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Choosing a leader on a complex network�
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Abstract

In many real life applications a group of people interact through a communication network, mathematically modelled as a 
connected graph linking each element of the group. These participants may have diverse objectives and play very different roles 
depending on their knowledge and privileges. We focus on a particular scenario, in which a certain node is absolutely essential 
for completing the intended task. Moreover, if a technical failure results in disconnection of a participant to this leader node, this 
participant can no longer take part in the group’s performance.

In this setting a sound choice of the underlying network topology could minimize the damage caused by random or provoked 
technical failures. We study different criteria for choosing suitable communication networks, from the point of view of both efficiency 
and robustness.
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1. Introduction

Computer networks are nowadays not only mere highways through which information flows, but, moreover, they
allow for the distributed performance of many tasks that can only be carried out in a cooperative way. When evaluating
complex networks it is often assumed that all nodes in the underlying graph are equally important. This assumption
is however not fulfilled in many practical applications. Also, it is often assumed that point to point communication
is at hand (that is, participants are displayed in a complete graph). However, this is not very realistic and in any case
expensive in terms of connections and computing resources.

We consider here a (somewhat more realistic) scenario, in which a certain task is carried out by a set of n participants,
one of which, referred to as the leader, is essential for the success of the performance. For the sake of simplicity, let us
assume the leader is to produce a certain value and distribute it to all other participants. Examples of such situations
arise in many real life applications; message passing from a central server to a group of users, key distribution for
private communication, etc. Moreover, we will assume that the underlying network is any connected graph and explore
how the network topology may influence the final success of the protocol if technical failures may occur.
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Thus, our goal is to give reasoned criteria for, given a communication graph, singling out a node to represent a
privileged participant. In addition, this criteria could also prove useful for comparing in this sense two such networks:
that is, deciding which one will yield higher efficiency/robustness provided any of its nodes is eligible as a leader.

2. Preliminaries

Let us start by reviewing some well known graph parameters that could help motivating our study. So called
vulnerability and efficiency of graphs are two concepts strongly related to the study of the structural properties of
a complex network representing a system. The concept of vulnerability helps to measure the response of complex
networks subjected to attacks on nodes and edges and it allows to spot the critical component of a network in order to
improve its security. On the other hand, the concept of efficiency plays the role of measuring the ability of complex
networks for the exchange and propagation of information on a global and local scale and its response for the spread
of perturbations in diverse applications.

Intuitively, if G is a graph with a finite number n of nodes, the vulnerability v(G) of G is a number 0�v(G)�1 such
that v(G′)�v(G) if G is obtained from G′ by adding edges. So, the key property of a vulnerability measure is that it
should never increase by adding edges. The rationale behind this assertion is that such an addition can only reinforce
the structure of the graph.

Many definitions [1,7,9] are consistent with the intuitive idea of vulnerability and have been used in different contexts.
However, as seen in [2] most of them fail to reflect intuitive properties of some concrete networks of practical relevance.
Recently, in [2], the authors establish a new definition of vulnerability

v∗∗(G) = exp

{
�

n
+ n − |E| − 2 + 2

n

}
, (1)

where |E| is the number of edges in the graph and � = ((1/n)
∑n

i=1 (gri − (2|E|/n))2)1/2 is the standard deviation of
the degree distribution, and they obtain its main properties, showing that this is an accurate and computable definition
of network vulnerability which is directly connected with its topology.

A somewhat dual notion is that of the efficiency of a network. Smith [8], and Latora and Marchiori [6], introduced
a definition of the efficiency in an attempt to reflect how fast information flows over a network. Therefore it is natural
to assume that the efficiency �ij in the communication between node i and j is inversely proportional to the shortest
distance between such nodes, and therefore it is natural to set �ij = (1/dij ). With this definition we get dij = ∞ when
there is no path in the graph between i and j, and consequently �ij = 0. In this fashion [6,4,5], we can find the definition
of the efficiency of a graph G as

E+(G) = 1

n(n − 1)

∑
i,j∈G,i �=j

�ij = 1

n(n − 1)

∑
i,j∈G,i �=j

1

dij

. (2)

The main drawback of this definition is that it does not reflect connectedness properties. In [3] the authors introduce
another efficiency function E•(·) of a network G that is connection-sensitive

E•(G) =
⎛
⎝ ∏

i,j∈G,i �=j

1

dij

⎞
⎠

(1/n(n−1))

. (3)

Other interesting results about this function can be seen in [3].
Even though the above notions provide sound guidelines for choosing a suitable communication network, they treat

all network nodes equally and thus do not seem suitable for the kind of applications considered here.

3. Network selection in the presence of a leader

Let us now consider that we deal with complex networks designed for protocols where a single leader node generates
a certain value which is handed on to the rest. In this setting, the topology of the underlying graph determines how the
generated value reaches every participant. Recall that, as noted in the introduction, we assume that the failure of the
leader, for causes either intentional or unintentional, completely prevents the protocol from succeeding. On the other
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hand, if it is one of the other participants who suffers a failure, the impact of this failure can be measured by the number
of other participants that will not be able to receive the computed value, as parties having another communication path
will not be affected. In this sense, we will assume, from now on, that the leader is not subject to any kind of failure or
attack, since, in such circumstance, the protocol would be totally disrupted no matter what the topology of the graph
or the position of the leader within such topology.

Thus, our measure of resistance of a graph against an attack will be based on determining how well placed is the
leader within the graph. A leader in a good spot will be such that the failure of any other node will not, on average,
cause too many other nodes to be deprived from the computed value due to broken communications.

As in the previous section, let dij be the length of the shortest path connecting nodes i and j.

Proposition 1. Let i be the leader on a given tree G. Then the average number of nodes disconnected from i due to the
failure of a random node (other than i) is

1

n − 1

∑
j∈G

dij .

Proof. Since we are assuming that all nodes (other than i) are equally prone to failure, the probability of any one of
them failing is 1/(n − 1), and then the average number of disconnected nodes is

∑
j �=i

1

n − 1
nj ,

where nj is the number of nodes “downstream” from j (including j). Precisely because G is a tree, there is a unique
simple path from the leader i to any other node j, so we can define an ordering in G by j0�j1 if j1 is “downstream” from
j0, that is, the shortest path from i to j1 passes through j0. With this ordering, the previous formula can be expressed as

∑
j �=i

1

n − 1
nj = 1

n − 1

∑
j �=i

∑
j�k

1 = 1

n − 1

∑
k �=i

∑
j�k

1.

Now the inner sum matches exactly the distance from the leader i to the node k, and the proof is done.

This way, the expression
∑
j �=i

dij

becomes a measure of the vulnerability of the graph against random attacks. (The factor 1/(n − 1) can be taken out
since it is constant for a given number of nodes.)

In a similar fashion, we can give a measure of the efficiency of a graph with the (simple) formula

max{dij | j �= i}
that computes the maximum distance from the leader to any other node. Since the target value, once generated, must be
transferred to the rest of participants following the underlying graph, this maximum distance gives us an idea of how
long it takes for the constructed value to arrive to every destination.

We can, in fact, combine these two definitions into some kind of p-distance, in order to give them a similar and
uniform treatment afterwards.

Definition 2. Let G be a tree graph and let i be one of its nodes. For every 1�p <∞, we define

Dp(i) =
⎛
⎝∑

j∈G

d
p
ij

⎞
⎠

1/p

.
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For p = ∞, we define

D∞(i) = max
j∈G

dij .

With this definition, D1(i) becomes the vulnerability of the graph when the node i is chosen as leader, as seen
before, while D∞(i) is an inverse measure of the efficiency with said leader (a higher value means less efficiency).
The measures Dp(i) for 1 < p < ∞ could intuitively be understood as “intermediate” measures, approaching D1(i)

when p goes to 1 and approaching D∞(i) when p goes to infinity, so that picking a certain 1 < p < ∞ will result in a
“balanced” measure that takes into account both efficiency and vulnerability to some extent. However, as we will see
in the last section of this paper, this is not always the case for every possible network.

A good property that these measures have is that it can be proved that the node where the minimum is attained can
be found rather easily, just by comparing adjacent nodes and keeping the best one.

Lemma 3. Let G be a tree graph and let a, b and c be distinct nodes in G such that b is linked to both a and c. Then

Dp(b) < max{Dp(a), Dp(c)}

for every 1�p�∞.

Proof. Since we assume that G is a tree, for any node x of G, exactly one of a, b or c will be the nearest node to x of
those three, because cycles are not allowed. Thus, we can define three subtrees Sa , Sb and Sc of G given by

Sz = {x ∈ G | z is the nearest to x amongst a, b and c},

where z ∈ {a, b, c}. Given the tree structure of G, the sets Sa , Sb and Sc determine a finite partition of G.
Pick now z ∈ {a, b, c} and x ∈ Sz, and let �x be the distance �x = dxz. Assume that 1�p <∞; then it is clear that

Dp(a) =
⎛
⎝∑

x∈Sa

�p
x +

∑
x∈Sb

(�x + 1)p +
∑
x∈Sc

(�x + 2)p

⎞
⎠

1/p

,

Dp(b) =
⎛
⎝∑

x∈Sa

(�x + 1)p +
∑
x∈Sb

�p
x +

∑
x∈Sc

(�x + 1)p

⎞
⎠

1/p

,

Dp(c) =
⎛
⎝∑

x∈Sa

(�x + 2)p +
∑
x∈Sb

(�x + 1)p +
∑
x∈Sc

�p
x

⎞
⎠

1/p

.

If we consider the vector � ∈ Rn as � = (�x)x∈G, the above values can be seen as the p-norms

Dp(a) = ‖� + (0, 1, 2)‖p,

Dp(b) = ‖� + (1, 0, 1)‖p,

Dp(c) = ‖� + (2, 1, 0)‖p,

where (�, �, �) stands for the vector in Rn that has a constant � over the first card(S1) coordinates, then � over the next
card(S2) coordinates and finally � over the last card(S3) coordinates.

Now the triangle inequality of the p-norms yields that

2Dp(b) = ‖2� + 2(1, 0, 1)‖p = ‖2� + (2, 0, 2)‖p

�‖� + (0, 0, 2)‖p + ‖� + (2, 0, 0)‖p

4



and the fact that � is in the positive cone of Rn gives

2Dp(b) < ‖� + (0, 1, 2)‖p + ‖� + (2, 1, 0)‖p = Dp(a) + Dp(c).

This forces Dp(b) to be less that either Dp(a) or Dp(c), as we wanted.
The proof is similar if p = ∞. �

Proposition 4. Let G be a tree graph and let x1, x2, . . . , xm be distinct consecutive nodes in G. Then

Dp(xi) < max{D(x1), D(xm)}

for every 2� i�m − 1.

Proof. This fact can be proved inductively on m by application of Lemma 3. �

This result leaves us with with a simple way of finding the optimum for a given Dp, which can be graphically
described as “follow the slope”. The algorithm begins by randomly choosing a node in the graph. Lemma 3 shows
that at most one adjacent node can have a lower Dp, so we visit every adjacent node until we find one with a lower
Dp. When that happens, we move on to that node and repeat the process with its neighbours. If no such node exists,
Proposition 4 tells us that we have found a minimum.

Another nice consequence of Proposition 4 is the following.

Proposition 5. Let G be a tree graph and let 1�p�∞. Then there are at most two minima for Dp and, if there are
actually two, they are adjacent.

Proof. Let a and c be distinct nodes of G at which the minimum for Dp is attained,

Dp(a) = Dp(c) = min
x∈G

Dp(x).

If a and c were not adjacent, the path from a to c would contain (at least) another node b which, by Proposition 4,
would satisfy

Dp(b) < max{Dp(a), Dp(c)} = min
x∈G

Dp(x),

which is a contradiction. This proves that all minima must be adjacent to each other; since G is a tree, this is impossible
for more than two nodes.

These measures provide more information than those already known in the literature (see Section 2), since, as
mentioned, they take into account the fact that now a node in the graph plays a distinguished role, while the preexisting
measures give no special relevance to any node.

For instance, in the simple case of a star graph of n nodes Sn, the function v∗∗ recalled in Section 2 converges to 1 as
n grows to infinity. On the other hand, for the line tree of n nodes ln we have that v∗∗(ln) converges to e−1 as n grows.
Thus, roughly speaking, v∗∗ indicates that line trees are more robust than stars.

Intuitively, however, if we are to place an “invulnerable” leader at a certain node, it is clear that a star configuration
is much more preferable, as disconnection of any other node only affects itself. In contrast, a failure on any node of a
line tree will always bring about the disconnection of several participants.

The method set forth above shows that for a given tree with an invulnerable leader the D1-measures on the different
nodes help us to choose an optimal location for the leader. Another related problem is the following: assume that we
have two possible tree networks for a given number of nodes and that we must select one of them and then pick a leader
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in it. Which one is to be preferred from the point of view of robustness? We want to show how the D1 measures can
play a useful role in helping us decide. To make our point clear we will consider the following two trees G and G′.

1

3

7654

2

G
1

3

5

76

4

2

G ′

The vulnerability function v∗∗ was designed to treat this problem (at a more general level) and yet seems of little help
in the present situation. Indeed if we calculate the v∗∗—vulnerability of both G and G′ we obtain the same value. This
is certainly to be expected since G and G′ have the same number of nodes and their corresponding incidence degrees
coincide. Thus, according to v∗∗, there is no reason why one should choose G over G′, or conversely.

The use of D1-measures can shed some light about why we should prefer G′ over G. Indeed, if DG
1 (i) and DG′

1 (i)

represent the D1-measures of the node i for G and G′, respectively, we get the following values:

DG
1 (1) = 10, DG′

1 (1) = 12,

DG
1 (2) = 11, DG′

1 (2) = 9,

DG
1 (3) = 11, DG′

1 (4) = 10,

DG′
1 (5) = 14.

Proposition 4, along with the algorithm described afterwards, prove that node 1 is the best possible leader for graph G,
while node 2 is the best one for graph G′. So if we are to choose one of these networks and then a leader within that
network, we should select G′ and then take node 2 as the leader, as it has the lowest D1 vulnerability of all possibilities.
In this sense, the measures Dp can be turned from a local point of view, in which they gauge how good a node is if
chosen as leader, into global comparison functions of network topologies, so we could say that a graph is better than
another one when the best leader for the former graph gives a lower Dp than the best leader for the latter.

4. Behaviour of Dp for different p ∈ [1, ∞]

So far we have focused in studying the properties of the measures Dp for a fixed p, that is, we pick some p ∈ [1, ∞]
and then decide which is the best node in a graph for that p, or compare two different graphs according to their respective
best node choices. Now we are going to take a look into how these measures behave when p changes.

A first observation that must be made is that the optimum node in a graph need not be the same for different values
of p. This is best shown with an example. Consider the following graph.

4 3 2 1 0

If our aim is to minimize the expected loss of communication in the event of a node failure, and pay no attention to
efficiency (p = 1), it is easy to check that the best choice for a leader is node 1 (D1(0) = 22; D1(1) = 13; D1(2) = 18);
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intuitively, this is so because then at worst three nodes (2, 3 and 4) will be disconnected with a single failure, while for
any other leader the failure of node 1 itself would cause massive disruption. On the other hand, if we are absolutely
certain that no node can ever fail and therefore want to maximize efficiency (p = ∞), the best place for the leader is
node 2, since that reduces the longest distance to two hops (D∞(1) = D∞(3) = 3; D∞(2) = 2).

Actually, in many cases this is what happens when the optima for p = 1 and p = ∞ do not coincide. Assume that
the optimum for p = 1 is some node x1, and that the optimum for p = ∞ is another node xn. Since we are dealing
with trees, there will be a unique simple path from x1 to xn, which we will call x1, x2, . . . , xn. Then x1 will not only be
the optimum for p = 1 but also for a whole interval [1, p1], where 1�p1; after that, the optimum will usually switch
to x2 for another interval [p1, p2], then to x3 and so on until the optimum node is finally xn for all p in the interval
[pn−1, ∞]. The “switching points” p1, p2, . . . , pn−1 are exactly those at which there are two simultaneous optimum
nodes; for the rest of values, the optimum is unique. Let us see an example that illustrates this situation:

7 6 5 4 3 2 1 0

First of all, it is easy to see that D∞(2) = D∞(4) = 5 and D∞(3) = 4, so node 3 is the optimum leader for p = ∞.
For other values of p, it can be checked that

Dp(0)p − Dp(1)p = (7p − 2p) + 6(3p − 2p) > 0,

so node 1 is always a better leader than node 0 (or any of the other nodes with which it is symmetric, for that matter);
on the other hand,

Dp(4)p − Dp(3)p = 9(5p − 4p) + 2(4p − 3p) > 0,

so again node 3 is a better leader than node 4 for any p ∈ [1, ∞), following Proposition 4. What we are going to see is
that the optimum moves from node 1 for p=1 to node 3 for p=∞, being node 2 for an intermediate range of p. Indeed,
the expression Dp(1)p − Dp(2)p, as a function of p, is negative up to a value p1 which numerical computations find
close to 2.804, and it is positive afterwards, and the same happens to the function Dp(2)p − Dp(3)p with respect to
some p2 close to 9.656. This means that the optimum is node 1 for values of p in [1, p1], then it switches forth to node
2 up to p2 and afterwards it finally becomes node 3. At the “switching points” p1 and p2, there are simultaneously two
best leaders.

In this situation, intermediate values of p give a leader node that, while possibly not the absolutely best choice
vulnerability-wise, may still have good robustness properties and also pay some attention to efficiency. In this example,
for instance, choosing node 2 instead of node 1 will result in an efficiency improvement at the cost of robustness (since
we are left with the chance of a failure at node 1 causing the disconnection of 12 other nodes); the final decision
must always be made taking into account factors such as the probability of failure or the cost associated with long
communication paths. This compromise between robustness and efficiency can then be transferred into the model by
way of p, with smaller values of p giving more weight to vulnerability and larger values focusing on efficiency.

However, there are other networks in which the ideal leader does not behave in such a monotone way with respect
to the choice of p, so the previous consideration does not apply. Take for example the following graph:

c a b d
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If we take p = 1 or p = ∞, we have that

D1(a) = 41, D∞(a) = 5,

D1(b) = 40, D∞(b) = 4,

D1(d) = 49, D∞(d) = 5,

so node b is the optimum for both vulnerability and efficiency. On the other hand, if we take p = 2, the results are quite
different:

D2(c) = √
148,

D2(a) = √
121 = 11,

D2(b) = √
128.

In this case, then, we cannot say that a value of p in the interval (1, ∞), such as p = 2, provides a leader that keeps
a balance between robustness and efficiency; if it did, it should lead us to node b anyway, since it is the optimum for
both criteria.

This rather simple graph shows us that we cannot blindly assume that taking intermediate values of p ∈ (1, ∞)

implies finding a leader node with a compromise between robustness and efficiency. In the example we had seen before,
however, this was exactly what happened, and such a p was a good way of making a trade-off between these parameters.
The problem remains open to give conditions for a graph to have this behaviour.
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