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Mean-field theory of chaotic insect swarms
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The harmonically confined Vicsek model displays qualitative and quantitative features observed in natural
insect swarms. It exhibits a scale-free transition between single and multicluster chaotic phases. Finite-size
scaling indicates that this unusual phase transition occurs at zero confinement [Phys. Rev. E 107, 014209 (2023)].
While the evidence of the scale-free-chaos phase transition comes from numerical simulations, here we present
its mean-field theory. Analytically determined critical exponents are those of the Landau theory of equilibrium
phase transitions plus dynamical critical exponent z = 1 and a new critical exponent ϕ = 0.5 for the largest
Lyapunov exponent. The phase transition occurs at zero confinement and noise in the mean-field theory. The
noise line of zero largest Lyapunov exponents informs observed behavior: (i) the qualitative shape of the swarm
(on average, the center of mass rotates slowly at the rate marked by the winding number and its trajectory fills
compactly the space, similarly to the observed condensed nucleus surrounded by vapor) and (ii) the critical
exponents resemble those observed in natural swarms. Our predictions include power laws for the frequency of
the maximal spectral amplitude and the winding number.
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Collective animal motion has common features that sug-
gest underlying principles beyond biological details [1–5].
Indeed, insect swarms, fish schools, bird and sheep flocks, or
crowds of people exhibit collective properties distinct from
those of their component individuals. In the past, these prop-
erties have been characterized as of hypnotic [6] or telepathic
[7] nature, although other authors in those years argued that
the spread of impulse in well-organized groups was adequate
to explain the existence of a collective mind of the flock [8].
More recently, advances in stereo videography and calibration
[9] have generated enormous amounts of quantitative data for
collective animal motion [5]. In particular, the observation
of power laws and critical exponents in biological systems
[3,10–14] has generated much theoretical investigation into
the unusual phase transitions which may be responsible for
them. Power laws for natural insect swarms are deduced
from correlation functions [14–17]. Their relation to possible
renormalization group theories of phase transitions [18] have
led to efforts to identify their postulated universality class
[17,19–22].

Besides observations in natural settings, mating swarms of
male midges have been much studied in laboratory conditions
[5,23–28]. Midges perceive acoustic signals and move with
low-frequency maneuvers but react with synchronized high-
frequency oscillatory motion to the presence of nearby insects
[24]. When undriven, the swarm center of mass moves almost
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randomly on a plane (with larger fluctuations in the vertical
direction of gravity) but it follows an elliptic trajectory when
driven at 1 Hz frequency superimposed to the sound of a male
midge [25]. Motions of single midges in swarms follow Lévy
walks [29], which might indicate chaotic motion in related
animal patterns [30]. Acoustic interaction of midges has been
modeled by adaptive gravity, which produces an effective har-
monic potential near the swarm center [26]. Swarms comprise
a core condensed phase surrounded by a dilute vapor phase
with midges entering and leaving the core [27], while indi-
vidual midges do not sample the swarm uniformly [28]. The
long-range correlations between midges in the wild [14–17]
are not observed in laboratory conditions where background
noise and atmospheric conditions are absent [31].

Finding models accounting for all the different swarm
features is challenging. Recently, we have discovered a
phase transition in the harmonically confined Vicsek model
(HCVM), characterized by scale-free chaos, which exhibits
several observed traits of the swarm (condensed nucleus and
vapor phases, flatness at the origin and, on a bounded in-
terval, collapse of dynamic correlation function in terms of
time divided by correlation length) and is compatible with
observed critical exponents [32]. For finitely many insects,
the scale-free-chaos phase transition is a critical line sepa-
rating single from multicluster chaotic swarms, and having
correlation length proportional to swarm size. This line con-
verges to zero confinement as insect number goes to infinity
and chaos disappears [32]. Since our findings are based on
numerical simulations, it is important to have a theory to
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FIG. 1. Phase diagram on confinement vs noise plane indicating
regions of deterministic and noisy chaos, noisy period-σ (NPσ ) and
noisy quasiperiodic (NPQ) attractors, and mostly noise. M = v0 = 1.

interpret them. Not having a renormalization group theory of
the HCVM scale-free-chaos phase transition, we develop here
a mean-field theory of the HCVM as a first step. Note that
the standard Vicsek model with periodic boundary conditions
[4,33] displays an ordering transition [34] that is very different
from the HCVM scale-free-chaos transition [32].

The three dimensional (3D) HCVM satisfies

xi(t + 1) = xi(t ) + vi(t + 1), i = 1, . . . , N,

vi(t + 1) = v0Rη

⎧⎨
⎩�

⎡
⎣ ∑

|x j−xi|<R0

v j (t ) − βxi(t )

⎤
⎦
⎫⎬
⎭, (1)

where �(x) = x/|x|, R0 is the radius of the sphere of influence
about particles, β is the confining spring constant, and Rη(w)
performs a random rotation uniformly distributed around w
with maximum amplitude of η [32]. First, we set η = 0, aver-
age these equations using the definition

〈 f (xi )〉 = 1

N

N∑
i=1

f (xi ), X(t ) = 〈xi〉, (2)

in the limit as N → ∞, and assume the mean-field (tree [35])
approximation 〈 f (xi )〉 ≈ f (〈xi〉). The result is

X(t + 1) − X(t ) = v0�[X(t ) − X(t − 1) − β̃X(t )], (3)

where β̃ = β/M and M is the average number of
particles within the sphere of influence about i, all
of which remain inside the sphere. We have used
that, for a compact swarm, 〈∑|x j−xi|<R0

v j (t )〉 =
〈∑|x j−xi|<R0

[x j (t ) − x j (t − 1)]〉 ≈ M[〈xi(t )〉 − 〈xi(t−1)〉] =
M[X(t ) − X(t − 1)]. Moreover, the initial positions X(0) and
X(1) characterize a plane to which all successive positions
given by (3) belong. This is similar to observed swarm
motion [25]. Restoring the alignment noise in (3), we obtain
the stochastic mean-field HCVM (MFHCVM):

X(t + 1) = X(t ) + V(t + 1), (4a)

V(t + 1) = v0Rη{�[V(t ) − β̃ X(t )]}. (4b)

Numerical simulations of the MFHCVM produce the phase
diagram in Fig. 1. For η = 0, deterministic chaos with positive
largest Lyapunov exponent (LLE) λ1 occurs on the interval

FIG. 2. Largest Lyapunov exponent versus confinement for
(a) η = 0 and (b) η = 0.5 showing the windows of deterministic and
noisy chaos, respectively. The insets show zooms of the rectangular
regions in the main figures of each panel.

(0, βc2). For nonzero noise, noisy chaos (as defined from
scale-dependent Lyapunov exponents [32,36]) appears on the
intervals (βc1(η), βc2(η)) and (βc3(η), βc4(η)), whereas noisy
quasiperiodic and periodic attractors exist elsewhere [37]. At
β = η = 0, λ1 = 0. For 2 < η < 2π , noise dominates even
though there is a region of chaos swamped by noise for inter-
mediate values of β. For the MFHCVM, the scale-free-chaos
phase transition of the 3D HCVM [32] corresponds to the
origin in Fig. 1.

Figure 2 shows the windows of positive LLE for vertical
lines in Fig. 1 at noises η = 0 and η = 0.5, corresponding to
deterministic and noisy chaos, respectively. For zero noise,
the chaotic window ends at βc2 = 0.2 and begins at βc1 = 0
(in our simulations, we still get a clearly positive LLE at
β = 10−9). There are two chaotic windows (βc1, βc2) and
(βc3, βc4) for η = 0.5 in Fig. 2(b). Inside these windows,
the LLE has peaks at βm1 and βm2, respectively. Figure 1
shows that the scale-free-chaos phase transition is located at
the origin of the phase diagram (β, η). While we can reach
this transition by lowering β at η = 0, we can also move
on the critical line βc1(η) in Fig. 1 and let η → 0 until we
reach the origin. This latter route to the scale-free-chaos phase
transition is reminiscent of finite-size scaling for the HCVM,
which produces critical exponents by letting N → ∞ on the
critical lines βc(N ; η) as βc → 0+ having fixed η on the
region of noisy chaos [32]. The critical exponents obtained by
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FIG. 3. Deterministic dynamics. (a) Chaotic attractors (depicted on a short time interval) for different values of β. (b) Multifractal
singularity spectrum for the transition between quasiperiodicity and chaos.

either route are the same but the deterministic route is more
amenable to theory, whereas the critical exponents obtained
by descending through the noise line βc1(η) in Fig. 1 follow
from numerical simulations. The maximum at βm1 ≈ 10−7 in
Fig. 2(a) is in a region of chaotic attractors filling a large
portion of space (for β < 10−6). The chaotic attractors fill a
smaller annular region for β > 10−6; see Fig. 3(a). Attrac-
tors filling large regions of space have zero average position
and velocity but nonzero time-averaged amplitudes 〈|X(t )|2〉t ,
〈|V(t )|2〉t = v2

0 .
Figure 3(b) shows the singularity spectrum f (α) [38–40]

of the transition from quasiperiodicity to chaos at βc2(0) of
Fig. 2(a). Its shape is that of the circle map, with a max-
imum D0 = maxα f (α) = 1 equating the Haussdorff fractal
dimension at the transition. The zeros D∞ < D−∞ of f (α)
do not take on the same values as those for the golden-mean
winding number of the critical circle map, D∞ ≈ 0.6326 and
D−∞ ≈ 1.8980 [38]: (D∞, D−∞) is narrower for the undriven
transition between quasiperiodicity and chaos at βc2(0).

We now find the critical exponents at β = 0, which corre-
spond to the scale-free-chaos phase transition of the HCVM
[32]. In the latter, the correlation length ξ is proportional
to swarm size, which can be defined as the time average of

R(t ) = |X(t )| [37]. From (4a), we obtain

v2
0 = |X(t )|2+ |X(t + 1)|2− 2|X(t )| |X(t + 1)| cos θ (t + 1)

= R(t )2 + R(t + 1)2 − 2R(t )R(t + 1) cos θ (t + 1),

where θ (t + 1) is the angle between X(t ) and X(t + 1). Aver-
aging over time and ignoring fluctuations,

〈R(t )2〉t ≈〈R(t )〉2
t , 〈R(t )R(t + 1) cos θ (t + 1)〉t

≈〈R(t )〉2
t cos〈θ (t )〉t = 〈R(t )〉2

t cos(2πw),

where w is the winding number [37]. Thus, we get v2
0 ≈

2〈R〉2
t [1 − cos(2πw)]. As β → 0+, w → 0 (see Fig. 4), and

therefore 〈R(t )〉t → ∞ with

w ∼ v0

2π〈R〉t
. (5)

For zero noise, winding number and the frequency of the
highest peak of the power spectrum, � = w, for a signal
s(t ) = X (t ) + Y (t ) + Z (t ) coincide; see Fig. 4(a). � is the
reciprocal correlation time, therefore (5) implies τ ∼ ξ (re-
lating correlation time and length), and the dynamical critical
exponent is z = 1. For nonzero noise, the relation between
winding number and peak frequency � is more complex; see

FIG. 4. Winding number versus confinement for (a) η = 0, (b) η = 0.5 indicating periodic, quasiperiodic attractors and ends of the chaotic
windows as β decreases.
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FIG. 5. Power laws for the deterministic case η = 0 as we approach zero confinement, which corresponds to the scale-free-chaos transition
of the harmonically confined Vicsek model. (a) The maximum swarm size, L = max(R), and the correlation length, ξ = 〈R〉t , are proportional.
(b) The correlation length scales as ξ ∼ β−ν with ν = 0.5. (c) The relation between the frequency for the maximum of the power spectrum
scales as � ∼ L−z with the dynamic critical exponent z = 1.01 ± 0.01, and (d) the susceptibility scales as χ ∼ β−γ with γ = 1.000 ± 0.002.

Fig. 4(b). Within the first chaotic window, (βc1, βc2), � = w,
whereas � < w for β < βc1. Within the second chaotic win-
dow, (βc3, βc4), � is piecewise constant, with a finite jump at
βm2, corresponding to the maximum of the LLE. The winding
number is smooth: It is slightly larger than � for βc3 < η <

βm2), and it is slightly smaller than � for βm2 < β < βc4); see
the inset of Fig. 4(b).

To obtain the other critical exponents, we note that the
order parameter of the MFHCVM cannot be the polarization
because |V(t )|/v0 = 1. For η = 0, (4b) yields

R(t + 1)2 = R(t )2 + v2
0 + 2v0

(1 − β̃ )R(t )2 − R(t )R(t − 1) cos θ (t )√
(1 − β̃ )2R(t )2 + R(t − 1)2 − 2R(t )R(t − 1)(1 − β̃ ) cos θ (t )

.

Time averaging this expression and ignoring fluctuations,

0 = v2
0 + 2v0〈R〉t

1 − β̃ − cos(2πw)√
2(1 − β̃ )[1 − cos(2πw)] + β̃2

.

In the limit as β → 0+, 〈R〉t → ∞, w → 0,
and this equation yields 1 − cos(2πw) ∼ β̃ −
v0

√
2[1 − cos(2πw)]/(2〈R〉t ), from which

w ∼
√

β̃

4π2
. (6)

Thus, we have found the relation w ∼ βb, with b = 1/2, for
the winding number, which plays the role of order parameter
in the Landau theory. From (5) and (6), we find the crit-
ical exponent ν = 1/2 in the relation ξ ∼ β−ν . We define
the susceptibility χ as the time-averaged norm of the linear
response matrix Ht = ∇Hχt = ∂χi

t/∂Hj (at zero field) to an
external force resulting from replacing V(t ) + H instead of
the alignment force V(t ) in (4b) [37]:

χ = 〈‖Ht‖〉t , ‖Ht‖ =
√

λM
(
HtHT

t

)
. (7)

Here λM (HtHT
t ) is the maximum eigenvalue of the symmetric

positive matrix HtHT
t . Equation (4a) produces Yt+1 = Yt +

Wt+1, where Y i j = (Y j )i = ∂Xi/∂Hj , and W i j = (W j )i =
∂Vi/∂Hj , at H = 0. Equation (4b) yields [37]

(
W j

t+1

)
i = Rη

{
Aik

t

[(
W j

t

)
k − β

M

(
Y j

t

)
k

]
+ Aik

t (δ j )k

}
,

(δ j )i = δi j, (8a)

At = v0∣∣V(t ) − β

MX(t )
∣∣

×
⎧⎨
⎩I −

[
V(t ) − β

MX(t )
][
V(t ) − β

MX(t )
]T

∣∣V(t ) − β

MX(t )
∣∣2

⎫⎬
⎭.

(8b)

Here sum over repeated indices is understood. A modification
of the argument leading to (6) produces χ ∼ ∂〈R〉t

∂H |H=0 ∼ β−γ

with critical exponent γ = 1 [37]. Hence, the critical expo-
nents of the MFHCVM are the same as those in the Landau

FIG. 6. Same as Fig. 5 for the stochastic case with β = βc1(η) and η → 0. (a) Power law for the order parameter, which is the winding
number, versus β, w ∼ βb, with b = 0.497 ± 0.006; (b) Correlation length ξ ∼ β−ν with ν = 0.500 ± 0.001; (c) dynamic critical exponent
z = 0.99 ± 0.01 for the law � ∼ ξ−z; (d) susceptibility vs confinement χ ∼ β−γ with γ = 1.04 ± 0.06.
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FIG. 7. LLE vs βm1(η), the location of the local maximum of the
LLE at each value of the noise (stochastic MFHCVM) as η → 0. The
power law is λ1 ∼ βϕ with critical exponent ϕ = 0.45 ± 0.05, which
is compatible with the predicted value 0.5.

theory of phase transitions [41]:

ν = b = 0.5, γ = 1, (9)

with dynamical critical exponent z = 1. Figure 5 exhibits
power laws with critical exponents (9) and z = 1 as obtained
from numerical simulations. As we approach the origin in
Fig. 1 through the line βc1(η) (η → 0), we obtain the same
critical exponents from numerical simulations, as shown in
Fig. 6.

For the deterministic and stochastic cases, the swarm size
L = maxt R(t ) is proportional to the time-averaged length
of the center-of-mass position as the confinement decreases;
see Fig. 5(a). Thus, swarm size and correlation length are
proportional. Figures 6(a) shows the power law of the wind-
ing number, wc1 ∼ βb

c1, b ≈ 0.5. Figures 5(b) and 6(b) plot
the correlation length power law with critical exponent ν =
0.5. The dynamical critical exponent z is found from the
relation � ∼ ξ−z, z = 1.01 ± 0.01, between the frequency
corresponding to the maximum of the power spectrum and
the correlation length; see Figs. 5(c) and 6(c). Last, the power
laws for the susceptibility are shown in Figs. 5(d) and 6(d).

In Ref. [37], we find the bound λ1 �
√

β̃ for the LLE.
Assuming LLE satisfies a power law λ1 ∼ βϕ , we obtain
ϕ � 0.5. Finite velocity propagation implies ϕ � ν [32], and
therefore ϕ = ν = 0.5. This value agrees with numerical sim-
ulations yielding λ1(βm1) as βc1(η) → 0; see Fig. 7. The
mean-field critical exponents are different from those of the
HCVM, but they are close to them: z = 1 is the same and
the relation ϕ = zν holds for both models [32].

In conclusion, we have proposed a mean-field theory of
the harmonically confined Vicsek model. It consists of a map
for the 3D position and velocity of the swarm center of mass.
The map displays transitions from quasiperiodicity to chaos
and a confinement-noise phase diagram that is comparable
to that of the HCVM [32]. The phase diagram exhibits a
scale-free-chaos phase transition at vanishing noise that is
similar to that of the HCVM (winding number replaces polar-
ization as order parameter). Its critical exponents are those of
the Landau theory of equilibrium phase transitions [41] plus
z = 1 and ϕ = zν for the LLE power law. The noise shifts the
chaotic interval to (βc1(η), βc2(η)) with limη→0 βc1(η) = 0
but numerical simulations show that the critical exponents
are the same as in the deterministic case [37]. The deduced
critical exponents of the mean-field theory are the same for
any space dimension d > 1. We shall show elsewhere that
the scale-free-chaos phase transition exists for d = 2 but not
for d = 1. What are the consequences of the scale-free phase
transition for real insect swarms? This transition occurs at zero
confinement and noise in the mean-field theory. Its unfolding
on the zero LLE noise line of Fig. 1(a) informs observed
behavior: qualitative shape of the swarm (on average, the
center of mass rotates slowly at the rate marked by the wind-
ing number and its trajectory fills compactly a space region,
akin to a condensed nucleus surrounded by vapor [27]; see
Figs. 19(b) of Ref. [32] and S3 of Ref. [37]), and critical
exponents similar to those observed in natural swarms. The
frequency of the maximal spectral amplitude and the winding
number could be extracted from experimental data. As the line
of zero LLE in Fig. 1 merges with that of the scale-free-chaos
transition for infinitely many particles [32], it also corresponds
to the same phase transition. The study of this transition at the
verge of chaos for finitely many particles will be tackled in
the future. A worthwhile endeavor would be reconstructing a
noisy chaotic attractor from the swarm center of mass data
(both in the wild or in the laboratory) by using the same
techniques as in the numerical simulations in Ref. [32].
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