetric monotone smooth equilibrium and a fair lottery of the two expropriation
equilibria.

When the tax schedule is tilted against Region 1 (T̃ , dashed red lines) the more fa-
vorable steady state for Region 1 vanishes. Region 1 eventually spends most of the time
close to bankruptcy, enjoying a lower value. The maximum tax on Region 1 that can
be imposed (dashed blue line) yields the expropriation allocation once Region 1 turns
broke, which occurs probability 1 in the long run (i.e. the ergodic distribution is a mass
point at P = 0). In this sense, the smooth equilibria span a continuum between the two

50As σ grows, the stable steady states move closer to P = 1/2.
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expropriation equilibria (which both exist for µ = 1/2).

Non-monotone candidates Up to now, we have focused on monotone candidates. Now
we turn our attention to candidates that imply consumption policies that are non-monotonous
in P – an empirically unappealing property. Still, we check numerically if such candidates
can constitute equilibria. To do so, we pick a consumption allocation for a non-monotone
candidate; start with the minimum transfer possible at the boundary, Tmin(1) = −C ′(1);
and solve the ODE [K.11] backwards. If Tmin(0) ≥ −C(0), we have found an equilib-
rium, otherwise the guess is ruled out. We do not find any T (P ) that sustain any monotone
equilibrium in our simulations, considering a wide range of guesses.
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