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SECURITY OF THE MOST SIGNIFICANT BITS
OF THE SHAMIR MESSAGE PASSING SCHEME

MARIA ISABEL GONZÁLEZ VASCO AND IGOR E. SHPARLINSKI

Abstract. Boneh and Venkatesan have recently proposed a polynomial time
algorithm for recovering a “hidden” element α of a finite field Fp of p elements
from rather short strings of the most significant bits of the remainder modulo
p of αt for several values of t selected uniformly at random from F∗p. Unfortu-
nately the applications to the computational security of most significant bits of
private keys of some finite field exponentiation based cryptosystems given by
Boneh and Venkatesan are not quite correct. For the Diffie-Hellman cryptosys-
tem the result of Boneh and Venkatesan has been corrected and generalized
in our recent paper. Here a similar analysis is given for the Shamir message
passing scheme. The results depend on some bounds of exponential sums.

1. Introduction

Let p be an n-bit prime and let Fp be a field of p elements.
For integers s and q ≥ 1 we denote by (s rem q) the remainder of s on division

by q. We also use log z to denote the binary logarithm of z > 0.
The Shamir message passing scheme can be described in the following way

(see [1], as well as Protocol 12.22 from [9]).
To send a message m ∈ [0, p− 1] from Alice to Bob:
◦ Alice selects a random a ∈ [0, p − 2] with gcd(a, p − 1) = 1, computes A =

(ma rem p) and sends A to Bob.
◦ Bob selects a random b ∈ a[0, p − 2] with gcd(b, p − 1) = 1, computes B =(

Ab rem p
)
a and sends B to Alice.

◦ Alice finds u ∈ [0, p − 2] satisfying the congruence au ≡ 1 (mod p − 1),
computes C = (Bu rem p) and sends C to Bob.
◦ Bob finds v ∈ [0, p−2] satisfying the congruence bv ≡ 1 (mod p−1), computes
m = (Cv rem p).

Given a primitive root g ∈ Fp, Boneh and Venkatesan [1] have proposed a method
of recovering a “hidden” element α ∈ Fp from about n1/2 most significant bits of
(αgxi rem p), i = 1, . . . , d, for d =

⌈
2n1/2

⌉
integers x1, . . . , xd, chosen uniformly

and independently at random in the interval [0, p−2]. This result has been applied
to proving security of reasonably small portions of bits of private keys of several
cryptosystems. In particular, Theorem 3 of [1] claims the security of the

⌈
n1/2

⌉
+

dlogne most significant bits of the message in the Shamir message passing scheme.
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Unfortunately the proof of this result is not quite correct because the exponent x
of the corresponding multiplier gx (where g will in fact be mb, m and b chosen in
the scheme) must satisfy the additional condition gcd(bx + 1, p − 1) = 1; thus gx

runs through some special subset of F∗p (even if g is a primitive root) rather than
through the whole F∗p and therefore Theorem 1 of [1] does not apply. The proof of
Theorem 2 in [1], dealing with security of most significant bits of the Diffie–Hellman
key, suffers from a similar problem. In [3] the result of Theorem 1 of [1] has been
extended to the case when g is not necessarily a primitive root but an element of
multiplicative order T , provided that T ≥ p1/3+ε for any prime p and T ≥ pε for
almost all p. It has also been shown that this statement allows us to close the gap
in the proof of Theorem 2 of [1]. Namely it is shown that by having an oracle which
computes

⌈
n1/2

⌉
+ dlogne most significant bits of the private key

(
gab rem p

)
from

the values of the public keys A = (ga rem p) and B =
(
gb rem p

)
one can construct

a probabilistic polynomial time algorithm for computing the whole key
(
gab rem p

)
for all pairs (a, b) ∈ [0, T − 1]2, where T is the multiplicative order of g.

The method of [3] relies on some bounds of exponential sums and results about
the distribution of exponential functions in residue classes. Here we use a similar
approach to study the bit security of the Shamir message passing scheme.

A survey of similar results for other functions of cryptographic interest has re-
cently been given in [2].

We denote by ν(k) the number of distinct prime divisors and by ϕ(k) the Euler
function of k ≥ 2.

Throughout the paper the implied constants in symbols ‘O’ may occasionally,
where obvious, depend on the small positive parameter ε and are absolute otherwise;
they all are effective and can be explicitly evaluated.

2. Distribution of exponential functions

modulo p

As in [3] the following bound of exponential sums plays the central role in our
arguments.

Let e(z) = exp(2πiz/p).
The following estimate is well known (see the proof of Lemma 2 in [7] or Theo-

rem 8.2 in [11]).

Lemma 2.1. For any element ϑ ∈ Fp of multiplicative order τ the bound

max
0≤H≤τ−1

max
gcd(c,p)=1

∣∣∣∣∣∣
∑

0≤x≤H
e (cϑx)

∣∣∣∣∣∣ = O
(
p1/2 log p

)
holds.

For b ∈ [1, p − 2] with gcd(b, p − 1) = 1 we denote by Xb the set of integers
x ∈ [0, p− 2] with gcd(bx+ 1, p− 1) = 1. In particular, #Xb = ϕ(p− 1).

Let us fix an element g of multiplicative order T modulo p. Combining Lemma 2.1
with the sieve of Eratosthenes we derive

Lemma 2.2. For any b with gcd(b, p− 1) = 1 the bound

max
gcd(c,p)=1

∣∣∣∣∣∑
x∈Xb

e (cgx)

∣∣∣∣∣ = O
(

2ν(p−1)p1/2 log p
)

holds.

2



Proof. Let µ(k) denote the Möbius function. We recall that µ(1) = 1, µ(k) = 0 if
k ≥ 2 is not square-free and µ(k) = (−1)ν(k) otherwise.

Using the Möbius function µ(d) over the divisors of p−1 to detect the co-primality
condition and interchanging the order of summation, we obtain (see Section 3.d of
Chapter 2 of [14])∑

x∈Xb

e (cgx) =
∑
d|p−1

µ(d)
p−2∑
x=0

bx+1≡0 (mod d)

e (cgx) .

Since gcd(b, p − 1) = 1, the condition bx + 1 ≡ 0 (mod d) can be written in the
form x = dz + αd with some integer αd, 1 ≤ αd ≤ d− 1. Therefore

p−2∑
x=0

bx+1≡0 (mod d)

ep (cgx) =
∑

0≤dz+αd≤p−2

ep
(
cgdz+αd

)
.

Denoting by τd the multiplicative order of ϑd = gd and remarking that τd ≥ T/d,
we derive from Lemma 2.1∑

0≤dz+αd≤p−2

ep
(
cgdz+αd

)
=

∑
0≤z≤(p−2−αd)/d

ep (cgαdgzd)

= O

((⌊
p− 1
τdd

⌋
+ 1
)
p1/2 log p

)
= O

((⌊
p− 1
T

⌋
+ 1
)
p1/2 log p

)
= O

(
p3/2T−1 log p

)
.

Taking into account that ∑
d|p−1

|µ(d)| = 2ν(p−1)

(see Section 3.b of Chapter 2 of [14]), we obtain the desired result.

For integers λ, b, r and h let us denote by Nλ,b(r, h) the number of x ∈ Xb with
(λgx rem p) ∈ [r + 1, r + h].

We need the following asymptotic formula which shows that Nλ,b(r, h) is close
to its expected value ϕ(p− 1)h/p.

Lemma 2.3. For any ε > 0 there exists δ > 0 such that for T ≥ p1/2+ε the bound

max
0≤r,h≤p−1

max
gcd(λ,p)=1

max
gcd(b,p−1)=1

∣∣∣∣Nλ,b(r, h)− ϕ(p− 1)h
p

∣∣∣∣ = O
(
p1−δ)

holds.

Proof. We remark that Nλ,b(r, h) is the number of solutions of the congruence

λgx ≡ y (mod p), x ∈ Xb, y = r + 1, . . . , r + h.

Using the identity (see Exercise 11.a in Chapter 3 of [14])
p−1∑
c=0

e (cu) =
{

0, if u 6≡ 0 (mod p);
p, if u ≡ 0 (mod p);
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we obtain

Nλ,b(r, h) =
1
p

∑
x∈Xb

r+h∑
y=r+1

p−1∑
c=0

e (c (λgx − y))

=
1
p

p−1∑
c=0

∑
x∈Xb

e (cλgx)
r+h∑
y=r+1

e (−cy) .

Separating the term #Xbh/p = ϕ(p− 1)h/p corresponding to c = 0 we obtain∣∣∣∣Nλ,b(r, h)− Nbh

p

∣∣∣∣ ≤ 1
p

p−1∑
c=1

∣∣∣∣∣∑
x∈Xb

e (cλgx)

∣∣∣∣∣
∣∣∣∣∣
r+h∑
y=r+1

e (−cy)

∣∣∣∣∣
=

1
p

p−1∑
c=1

∣∣∣∣∣∑
x∈Xb

e (cλgx)

∣∣∣∣∣
∣∣∣∣∣
r+h∑
y=r+1

e (cy)

∣∣∣∣∣ .
Using Lemma 2.2 and the estimate

max
0≤r,h≤p−1

p−1∑
c=1

∣∣∣∣∣
r+h∑
y=r+1

e (cy)

∣∣∣∣∣ = O(p log p)

(see Exercise 11.c in Chapter 3 of [14]), we obtain∣∣∣∣Nλ,b(r, h)− ϕ(p− 1)h
p

∣∣∣∣ = O
(

2ν(p−1)p3/2T−1 log2 p
)
.

Because ν(p− 1)! ≤ p− 1, we conclude that 2ν(p−1) ≤ po(1) and the desired result
follows.

3. Lattices

As in [1], our results rely on rounding techniques in lattices. We therefore review
a few related results and definitions.

Let {b1, . . . ,bs} be a set of linearly independent vectors in Rs. The set of
vectors

L = {z : z =
s∑
i=1

tibi, t1, . . . , ts ∈ ZZ}

is called an s-dimensional full rank lattice. The set {b1, . . . ,bs} is called the basis
of L.

It has been remarked in Section 2.1 of [8] and then in Section 2.4 of [10] that
the following statement holds which is somewhat stronger than that usually used
in the literature.

Lemma 3.1. There exists a polynomial time algorithm which, for a given lattice L
and a vector r = (r1, . . . , rs) ∈ Rs, finds a lattice vector v = (v1, . . . , vs) satisfying
the inequality

s∑
i=1

(vi − ri)2

≤ exp
(
O

(
s log2 log s

log s

))
min

{
s∑
i=1

(zi − ri)2 , z = (z1, . . . , zs) ∈ L
}
.
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Proof. The statement is a combination of the Schnorr modification [13] of the lat-
tice basis reduction algorithm of Lenstra, Lenstra and Lovász [5] with a result of
Kannan [6] about reduction of the closest vector problem to the shortest vector
problem.

For integers g and x1, . . . , xd, selected in the interval [0, p − 2], we denote by
Lg,p (x1, . . . , xd) the (d + 1)-dimensional lattice generated by the rows of the fol-
lowing (d+ 1)× (d+ 1)-matrix:

p 0 0 . . . 0 0
0 p 0 . . . 0 0

...
...

0 0 0 . . . p 0
t1 t2 t3 . . . td 1/p

(3.1)

where ti = (gxi rem p), i = 1, . . . , d.
The following result is a generalization of Theorem 5 of [1] (which corresponds

to the case T = p− 1).

Lemma 3.2. Let d = 2
⌈
n1/2

⌉
and µ = n1/2/2 + 3, p sufficiently large prime

number. Let α be a fixed integer in the interval [0, p − 1]. For any ε > 0, any
element g ∈ Fp of multiplicative order T ≥ p1/2+ε and any b ∈ [1, p − 2] with
gcd(b, p − 1) = 1 the following statement holds: Chosen integers x1, . . . , xd uni-
formly and independently at random in the set Xb, then with probability P ≥
1− 2−n

1/2
for any vector u = (u1, . . . , ud, 0) with(

d∑
i=1

((αgxi rem p)− ui)2

)1/2

≤ p2−µ,

all vectors v = (v1, . . . , vd, vd+1) ∈ Lg,p (x1, . . . , xd) satisfying(
d∑
i=1

(vi − ui)2

)1/2

≤ p2−µ,

are of the form

v = ((βgx1 rem p), . . . , (βgxd rem p), β/p)

with some β ≡ α (mod p).

Proof. As in [1] we define the modular distance between two integers β and γ as

dist p(β, γ) = min
b∈ZZ
|β − γ − bp| = min {((β − γ) rem p) , p− ((β − γ) rem p)} .

It follows from Lemma 2.3 that for any β and γ such that β 6≡ γ (mod p) the
probability P (β, γ) of

dist p(βgx, γgx) > p2−µ+1

for an integer x chosen uniformly at random in the set Xb is

P (β, γ) = 1− 2−µ+2 +O
(
p−δ
)

for some δ > 0, depending only on ε. Thus

P (β, γ) ≥ 1− 5
2µ
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provided that p is large enough.
Therefore, for any β 6≡ α (mod p),

Pr
[
∃i ∈ [1, d] | dist p(βgxi , αgxi) > p2−µ+1

]
= 1− (1− P (α, β))d ≥ 1−

(
5
2µ

)d
,

where the probability is taken over integers x1, . . . , xd chosen uniformly and inde-
pendently at random in the set Xb.

Since for β 6≡ α (mod p) there are only p − 1 possible values for (β rem p), we
obtain

Pr
[
∀β 6≡ α (mod p), ∃i ∈ [1, d] | dist p(βgxi , αgxi) > p2−µ+1

]
≥ 1− (p− 1)

(
5
2µ

)d
> 1− 2−n

1/2

because

d(µ− log 5) >
⌈
n1/2

⌉
n1/2 + 2

⌈
n1/2

⌉
(3− log 5) > log p+ n1/2.

The rest of the proof is identical to the proof of Theorem 5 of [1]; we outline it
for the sake of completeness.

Let us fix some integers x1, . . . , xd with

min
β 6≡α (mod p)

min
i∈[1,d]

dist p(βgxi , αgxi) > p2−µ+1.(3.2)

Let v be a lattice point satisfying(
d∑
i=1

(vi − ui)2

)1/2

≤ p2−µ.

Clearly, since v ∈ Lg,p (x1, . . . , xd), there are integers β, z1, . . . , zd such that

v = (βt1 − z1p, . . . , βtd − zdp, β/p),
where, as in (3.1), ti = (gxi rem p), i = 1, . . . , d.

If β ≡ α (mod p), then for all i = 1, . . . , d we have βti − zip = (βti rem p), for
otherwise there would be j ∈ {1, . . . , d} so that |vj − uj| > p2−µ.

Now suppose that β 6≡ α (mod p). In this case we have(
d∑
i=1

(vi − ui)2

)1/2

≥ min
i∈[1,d]

dist p(βti, ui)

≥ min
i∈[1,d]

( dist p(βti, αti)− dist p(ui, αti))

> p2−µ+1 − p2−µ = p2−µ,

which contradicts our assumption. As we have seen, condition (3.2) holds with
probability exceeding 1− 2−n

1/2
and the result follows.

For an integer k ≥ 1 we define fk(t) by the inequalities

(fk(t)− 1)
p

2k
≤ (t rem p) < fk(t)

p

2k
.

Thus, roughly speaking, fk(t) is the integer defined by the k most significant bits
of (t rem p).

Using Lemma 3.2 in the same way as Theorem 5 of [1] is used in the proof of
Theorem 1, we obtain
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Lemma 3.3. Let d = 2
⌈
n1/2

⌉
and k =

⌈
n1/2

⌉
+ dlogne. For any ε > 0, any

element g ∈ Fp of multiplicative order T ≥ p1/2+ε and any b ∈ [1, p − 2] with
gcd(b, p − 1) = 1 the following statement holds: There exists a deterministic poly-
nomial time algorithm A such that for any integer α ∈ [1, p− 1] given 2d integers

ti = (gxi rem p) and si = fk (αti) , i = 1, . . . , d,

its output satisfies

Pr
x1,... ,xd∈Xb

[A (t1, . . . , td; s1, . . . , sd) = α] ≥ 1− 2−n
1/2

if x1, . . . , xd are chosen uniformly and independently at random in the set Xb.

Proof. We follow the same arguments as in the proof of Theorem 1 in [1] which we
briefly outline here for the sake of completeness. We refer to the first d vectors in
the defining matrix of Lg,p (x1, . . . , xd) as p-vectors.

Let us consider the vector r = (r1, . . . , rd, rd+1) where

ri = si
p

2k
, i = 1, . . . , d, and rd+1 = 0.

Multiplying the last row vector (t1, . . . , td, 1/p) of the matrix (3.1) by α and sub-
tracting certain multiples of p-vectors, we obtain a lattice point

uα = (u1, . . . , ud, α/p) ∈ Lg,p (x1, . . . , xd)

such that

|ui − ri| < p2−k, i = 1, . . . , d.

Therefore, (
d+1∑
i=1

(ui − ri)2

)1/2

≤ p(d+ 1)1/22−k.

Now we can use Lemma 3.1 (with a slightly rougher constant 2(d+1)/4) to find in
polynomial time a lattice vector v = (v1, . . . , vd, vd+1) ∈ Lg,p (x1, . . . , xd) such that(

d∑
i=1

(vi − ri)2

)1/2

≤ 2(d+1)/4 min


(
d+1∑
i=1

(zi − ri)2

)1/2

, z = (z1, . . . , zd, zd+1) ∈ L


≤ 2(d+1)/4p(d+ 1)1/22−k ≤ p2−µ−1,

where µ = n1/2/2 + 3, provided that n is sufficiently large. We also have(
d∑
i=1

(ui − ri)2

)1/2

≤ pd1/22−k ≤ p2−µ−1.

Therefore, (
d∑
i=1

(ui − vi)2

)1/2

≤ p2−µ.
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Applying Lemma 3.2, we see that v = uα with probability at least 1− 2−n
1/2

, and
therefore, α can be recovered in polynomial time.

4. Security of the most significant bits of the Shamir scheme

We are ready to prove the main results.
For a positive integer k we suppose that we are given an oracle Ok such that for

any given values of A, B, C it outputs the k most significant bits of m if the triple
(A,B,C) corresponds to a proper usage of the Shamir message passing scheme and
an error message, otherwise.

More precisely, given A, B and C, the oracle Ok outputs:
◦ fk(m), if

A = (ma rem p) , B =
(
Ab rem p

)
, C = (Bu rem p) ,

where au ≡ 1 (mod p − 1) for some m ∈ [1, p − 1] and a, b ∈ [0, p − 2] with
gcd(ab, p− 1) = 1;

◦ an error message, otherwise.

Theorem 4.1. Assume that we are given an oracle Ok as above, with

k =
⌈
n1/2

⌉
+ dlogne .

Then there exists a probabilistic polynomial time algorithm which computes the
message m, for all except O

(
p1/2+ε

)
messages m ∈ [1, p − 1], from the values

of A = (ma rem p), B =
(
Ab rem p

)
and C = (Bu rem p), where a, b ∈ [0, p − 2]

with gcd(ab, p− 1) = 1 and au ≡ 1 (mod p− 1), which uses the expected number of
O
(
n1/2 logn

)
calls of the oracle Ok.

Proof. We exclude from the consideration the messages m ∈ [1, p−1] of multiplica-
tive order less than p1/2+ε. Obviously, the number E of such excluded messages
does not exceed

E ≤ τ(p− 1)p1/2+ε/2,(4.1)

where τ(p − 1) is the number of positive integer divisors of p− 1. Indeed, for any
divisor D|p− 1 there are at most D values of m ∈ [1, p− 1] of multiplicative order
D. Using the bound τ(p − 1) = O

(
pε/2

)
(see Theorem 5.2 of Chapter 1 of [12]),

we obtain from (4.1) that the exceptional set is of size E = O
(
p1/2+ε

)
.

Let us consider a message m of multiplicative order T ≥ p1/2+ε/2.
For x ∈ Xb we put ax = a and define bx ∈ [1, p− 2] from the congruence

bx(bx+ 1) ≡ b (mod p− 1).

We also put

mx =
(
m1+bx rem p

)
.

We remark that

Ax = (max
x rem p) , Bx =

(
maxbx
x rem p

)
, Cx =

(
mbx
x rem p

)
can be computed as

Ax = (ACx rem p) , Bx = B, Cx = C.

Although the value of b is not known, one can select elements x ∈ Xb uni-
formly and independently at random by querying the oracle Ok with the triples

8



(Ax, Bx, Cx) where the elements x are selected uniformly and independently at ran-
dom in the interval [0, p− 2]. If gcd(bx+ 1, p− 1) > 1, the oracle returns an error
message; otherwise x ∈ Xb. Now we choose d = 2

⌈
n1/2

⌉
elements x1, . . . , xd ∈ Xb

uniformly and independently at random. Because
p− 1
#Xb

=
p− 1

ϕ(p− 1)
= O(log log p)

(see Theorem 5.1 of Chapter 1 of [12]), we see that the expected number of choices
of x ∈ [0, p − 2] before we get d elements in Xb is O(d log log p) = O(n1/2 logn).
We remark that these elements are independent and uniformly distributed in Xb.
Moreover, every output of the oracle provides k most significant bits of mx. Re-
marking that mx ≡ mCx (mod p) and that C ≡ mb (mod p) is of multiplicative
order T (because gcd(b, p− 1) = 1), we see that Lemma 3.3 applies and the result
follows.

5. Remarks

First of all we note that the constants in the above estimates are effective and
can be explicitly evaluated.

We have not used the full power of Lemma 3.1 but rather we have applied it
with the same constant as in [1]. It is easy to see that in fact the results of [1] as
well as our results hold with some

k = O

(
n1/2 log logn

log1/2 n

)
and a slightly large number of oracle calls.

We also remark that one can consider an oracle which instead of returning an
error message for “inconsistent” inputs (A,B,C) returns just a random element
from Fp. In this case repeating each query twice one can easily distinguish between
an x ∈ Xb and other values.
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