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ABSTRACT: In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a
trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse
model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally
once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic
stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is
a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule
with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting.

■ INTRODUCTION
Malaria is a devastating parasitic disease causing widespread
mortality and morbidity across many parts of the developing
world. Human malaria is caused by five Plasmodium species: P.
falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. P.
falciparum causes the most mortality and is found in high levels
in Africa, whereas P. vivax causes the most morbidity and is
more commonly found across Asia and the Americas.1 In 2013,
there were an estimated 198 million cases of malaria worldwide
and 584 000 deaths, of which 453 000 were of children under 5
years, with 90% of all malaria deaths in the African region.2

Many medicines for the treatment of malaria such as
chloroquine and pyrimethamine are failing due to increasing

development of resistance. Furthermore, there are now cases of
drug resistance to artemisinin-based combination therapies
(ACTs), which are the mainstays for the World Health
Organization (WHO) campaign against malaria.3 Currently,
primaquine is the only drug in general use for radical cure of
malaria due to P. vivax, preventing relapse, but this medicine
has a prolonged dosing schedule and is toxic to individuals with
glucose 6-phosphate deficiency.4 Therefore, new therapies for
both treatment and prevention of this deadly disease across all
of its life cycle stages are urgently needed. Efforts from
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academic groups and pharmaceutical companies to identify
novel antimalarials are now beginning to bear fruit as novel
therapies for the treatment of malaria are in clinical trials.1

However, the discovery of potential new antimalarials remains
vital, given the high attrition rates in clinical development,5 the
propensity of the parasite to develop resistance, and the need
for additional indications (such as transmission blocking,
chemoprevention, and radical cure of vivax malaria).6 Here,
we report the design, synthesis, and biological evaluation of
fast-acting and highly efficacious antimalarials, based on
trisubstituted pyrimidines, which were discovered using a
whole cell-based screening approach.

■ RESULTS AND DISCUSSION
Project Initiation. A drug discovery program for the

identification of novel antimalarials was initiated with the high
throughput phenotypic screening (HTS) of an in-house library
of protein kinase scaffolds (4731 compounds).7 This effort
identified multiple structurally diverse chemical series that
blocked asexual blood stage parasite viability, as measured by a
SYBR green assay.8,9 In this paper, we describe a chemistry
program based around one of these series, a trisubstituted
pyrimidine, which displayed chemical tractability, nanomolar
potency against P. falciparum cell line 3D7, and excellent
selectivity over a mammalian cell line MRC-5 (Table 1). An
initial example of this series was inactive against a panel of
mammalian kinases up to a concentration of 10 μM.

Lead Identification. The initial hit from the screen, 1, was
followed up by hit expansion through commercially available
analogues. Systematic changes of functional groups at R1, R2,
and R3 were carried out to try to improve potency and
physicochemical properties. Analogues of our original screening

hit (1) were also identified from published data from GSK10

and Novartis9 (Figure 1). Following resynthesis and screening
in-house, compound 2 (reported by GSK and Novartis)
provided a suitable chemical start point for further synthetic
modifications. However, due to poor solubility (5 μM),
compound 2 was not progressed any further than assessment
at the in vitro (cellular) level for potency and absorption,
distribution, metabolism, excretion, and toxicology (ADMET).
Analogue design was then directed toward improving potency
and solubility and reducing the number of aromatic rings,
which can have a beneficial impact on overall development
characteristics including solubility.11,12 Compound 2 has a high
degree of planarity, so we sought further improvement by
increasing the proportion of sp3 to sp2 carbon atoms, which is
reported to increase the solubility.13

We were concerned about the inhibition of cytochrome P450
isoform CYP3A4, which we believed to be due to the 4-pyridyl
group (see later for further discussion). Initial attempts to
replace the 4-pyridyl functional group at R1 resulted in a
significant loss of antimalarial activity (Table 2). Removal of the

pyridine nitrogen at R1 or simply moving the nitrogen from the
4- to the 3-position resulted in >30-fold drop in potency. In
addition, replacing the 4-pyridyl group with a morpholine
group reduced potency by almost 60-fold, highlighting the
importance of the pyridine nitrogen and suggesting that the
vector of the lone pair donor was also crucial for activity. We
decided therefore to investigate variations at R2 and R3 for
improvements in potency, which would render the interaction
with the 4-pyridyl less critical.

Optimization of R2. Removal of the tetrahydroisoquinoline
(2) and replacement with an amino group (6) gave a 100-fold
drop in activity, indicating the tetrahydroisoquinoline group has
a significant effect on the potency. Replacement of the
tetrahydroisoquinoline moiety of compound 2 with N-

Table 1. Hit Series Identified from Phenotypic Screening of
Kinase-like Library

Figure 1. Published analogue compound 2, codes TCMDC-125419 (GSK) and GNF-Pf-1034/GNF-Pf-1447 (Novartis).

Table 2. Modifications at R1 a

aAll parasite assays were run in duplicate.
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methylbenzylamine (7) resulted in a 10-fold loss of potency
(Table 3), possibly suggesting that a degree of conformational
restraint was necessary. Contracting the aliphatic ring size to a
five-membered ring (8) led to a complete loss in activity.
Replacing the phenyl ring in 2 with an imidazole (9) gave a 10-
fold drop in activity (EC50 = 1.7 μM). Interestingly, activity was
retained when the phenyl was attached to a piperazine rather
than being directly fused onto the piperidine ring (10, EC50 =
0.3 μM), despite the different vector compared to compound 2.
Further work was undertaken to remove an aromatic ring,

with a key aim being to increase solubility and improve the
potential for clinical development. Replacing the phenyl ring
found in 10 with piperidine gave a compound equipotent to the
starting point (11, EC50 = 0.1 μM). This compound had
marginally improved aqueous solubility (56 μM, measured as
the free base) and retained reasonably low microsomal
turnover. Replacing the “terminal” piperidine with a morpho-
line gave a compound with similar activity (12, EC50 = 0.3 μM)
but with a significantly increased solubility (>100 μM), reduced
clogP, and low microsomal turnover. It was also possible to add

a flexible linker between the piperidine and the morpholine
(13) with only a minimal effect on potency (EC50 = 0.3 μM)
and retaining low microsomal turnover but with a similar
solubility (44 μM). It was possible to replace the piperidine of
13 with an alkyl linker to give 14. This compound had the same
activity as 13 (EC50 = 0.3 μM), but despite a lower clogP,
showed a significantly higher microsomal turnover. Finally, a
bicyclic aliphatic system, 15, also showed similar activity (EC50

= 0.3 μM) and good solubility (>100 μM) but increased
microsomal turnover. In summary, it is possible to reduce the
number of aromatic rings and increase the proportion of sp3

carbon atoms which improves solubility and clogP without
compromising potency and microsomal turnover.

Optimization of R3. Replacement of the planar aromatic 3-
pyridyl unit at the R3 position with aliphatic substituents was
investigated to both reduce the aromatic ring count and
increase the sp3 nature.13 Small aliphatic groups such as the
cyclopropyl group of 16 were not tolerated and resulted in
around a 30-fold drop in potency (Table 4). Furthermore,
replacement of the 3-pyridyl by the flexible aminoalkylmorpho-

Table 3. Modifications at R2 a

aclogP was calculated using StarDrop from Optibrium. Sol is solubility in water for the free base.
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line (17) or aminoalkylamide (18) resulted in >90-fold drop in
potency. In addition, the morpholine moiety 19 was completely
inactive. Further examples are given in the Supporting
Information. In summary, attempts to replace R3 with an
aliphatic group or heteroaromatics such as the oxazole (20)
were unsuccessful. Attempts to replace the pyridyl nitrogen
atom with groups such as 3-fluorophenyl (21) or 4-
fluorophenyl (22) lost around 10-fold activity and led to an
increase in clogP. Furthermore, the addition of another
nitrogen atom into the pyridyl unit to afford the pyrimidine
23 was less well tolerated (10-fold loss in potency). In
summary, despite extensive investigation, we were unable to
find a suitable replacement for the 3-pyridyl moiety at R3, and
further changes were focused on different substitutions on the
3-pyridyl ring to improve activity and physicochemical
properties (Table 5).
A variety of modifications were made at different positions

around the 3-pyridyl ring. Small electron withdrawing and
electron donating substituents meta to pyridyl nitrogen were
tolerated (methoxy, 24; nitrile, 25; fluoro, 26). However, the
aminomethyl analogue 27 had a 10-fold loss in activity, and the
morpholine amide 28 was essentially inactive.
Small functional groups ortho to the pyridine nitrogen such

as amino (29) or methoxy (30) were tolerated, with only a 3-
to 6-fold loss in activity compared to 12. However, larger
groups at this position on the 3-pyridyl moiety, such as the
methylamide (31) or morpholine (32), reduced activity by
>10-fold. Furthermore, moving the methoxy from the meta-
position of the pyridine (24) to the para-position (33) caused a
20-fold reduction in potency compared to 12. In summary,
there appear to be limited opportunities for synthetic

modification to enhance activity at the R3 position, based on
the pyridyl moiety.

In Vivo Efficacy. Compounds 12 and 13 were selected for
in vivo pharmacokinetic (PK) and efficacy studies, based on
their overall profile of properties. Both compounds displayed
suitable predicted physicochemical properties consistent with
that of an oral drug. In addition, 12 and 13 demonstrated
submicromolar potency in vitro and good aqueous solubility,
were reasonably stable when incubated with mouse liver
microsomes, and displayed low plasma protein binding.
Unfortunately, 13 displayed some binding to the hERG ion
channel (Table 6).
In vivo PK studies with 12 showed rapid absorption after oral

administration (10 mg/kg) but with limited exposure and a
short half-life, whereas 13 displayed an improved half-life with a
7-fold increase in AUC. Subsequently, in vivo efficacy
experiments were carried out and mice were subjected to oral
dosing of compounds 12 and 13 up to 30 mg/kg once a day for

Table 4. Modifications at R3 Table 5. Modifications at R3
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4 consecutive days using the P. berghei rodent model of
infection (Peters’ test, Table 6). Compound 13 displayed
superior efficacy compared with 12 with a 96% reduction in
parasitemia (compared to 72% for 12), when dosed at 30 mg/
kg, q.d., po. The early lead criteria, stipulated by MMV,
required compounds to display both suppression of parasitemia
and an ED50 < 50 mg/kg under this protocol.14 However, we
were unable to obtain complete cures in the rodent model for
either compound 12 or 13. For efficacy experiments with
compound 12, all mice were euthanized by day 14. For
compound 13, all mice were euthanized by day 11.
Compound 13 was also evaluated in vivo against P.

falciparum parasites grown in the peripheral blood of

NODscidIL2Rγnull mice (SCID), engrafted with human
erythrocytes.15 Three days after infection, mice were dosed
orally once a day with 13 for 4 days at concentrations up to 100
mg/kg (Figure 2a). The ED90 measured at day 7 = 11.7 mg/kg,
and its equivalent estimated daily exposure in blood AUCED90 =
1.4 μg·h/mL. In vivo there was a rapid reduction of parasitemia
at doses of ≥20 mg/kg or >7.96 μg·h mL−1 day−1 in blood.
With doses of ≥30 mg/kg, the parasites levels were reduced
below detection limits within 2 days. The rate of parasite
clearance in vivo was at least as fast as the artemisinins,16 and
only pyknotic parasites are observed in peripheral blood of
mice 48 h after treatment at 100 mg/kg (Figure 2c).
Interestingly, the in vitro parasite reduction ratio (PRR)

Table 6. In Vitro and in Vivo Profile of Key Compounds

aPf(K1) is a chloroquine and pyrimethamine resistant strain of P. falciparum. bPharmacokinetic and efficacy studies were carried out using
compound 12 as the HCl salt and compound 13 as the fumarate salt.
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assay17 identified 13 as a compound with a moderate rate of
killing, displaying 99.9% clearance of parasites in 52 h, when
tested at 10 × EC50 (Figure 2b). It is possible that the PRR
assay would show a faster killing rate at higher concentrations
of compound, more in-line with what is seen in vivo.
To assess the mode of action, given that the compound

contained a potential heme binding moiety in the 4-pyridyl, the
ability of compound 13 to block hemozoin (β-hematin)
formation was also tested. It displayed relatively comparable
activity to chloroquine in this assay (27 μM for 13 vs 6.6 μM
for chloroquine). It was not known if the primary mode of
action is through the same mechanism of action as chloroquine.
However, when assayed against the chloroquine/pyrimeth-
amine resistant (K1) lines, compound 13 displayed similar
activity to sensitive cell lines, so it has a different profile to
chloroquine.
Reducing Affinity for Human CYP Isoforms. Although

the antimalarial properties of the compound series had been
demonstrated in mouse models of malaria, further development

of the series required compounds that had markedly reduced
inhibition of the major CYP enzymes. Subsequent elaboration
of 13 focused on reducing inhibition of human CYP isoforms
3A4 and 2D6. Previous work had not been successful in
distinguishing the antimalarial activity and the inhibition of
human CYP isoforms (Table 1), thought to be due to the 4-
pyridyl group at the R1 position. Therefore, two approaches
were investigated to reduce CYP inhibition. One approach
involved replacement of the 4-pyridyl unit with functional
groups that could have similar steric and H-bond acceptor
properties (Table 7). In parallel, the possibility of modifying the
4-pyridyl unit with the addition of functional groups adjacent to
the pyridine nitrogen was also investigated, which could
potentially reduce binding to human CYP isoforms while
retaining suitable affinity for the unknown target of interest
(Table 8). The R2 and R3 positions were fixed with piperidine-
morpholine and 3-pyridyl, respectively, to use as a reference
point for changes in activity and with the view that if it were
possible to optimize R1, this should also work with other R2 and

Figure 2. (a) In vivo efficacy data for compound 13 in P. falciparum infected SCID mice. (b) Levels of compound 13 in blood of the mice of the
efficacy experiment during 23 h after the first oral dose. The symbols represent the same individuals depicted in plot a. (c) In vitro PRR data for
compound 13 when parasites were treated at 10 × EC50. Comparator data for other standard drugs are included for reference (data previously
reported17). Compound 13 showed a similar rate of kill to pyrimethamine. (d) Comparison of morphology of parasitized human RBC in vehicle and
compound 13 treated mice. Erythrocytes with only remnants of parasites showing nuclear condensation were seen following 2-day treatment with
compound 13. Compound dosed as the fumarate salt.
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R3 substituents (e.g., as found in 13). The key molecules
prepared are summarized in the main text. Additional
molecules prepared are presented in the Supporting Informa-
tion.
Optimization of R1. The initial focus was on placing a

hydrogen bond acceptor (HBA) at the 4-position of the phenyl
ring to replace the 4-pyridyl moiety at the R1 position (Table
7). Several nitrile derivatives were prepared. The 4-cyanophenyl
(34) gave a 7-fold reduction in potency (EC50 = 2.1 μM) from
12 (EC50 = 0.3 μM). This would place the HBA further from
the pyrimidine than the pyridine nitrogen in 12. Therefore, it
was decided to attach the nitrile directly onto the pyrimidine
ring (35), which gave a similar level of potency (EC50 = 5.3
μM) to the 4-cyanophenyl analogue. Other HBAs such as
sulfones (36) gave significantly reduced activity (EC50 = 49
μM). Direct attachment of a hydroxyl to the pyrimidine ring
(37) also failed to increase activity (EC50 = 24 μM), although
this may be in a different tautomeric form. Amide 38 was also
inactive (EC50 = 50 μM). Finally, basic groups were
investigated to determine if there was an interaction with an
acidic group on the protein. None of these were active (e.g., 39,
EC50 = 30 μM).
The original 4-pyridyl moiety at R1 was then revisited with a

focus on reducing binding to the human CYP450 isoforms with
close analogues incorporating blocking groups adjacent to the
pyridine nitrogen, to reduce the interaction with the heme iron
(Table 8). Addition of two methyl groups in the 3- and 5-
positions significantly reduced CYP inhibition across all five
CYPs investigated (40), which confirmed involvement of the
parent 4-pyridyl moiety. However, there was a 5-fold drop in
activity (EC50 = 1.5 μM). Interestingly having just one methyl
group in the 3-position (41, EC50 = 17 μM) led to a further 10-
fold drop in potency compared to disubstitution. Other groups
in the 3-position which would alter the electronics of the
pyridine nitrogen were also inactive (e.g., the CF3 group 42,
EC50 = 50 μM). The effects of both electron-donating and

electron-withdrawing substituents (43 and 44) were also
investigated, where both gave a 5- to 10-fold reduction in
potency compared to the substituted pyridine 12. Changing the
heterocycle to a pyrimidine, pyridone, or pyrazole (45−47)
also led to a reduction in activity. Therefore, despite a variety of
variations on the R1 position, all modifications investigated led
to a marked decrease in potency.

■ CONCLUDING REMARKS AND FUTURE WORK

Compounds 12 and 13 both display suitable physicochemical
properties for an oral drug lead, good cellular activity in vitro
against P. falciparum parasites, and good selectivity in a
mammalian counterscreen. Compound 13 also demonstrated
excellent oral efficacy in vivo with a 96% reduction in levels of
parasitemia (P. berghei, 4 × 30 mg/kg, q.d., po) and a fast kill
rate in the P. falciparum SCID mouse model. Compound 13
was also further profiled in the liver-stage schizont assay (EC50
> 10 μM),18 and in a stage IV/V gametocyte assay (EC50 = 2.4
μM).19 Initial infection with malaria occurs when Plasmodium
sporozites injected by the mosquito invade the liver cells. The
parasites then undergo a liver-stage life cycle that involves
formation of liver schizonts. Compounds that can prevent liver
schizont formation may have potential for chemoprevention.
The data for compound 13 suggest that this is not likely to have
chemopreventative activity. Blood-stage infection gives rise to
the clinical symptoms of malaria. Some of the parasites involved
in blood-stage infection differentiate into gametocytes, which
are the form of the parasite that can infect a mosquito,
completing the life cycle. Compounds that kill the gametocytes
may be able to block transmission of the parasite to mosquitos.
The data for compound 13 suggest that these compounds may
have transmission blocking activity. Additional studies would be
required to assess this in detail.
Unfortunately, further development is hampered by the

potent inhibition of major CYP enzymes, where involvement of
the 4-pyridyl group has been demonstrated. Focus has now
moved toward the identification of the biological target of 13 to
see if this information can be used to scaffold-hop to
compounds that do not inhibit human cytochrome P450s.
Given the rapid development of parasite drug resistance to
known antimalarials, the identification of an essential and
druggable target associated with the rapid clearance of P.
falciparum parasites would be significant.

■ CHEMISTRY

Synthesis of 4-pyridylpyrimidines via a modified literature
procedure20 was initially undertaken by condensation of 4-
pyridylamidine with dimethyl malonate using sodium meth-
oxide as a base and refluxing in methanol for up to 3 days to
afford 2-(pyridin-4-yl)pyrimidine-4,6-diol 48 in 55% yield.
However, by employing experiment design software Modde
and transferring the process to a microwave reactor, we were
able to rapidly optimize the reaction conditions, improving the
reaction yield to 70% and shortening the reaction time from 3
days to 1 h (Scheme 1). Chlorination of diol 48 with
phosphorus trichloride at 90 °C gave rise to 4,6-dichloro-2-
(pyridin-4-yl)pyrimidine 49 with 58% yield. Nucleophilic
displacement of one chlorine atom by an amine followed by
a Suzuki cross-coupling reaction with a boronic acid or ester
afforded pyrimidines 51, allowing us to investigate substituents
at the R2 and R3 positions.

Table 7. Modifications at R1
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The synthetic route outlined in Scheme 1 is not amenable to
explore the influence of changes at the R1 position on

antimalarial activity. Therefore, a number of synthetic routes
that allowed the introduction of a diverse array of substituents

Table 8. Modifications at R1

Scheme 1a

a(i) Dimethyl malonate (DMM), NaOMe, MeOH, reflux, 3 days, 55%; or DMM, NaOMe, N-methylpyrrolidinone, microwave, 1 h, 150 °C, 70%;
(ii) POCl3, 90°C, 58%; (iii) amine, DIPEA, THF, rt ; (iv) boronic ester/acid, K3PO4, Pd(PPh3)4, DMF/water, microwave, 120 °C, 20 min.
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at C-2 position on the pyrimidine ring were explored. First,
starting from commercially available 2,4,6-trichloropyrimidine
52, nucleophilic displacement with the corresponding amine (1
equiv) at −5 °C in ethanol gave rise to 53, with substitution at
the 4-position as the major product, together with substitution
at the 2-position as the minor product (Scheme 2).
The two reaction products could be easily separated by

column chromatography. Suzuki cross-coupling reaction at the
2-position allowed the introduction of aromatic R1 substituents
using commercially available boronic esters or acids. Alter-
natively, amino derivatives at C-2 were prepared by heating 53
in acetonitrile in the presence of the corresponding amine.
Finally, the desired trisubstituted pyrimidines 55 were obtained
by Suzuki cross-coupling with 3-pyridylboronic acid. An
alternative route allowing the introduction of the R1 substituent
at C-2 as the last step is shown in Scheme 3. Starting from
commercially available 4,6-dichloro-2-methylsulfanylpyrimidine
56, reaction with 4-(4-piperidyl)morpholine in acetonitrile at
room temperature gave rise to 57 in 56% yield. As above, a
Suzuki cross-coupling with 3-pyridylboronic acid led to 58 in
excellent yield. Finally, the introduction of the R1 substituent
was carried out following the palladium-catalyzed, copper(I)
thiophene-2-carboxylate (CuTC) mediated coupling of boronic
acids with heteroaromatic thioethers to yield compounds of
type 55, reported by Liebeskind and Srogl.21 However, this
reaction is limited to boronic acids and the more commercially
accessible boronic esters led to low yields or failed.
To expand the diversity of substituents at R1 allowing a

comprehensive SAR study, we developed the synthetic route
outlined in Scheme 4. Iodination of commercially available 2-
aminopyrimidine 59 was performed in good yield using tert-
butyl nitrate and diiodomethane as previously described.22

Subsequent selective displacement of one of the chlorine atoms
on intermediate 60 with amines such as 4-(4-piperidyl)-
morpholine was carried out to afford substituted pyrimidines as
exemplified by 61. Intermediate 61 proved to be a very versatile
synthon, allowing the introduction of a diverse array of R1

groups by a variety of synthetic methods. Pyrimidines bearing
alkyl substituents were prepared by Sonogashira cross-coupling
with a terminal alkyne followed by reduction of the resulting
alkene. Aromatic and heteroaromatic substituents were

introduced at C-2 by coupling with boronic acids or esters
with good selectivity, and nucleophilic displacements of iodine
with amines and copper cyanide were also selective. The final
step to obtain trisubstituted pyrimidine 55 from intermediate
62 was by Suzuki cross-coupling with 3-pyridylboronic acid.

■ EXPERIMENTAL SECTION
General. Reactions using microwave irradiation were carried out in

a Biotage Initiator microwave. Normal phase TLC was carried out on
precoated silica plates (Kieselgel 60 F254, BDH) with visualization via
UV light (UV 254/365 nm) and/or ninhydrin solution. Flash
chromatography was performed using Combiflash Companion Rf
(Teledyne ISCO) and prepacked silica gel columns purchased from
Grace Davison Discovery Science or SiliCycle. Mass-directed
preparative HPLC separations were performed using a Waters
HPLC (2545 binary gradient pumps, 515 HPLC make-up pump,
2767 sample manager) connected to a Waters 2998 photodiode array
and a Waters 3100 mass detector. Preparative HPLC separations were
performed with a Gilson HPLC (321 pumps, 819 injection module,
215 liquid handler/injector) connected to a Gilson 155 UV/vis
detector. On both intruments, HPLC chromatographic separations
were conducted using Waters XBridge C18 columns, 19 mm × 100

Scheme 2a

a(i) Amine, Et3N, ethanol, −5 °C, 4 h; (ii) boronic acid/ester, 2 M aq Na2CO3, Pd(PPh3)4, 1,4-dioxane/water, microwave at 120 °C, 20 min; (iii)
amine, Et3N, acetonitrile, 40−70°C; (iv) 3-pyridyl boronic acid, K3PO4, Pd(PPh3)4,DMF/water 3/1, microwave at 120 °C, 20 min.

Scheme 3a

a(i) Amine, Et3N, ethanol, rt, 16 h, 56%; (ii) 3-pyridylboronic acid, K3PO4, Pd(PPh3)4, 1,4-dioxane/water 3/1, microwave at 130 °C, 20 min, 96%;
(iii) boronic acid, thiophene-2-carbonyloxycopper, Pd(PPh3)4, 1,4-dioxane or THF, microwave at 130 °C, 1 h or 85 °C, 18 h.

Scheme 4a

a(i) CH2I2, t-BuONO, acetonitrile, 80 °C, 3 h 30 min, 64%; (ii) amine,
Et3N, ethanol, 0 °C, 3 h; (iii) acetylene, CuI, Et3N, Pd(PPh3)2Cl2,
acetonitrile, rt, 18 h; (iv) amine, DIPEA, NMP, microwave at 200 °C,
15 min; (v) boronic acid/ester, 2 M aq Na2CO3, Pd(PPh3)2Cl2, DME,
microwave at 200 °C, 20 min; (vi) 3-pyridylboronic acid, K3PO4,
Pd(PPh3)4, DMF, microwave at 120 °C, 20 min.
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mm, 5 μm particle size, using 0.1% ammonia in water (solvent A) and
acetonitrile (solvent B) as mobile phase. 1H NMR and 19F NMR
spectra were recorded on a Bruker Avance DPX 500 spectrometer (1H
at 500.1 MHz, 13C at 125 MHz, 19F at 470.5 MHz) or a Bruker Avance
DPX 300 (1H at 300 MHz). Chemical shifts (δ) are expressed in ppm
recorded using the residual solvent as the internal reference in all cases.
Signal splitting patterns are described as singlet (s), doublet (d), triplet
(t), quartet (q), multiplet (m), broad (br), or a combination thereof.
Coupling constants (J) are quoted to the nearest 0.5 Hz. Low
resolution electrospray (ES) mass spectra were recorded on a Bruker
MicroTof mass spectrometer, run in positive mode. High resolution
mass spectrometry (HRMS) was performed using a Bruker MicroTof
mass spectrometer. LCMS analysis and chromatographic separation
were conducted with a Bruker MicrOTOf mass spectrometer or an
Agilent Technologies 1200 series HPLC connected to an Agilent
Technologies 6130 quadrupole LC/MS, where both instruments were
connected to an Agilent diode array detector. The column used was a
Waters XBridge column (50 mm × 2.1 mm, 3.5 μm particle size) and
the compounds were eluted with a gradient of 5−95% acetonitrile/
water + 0.1% ammonia. All compounds for in vitro and in vivo
experiments displayed >95% purity by LCMS. Unless otherwise stated
herein reactions have not been optimized. Solvents and reagents were
purchased from commercial suppliers and used without further
purification. Dry solvents were purchased in Sure/Seal bottles stored
over molecular sieves.
Synthetic Routes. See Schemes 1−4.
Preparation of Compounds. 2-(2,6-Di(pyridine-3-yl)-

pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinoline (3). To a solution
of 2,4,6-trichloropyrimidine (52) (1 g, 5.45 mmol) in ethanol (12 mL)
at 0 °C, a solution of 1,2,3,4-tetrahydroisoquinoline (0.68 mL, 5.45
mmol) in ethanol (5 mL) was added dropwise followed by
triethylamine (1.14 mL, 8.19 mmol). Reaction mixture was stirred at
0 °C for 1.5 h. Solvents were removed under vacuum, and the reaction
crude was partitioned between DCM (150 mL) and a saturated
aqueous solution of NaHCO3 (2 × 100 mL). The organic phase was
dried over MgSO4, filtered, and solvents were removed under reduced
pressure. The product was purified by column chromatography (25 g
silica cartridge) using (A) hexane and (B) ethyl acetate as eluents and
the following gradient: 3 min hold to 100% A, 10 min ramp to 40% B,
1 min hold to 40% B. Fractions containing pure product were pooled
together and solvents were removed to obtain 2-(2,6-dichloropyr-
imidin-4-yl)-1,2,3,4-tetrahydroisoquinoline as a yellow solid (0.98 g,
64% yield). Purity by LCMS (UV chromatogram, 190−450 nm) 98%.
1H NMR (500 MHz, CDCl3) δ 7.29−7.22 (m, 4H), 6.49 (s, 1H), 4.76
(broad peak, 2H), 3.81 (broad peak, 4H), 3.01−2.99 (m, 2H); LRMS
(ES+) m/z 281 [M + H]+.
To a stirred solution of 2-(2,6-dichloropyrimidin-4-yl)-1,2,3,4-

tetrahydroisoquinoline (0.15 g, 0.54 mmol) and 3-pyridylboronic
acid (0.15 g, 1.18 mmol) in 1,4-dioxane (4.5 mL), a solution of
potassium phosphate (0.34 g, 1.61 mmol) in water (1.5 mL) was
added. The reaction mixture was degassed by bubbling argon through
for 5 min, and then Pd(PPh3)4 (0.018 g, 0.02 mmol) was added. The
reaction was heated at 120 °C under microwave irradiation for 30 min.
The reaction crude was partitioned between DCM (2 × 50 mL) and
saturated aqueous solution of NaHCO3 (10 mL). The organics phase
was dried over MgSO4 before concentration to dryness. The product
was purified by column chromatography (12 g silica cartridge) using
(A) DCM and (B) 10% MeoH in DCM as eluents and the following
gradient: 3 min hold to 100% A, 15 min ramp to 100% B, 3 min hold
to 100% B. The fractions containing product were pooled together and
solvents were removed to obtain 3 as an off-white solid (100 mg, 51%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H
NMR (500 MHz, CDCl3) δ 9.75 (dd, 1H, J = 0.8, 2.1 Hz), 9.31 (dd,
1H, J = 0.7, 2.2 Hz), 8.82−8.79 (m, 1H), 8.72−8.70 (m, 2H), 8.49−
8.47 (m, 1H), 7.47−7.41 (m, 2H), 7.29−7.24 (m, 4H), 6.92 (s, 1H),
4.95 (broad m, 2H), 4.07 (broad m, 4H), 3.07−3.04 (m, 2H); LRMS
(ES+) m/z 366 [M + H]+.
4-(4-(3,4-Dihydroisoquinolin-2(1H)-yl)-6-(pyridine-3-yl)-

pyrimidin-2-yl)morpholine (5). To a solution of 2,4,6-trichloropyr-
imidine (52) (0.63 mL, 5.5 mmol) in ethanol (12 mL) at 0 °C, a

solution of 1,2,3,4-tetrahydroisoquinoline (0.68 mL, 5.45 mmol) in
ethanol (5 mL) was added dropwise followed by triethylamine (1.14
mL, 8.19 mmol). The white suspension was stirred at 0 °C for 3 h and
then was allowed to reach room temperature. Morpholine (0.48 mL,
5.5 mmol) and acetonitrile (20 mL) were added to the reaction
mixture. The clear suspension was stirred at 40 °C overnight. Solvents
were removed under vacuum, and the reaction crude was partitioned
between DCM (100 mL) and water (25 mL). The organic phase was
washed with a saturated aqueous solution of NaHCO3 (25 mL), dried
over MgSO4, filtered, and solvents were removed under reduced
pressure. The product was purified by column chromatography (24 g
silica cartridge) using (A) hexane amd (B) ethyl acetate as eluents and
the following gradient: 3 min hold to 100% A, 18 min ramp to 30% B,
2 min hold to 30% B. Fractions containing product were pooled
together and solvents were removed to obtain 4-(4-chloro-6-(3,4-
dihydroisoquinolin-2(1H)-yl)pyrimidin-2-yl)morpholine as a white
wax (1.25 g, 69% yield, 88% purity by LCMS) that was used for the
next step without further purification.

To a stirred solution of 4-(4-chloro-6-(3,4-dihydroisoquinolin-
2(1H)-yl)pyrimidin-2-yl)morpholine (0.15 g, 0.45 mmol) and 3-
pyridylboronic acid (0.17 g, 1.4 mmol) in DMF (6 mL), a solution of
potassium phosphate (0.30 g, 1.4 mmol) in water (2 mL) was added.
The reaction mixture was degassed by bubbling argon through for 5
min, and then Pd(PPh3)4 (0.016 g, 0.01 mmol) was added. The
reaction was heated at 120 °C under microwave irradiation for 30 min.
The reaction crude was filtered through Celite and partitioned
between DCM (2 × 50 mL) and saturated aqueous solution of
NaHCO3 (10 mL). The organics phase was dried over MgSO4 before
concentration to dryness. The product was purified by column
chromatography (12 g silica cartridge) using (A) hexane and (B) ethyl
acetate as eluents and the following gradient: 3 min hold to 100% A,
15 min ramp to 80% B, 2 min ramp to 100% B, 3 min hold to 100% B.
The fractions containing product, first eluting peak, were pooled
together and solvents were removed to obtain 5 as yellow solid (34
mg, 20% yield). Purity by LCMS (UV chromatogram, 190−450 nm)
95%. 1H NMR (500 MHz, CDCl3) δ 9.19 (bs, 1H), 8.66−8.65 (m,
1H), 8.312−8.29 (m, 1H), 7.38−7.36 (m, 1H), 7.23−7.18 (m, 4H),
6.38 (s, 1H), 4.79 (broad peak, 2H), 3.93−3.87 (m, 6H), 3.81−3.79
(m, 4H), 2.97 (t, 2H, J = 5.9 Hz); LRMS (ES+) m/z 374 [M + H]+.

6-(Pyridyl-3yl)-2-(pyridin-4-yl)pyrimidin-4-amine (6). In a
sealed tube a solution of 4,6-dichloro-2-(pyridin-4-yl)pyrimidine
(49) (0.13 g, 0.58 mmol) and ammonium hydroxide (2 mL) in
methanol (2 mL) was heated at 80 °C for 5h. Solvents were removed
under reduced pressure, and the residue was partitioned between
water (10 mL) and DCM (2 × 25 mL). The organic phases were
combined, dried over magnesium sulfate, and solvents were removed
under reduced pressure. The product was purified by column
chromatography (12 g silica cartridge) using (A) DCM and (B)
20% MeOH in DCM as eluents and the following gradient: 2 min hold
at 100% A, 18 min ramp to 100% B, 3 min hold at 100% B. The
fractions containing product were pooled together and solvents were
removed to obtain 6-chloro-2-(pyridin-4-yl)pyrimidin-4-amine as
white solid (69 mg, 39% yield, 99% purity by LCMS). Product was
used in the next step without further purification. 1H NMR (500 MHz,
DMSO-d6) δ 8.74−8.72 (m, 2H), 8.10−8.08 (m, 2H), 7.50 (bs, 2H),
6.51 (m, 1H); LRMS (ES+) m/z 207 [M + H]+.

To a stirred solution of 6-chloro-2-(pyridin-4-yl)pyrimidin-4-amine
(69 mg, 0.33 mmol) and 3-pyridylboronic acid (91 mg, 0.66 mmol) in
DMF (3 mL), a solution of potassium phosphate (140 mg, 0.66
mmol) in water (1 mL) was added. The reaction mixture was degassed
by bubbling argon through for 5 min, and then Pd(PPh3)4 (20 mg,
0.017 mmol) was added. The reaction was heated at 120 °C under
microwave irradiation for 30 min. Reaction crude was filtered through
Celite, quenched with water (10 mL), and extracted with DCM (2 ×
25 mL). The organic phases were combined, dried over magnesium
sulfate, and solvents were removed under reduced pressure. The
product was purified by column chromatography (4 g silica cartridge)
using (A) DCM and (B) 20% MeOH in DCM as eluents and the
following gradient: 3 min hold at 100% A, 18 min ramp to 50% B, 3
min hold at 50% B. The fractions containing product were pooled
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together and solvents were removed to obtain 6 as off-white solid (24
mg, 29% yield). Purity by LCMS (UV chromatogram, 190−450 nm)
>98%. 1H NMR (500 MHz, DMSO-d6) δ 8.76−8.72 (m, 3H), 8.50−
8.47 (m, 1H), 8.31−8.29(m, 2H), 7.59 (dd, 2H, J = 4.8, 7.4 Hz), 7.29
(m, 1H), 7.02 (m, 1H); LRMS (ES+) m/z 250 [M + H]+.
N-Benzyl-N-methyl-6-(pyridine-3-yl)-2-(pyridin-4-yl)-

pyrimidin-4-amine (7). 7 was prepared in an analogous four-step
procedure as that of compound 12: To a stirred solution of N-benzyl-
6-chloro-N-methyl-2-(pyridin-4-yl)pyrimidin-4-amine (0.18 g, 0.58
mmol) and 3-pyridylboronic acid (0.21 g, 1.74 mmol) in DMF (3
mL), a solution of potassium phosphate (0.36 g, 1.74 mmol) in water
(1 mL) was added. The reaction mixture was degassed by bubbling
argon through for 5 min, and then Pd(PPh3)4 (0.02 g, 0.014 mmol)
was added. The reaction was heated at 120 °C under microwave
irradiation for 30 min. Reaction crude was filtered through Celite,
quenched with water (10 mL), and extracted with DCM (2 × 25 mL).
The organic phases were combined, dried over magnesium sulfate, and
solvents were removed under reduced pressure. The product was
purified by column chromatography (12 g silica cartridge) using (A)
DCM and (B) 20% MeOH in DCM as eluents and the following
gradient: 3 min hold at 100% A, 18 min ramp to 50% B, 3 min hold at
50% B. The fractions containing product were pooled together and
solvents were removed to obtain 7 as a white solid (115 mg, 56%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H
NMR (500 MHz, CDCl3) δ 9.27 (s, 1H), 8.74−8.73 (m, 2H), 8.70−
8.69 (m, 1H), 8.42−8.41 (m, 1H), 8.37−8.35 (m, 2H), 7.43−7.28 (m,
6H), 6.82 (s, 1H), 4.99 (bs, 2H), 3.20 (bs, 3H); LRMS (ES+) m/z 354
[M + H]+.
2-(6-(Pyridin-4-yl)-2-(pyridine-4-yl)pyrimidin-4-yl)-

isoindoline (8). 8 was prepared in an analogous four-step procedure
as that of compound 12: To a stirred solution of 2-(6-chloro-2-
(pyridin-4-yl)pyrimidin-4-yl)isoindoline (0.21 g, 0.68 mmol) and 3-
pyridylboronic acid (2.50 g, 2.04 mmol) in DMF (3 mL), a solution of
potassium phosphate (0.63 g, 2.04 mmol) in water (1 mL) was added.
The reaction mixture was degassed by bubbling argon through for 5
min, and then Pd(PPh3)4 (0.03 g, 0.02 mmol) was added. The reaction
was heated at 120 °C under microwave irradiation for 30 min.
Reaction crude was filtered through Celite, quenched with water (10
mL), and extracted with DCM (2 × 25 mL). The organic phases were
combined, dried over magnesium sulfate, and solvents were removed
under reduced pressure. The product was purified by column
chromatography (12 g silica cartridge) using (A) DCM and (B)
20% MeOH in DCM as eluents and the following gradient: 3 min hold
at 100% A, 15 min ramp to 100% B, 3 min hold at 100% B. The
fractions containing product were pooled together and solvents were
removed to obtain 8 as off-white solid (90 mg, 38% yield). Purity by
LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR (500
MHz, CDCl3) δ 9.35 (d, 1H, J = 1.7 Hz), 8.78−8.73 (m, 2H), 8.74
(dd, 1H, J = 1.5, 4.8 Hz), 8.53−8.50 (m, 1H), 8.44−8.43 (m, 2H),
7.47 (ddd, 1H, J = 0.7, 4.8, 8.0 Hz), 7.43−7.38 (m, 4H), 6.83 (s, 1H),
5.16 (s, 2H), 4.90 (s, 2H); LRMS (ES+) m/z 352 [M + H]+.
7-(6-(Pyridine-4-yl)-2-(pyridine-4-yl)pyrimidin-4-yl)-5,6,7,8-

tetrahydroimidazo[1,2-a]pyrazine (9). 9 was prepared in an
analogous four-step procedure as that of compound 12: To a stirred
solution of 7-(6-chloro-2-(pyridine-4-yl)pyrimidin-4-yl)-5,6,7,8-
tetrahydroimidazo[1,2-a]pyrazine (0.09 g, 0.29 mmol) and 3-
pyridylboronic acid (0.71 g, 0.58 mmol) in DMF (3 mL), a solution
of potassium phosphate (0.18 g, 0.86 mmol) in water (1 mL) was
added. The reaction mixture was degassed by bubbling argon through
for 5 min, and then Pd(PPh3)4 (0.01 g, 0.008 mmol) was added. The
reaction was heated at 120 °C under microwave irradiation for 30 min.
Reaction crude was filtered through Celite, quenched with water (10
mL), and extracted with DCM (2 × 25 mL). The organic phases were
combined, dried over magnesium sulfate, and solvents were removed
under reduced pressure. The product was purified by column
chromatography (12 g silica cartridge) using (A) DCM and (B)
20% MeOH in DCM as eluents and the following gradient: 3 min hold
at 100% A, 15 min ramp to 100% B, 3 min hold at 100% B. The
fractions containing product were pooled together and solvents were
removed to obtain 9 as an off-white solid (79 mg, 77% yield). Purity

by LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR (500
MHz, CDCl3) δ 9.30 (d, 1H, J = 1.7 Hz), 8.75−8.74 (m, 2H), 8.72
(dd, 1H, J = 1.6, 4.8 Hz), 8.43−8.40 (m, 1H), 8.33−8.32 (m, 2H),
7.44 (ddd, 1H, J = 0.7, 4.8, 8.0 Hz), 7.09 (s, 1H), 6.98 (s, 1H), 6.92 (s,
1H), 4.97 (s, 2H), 4.93(t, 2H, J = 5.3 Hz), 4.20−4.18 (m, 2H); LRMS
(ES+) m/z 356 [M + H]+.

4-(4-Phenylpiperazin-1-yl)-6-(pyridin-3-yl)-2-(pyridin-4-yl)-
pyrimidine (10). 10 was prepared in an analogous four-step
procedure as that of compound 12: To a stirred solution of 4-
chloro-6-(4-phenylpiperazin-1-yl)-2-(pyridin-4-yl)pyrimidine (0.18 g,
0.53 mmol) and 3-pyridylboronic acid (0.21 g, 1.69 mmol) in DMF (3
mL), a solution of potassium phosphate (0.35 g, 1.69 mmol) in water
(1 mL) was added. The reaction mixture was degassed by bubbling
argon through for 5 min, and then Pd(PPh3)4 (0.02 g, 0.014 mmol)
was added. The reaction was heated at 120 °C under microwave
irradiation for 30 min. Reaction crude was filtered through Celite,
quenched with water (10 mL), and extracted with DCM (2 × 25 mL).
The organic phases were combined, dried over magnesium sulfate, and
solvents were removed under reduced pressure. The product was
purified by column chromatography (12 g silica cartridge) using (A)
DCM and (B) 20% MeOH in DCM as eluents and the following
gradient: 3 min hold at 100% A, 18 min ramp to 30% B, 3 min hold at
30% B. The fractions containing product were pooled together and
solvents were removed to obtain 10 as off-white solid (28 mg, 13%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H
NMR (500 MHz, CDCl3) δ 9.30 (s, 1H), 8.77−8.74 (m, 3H), 8.47−
8.45 (m, 1H), 8.37−8.36 (m, 2H), 7.46 (dd, 1H, J = 4.8, 7.7 Hz),
7.33−7.31 (m, 2H), 7.01−6.92 (s, 4H), 4.02 (broad peak, 4H), 3.37−
3.35 (m, 4H); LRMS (ES+) m/z 395 [M + H]+.

1′-(6-(Pyridin-3-yl)-2-(pyridin-4-yl)pyrimidin-4-yl)-1,4′-bipi-
peridine (11). 11 was prepared in an analogous four-step procedure
as that of compound 12: To a stirred solution of 1′-(6-chloro-2-
(pyridin-4-yl)pyrimidin-4-yl)-1,4′-bipiperidine (0.25 g, 0.71 mmol)
and 3-pyridylboronic acid (0.17 g, 1.43 mmol) in DMF (9 mL), a
solution of potassium phosphate (0.45 g, 2.14 mmol) in water (3 mL)
was added. The reaction mixture was degassed by bubbling argon
through for 5 min, and then Pd(PPh3)4 (0.02 g, 0.014 mmol) was
added. The reaction was heated at 120 °C under microwave irradiation
for 30 min. Reaction crude was filtered through Celite, quenched with
water (20 mL), and extracted with DCM (2 × 50 mL). The organic
phases were combined, dried over magnesium sulfate, and solvents
were removed under reduced pressure. The product was purified by
column chromatography (12 g silica cartridge) using (A) DCM and
(B) 20% MeOH in DCM as eluents and the following gradient: 3 min
hold at 100% A, 18 min ramp to 100% B, 3 min hold at 100% B. The
fractions containing product were pooled together and solvents were
removed to obtain 11 as an off-white solid (261 mg, 91% yield). Purity
by LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR (500
MHz, CDCl3) δ 9.21 (d, 1H, J = 1.8 Hz), 8.68−8.67 (m, 2H), 8.64
(dd, 1H, J = 1.6, 4.8 Hz), 8.36−8.34 (m, 1H), 8.27−8.26 (m, 2H),
7.36 (dd, 1H, J = 4.9, 7.8 Hz), 6.83 (s, 1H), 4.61 (broad peak, 2H),
3.95−3.90 (m, 2H), 2.59−2.49 (m, 5H), 1.96−1.93 (m, 2H), 1.57−
1.49 (m, 6H), 1.40−1.39(m, 2H); LRMS (ES+) m/z 401 [M + H]+.

4-(1-(6-(Pyridin-3-yl)-2-(pyridin-4-yl)pyrimidin-4-yl)-
piperidin-4-yl)morpholine (12). Scheme 1 (Four-Step Proce-
dure). Step 1: 2-(Pyridin-4-yl)pyrimidine-4,6-diol (48). A mixture
of 4-amidinopyridine hydrochloride (0.5 g, 3.17 mmol) and N-methyl-
2-pyrolidone (10 mL) was prepared at rt and dimethylmalonate (0.363
mL, 419 mg, 3.17 mmol) added followed by sodium methoxide (686
mg, 12.69 mmol) and the mixture heated in a microwave at 150 °C for
1 h. The mixture was then concentrated under reduced pressure,
diluted with water (10 mL), and acidified to pH 6 with concentrated
acetic acid. The resulting precipitate was then filtered and dried in
vacuo to afford compound 48 (420 mg, 2.22 mmol, 70%) as an off-
white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.10 (bs, 2H), 8.76−
8.75 (m, 2H), 8.02−8.03 (m, 2H), 5.56 (s, 1H); LRMS (ES+) m/z 190
[M + H]+.

Step 2: 4,6-Dichloro-2-(pyridin-4-yl)pyrimidine (49). A stirred
solution of 2-(pyridin-4-yl)pyrimidine-4,6-diol (0.62 g, 3.28 mmol) in
phosphorus oxychloride (6 mL) was heated at 90 °C for 3 h. The
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reaction mixture was slowly added to ice−water, and 2.5 M NaOH was
added to adjust to pH 7. The white precipitate was filtered. The filtrate
was extracted with ethyl acetate (2 × 50 mL), and the organic phases
were combined, dried over magnesium sulfate, and solvents were
removed under reduced pressure. Precipitate and extracted product
were combined to obtain 49 as a brown solid (421 mg, 58% yield).
Purity by LCMS (UV chromatogram, 190−450 nm) 90%. 1H NMR
(500 MHz, DMSO-d6) δ 8.81−8.80 (m, 2H), 8.27−8.26 (m, 2H), 7.41
(s, 1H); LRMS (ES+) m/z 225 [M + H]+.
Step 3: 4-(1-(6-Chloro-2-(pyridin-4-yl)pyrimidin-4-yl)-

piperidin-4-yl)morpholine. To a stirred solution of 4,6-dichloro-
2-(pyridin-4-yl)pyrimidine (0.13 g, 0.58 mmol) in anhydrous THF (5
mL), 4-morpholinopiperidine (0.11 g, 0.63 mmol) and diisopropyle-
thylamine (0.20 mL, 1.15 mmol) were added at room temperature,
and the reaction mixture was stirred at room temperature overnight.
Water (10 mL) was added, and the product was extracted with DCM
(2 × 50 mL), the organic phases were combined, dried over
magnesium sulfate, and solvents were removed under reduced
pressure. The product was purified by column chromatography (12
g silica cartridge) using (A) DCM and (B) 10% MeOH in DCM as
eluents and the following gradient: 3 min hold at 100% A, 18 min
ramp to 50% B, 3 min hold at 50% B. The fractions containing product
were pooled together and solvents were removed to obtain 4-(1-(6-
chloro-2-(pyridin-4-yl)pyrimidin-4-yl)piperidin-4-yl)morpholine as
white solid (151 mg, 73% yield). Purity by LCMS (UV chromatogram,
190−450 nm) 97%. 1H NMR (500 MHz, DMSO-d6) δ 8.74−8.72 (m,
2H), 8.14−8.13 (m, 2H), 7.03 (s, 1H), 4.58 (broad peak, 2H), 3.57−
3.55 (m, 4H), 3.06−3.02 (m, 2H), 2.48−2.46 (m, 4H), 1.90−1.87 (m,
2H), 1.39 (dddd, 2H, J = 4.2, 12.5, 12.6, 12.6 Hz); LRMS (ES+) m/z
360 [M + H]+.
Step 4. To a stirred solution of 4-[1-[6-chloro-2-(4-pyridyl)-

pyrimidin-4-yl]-4-piperidyl]morpholine (3x) (0.141 g, 0.39 mmol)
and 3-pyridylboronic acid (0.098 g, 0.78 mmol) in DMF (3 mL), a
solution of potassium phosphate (0.249 g, 1.17 mmol) in water (1
mL) was added. The reaction mixture was degassed by bubbling argon
through for 5 min, and then Pd(PPh3)4 (0.018 g, 0.016 mmol) was
added. The reaction was heated at 120 °C under microwave irradiation
for 20 min. Reaction crude was diluted with methanol (10 mL) and
applied to a SCX 5 g column, and product was eluted with 2 M NH3 in
MeOH. Solvents were removed. The product was further purified by
preparative HPLC. The fractions containing product were pooled
together, and solvents were removed to obtain compound 12 as off-
white solid (38 mg, 24% yield). Purity by LCMS (UV chromatogram,
190−450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ 9.28−9.27 (m,
1H), 8.76−8.75 (m, 2H), 8.72 (dd, 1H, J = 1.7, 4.8 Hz), 8.45−8.42
(m, 1H), 8.34−8.33 (m, 2H), 7.44 (ddd, 1H, J = 0.7, 4.8, 7.9 Hz), 6.93
(s, 1H), 4.65 (bs, 2H), 3.74−3.72 (m, 4H), 3.12−3.06 (m, 2H), 2.60−
2.52 (m, 5H), 2.04−2.01 (m, 2H), 1.59 (ddd, 2H, J = 4.3, 12.3, 24.1
Hz); LRMS (ES+) m/z 403 [M + H]+. HRMS (ES+) calculated for
C23H27N6O m/z [M + H]+ 403.2241. Measured m/z [M + H]+

403.2260.
4-((1-(6-(Pyridin-3-yl)-2-(pyridin-4-yl)pyrimidin-4-yl)-

piperidin-4-yl)methyl)morpholine Fumarate (13). 13 was
prepared in an analogous four-step procedure to that of compound
12: A mixture of 4-((1-(6-chloro-2-(pyridin-4-yl)pyrimidin-4-yl)-
piperidin-4-yl)methyl)morpholine (312 mg, 0.83 mmol) in DMF (4
mL) was prepared at rt, and to it were added 3-pyridylboronic acid
(205 mg, 1.70 mmol), potassium phosphate (354 mg, 1.70 mmol) in
water (1 mL), and Pd tetrakis (48 mg, 0.04 mmol). The mixture was
then heated in a microwave at 130 °C for 1 h. The mixture was then
diluted with DCM (10 mL) and filtered through a Celite column.
Filtrate was then purified by SCX-2 column, column washed with
methanol (2 × 10 mL) and then flushed with 7 M ammonia in
methanol (2 × 10 mL), and the ammonia/methanol filtrate
concentrated under reduced pressure. Mixture was then purified by
column (0−10% 7 M ammonia in methanol/dichloromethane) to
afford 13 as an off-white solid (276 mg, 0.66 mmol). A sample of 13
(free base) (100 mg, 0.24 mmol) was suspended in ethanol (20.0 mL)
and refluxed for 5 min until dissolution occurred. Fumaric acid (13.9
mg, 0.12 mmol) was dissolved in ethanol (5 mL) and added to the

mixture and stirred at rt for a further 24 h. The mixture was then
concentrated under reduced pressure and triturated with ethyl acetate
and the resulting precipitate filtered, washed with ethyl acetate (2 × 5
mL), and dried by vacuum filtration to afford compound 13 (82 mg,
0.15 mmol, 21% yield over two steps). Purity by LCMS (UV
chromatogram, 190−450 nm) > 95%. 1H NMR (500 MHz, CDCl3) δ
9.47 (1H, d, J = 1.6 Hz), 8.74 (2H, d, J = 6.0 Hz), 8.71 (1H, dd, J =
1.3, 4.7 Hz), 8.67−8.64 (1H, m), 8.33 (2H, d, J = 6.0 Hz), 7.57 (1H,
dd, J = 4.8, 8.0 Hz), 7.49 (1H, s), 6.60 (1H, s), 4.73−4.73 (2H, m),
3.59 (4H, dd, J = 4.0, 4.0 Hz), 3.04 (2H, t, J = 12.5 Hz), 2.35 (4H, s),
2.16 (2H, d, J = 7.3 Hz), 1.95−1.89 (1H, m), 1.86 (2H, d, J = 13.0
Hz), 1.17−1.09 (2H, m); LRMS (ES+) m/z 417 [M + H]+

N-(4-Morpholinobutyl)-6-(pyridin-3-yl)-2-(pyridin-4-yl)-
pyrimidin-4-amine (14). 14 was prepared in an analogous four-step
procedure to that of compound 12: A mixture of 6-chloro-N-(4-
morpholinobutyl)-2-(pyridin-4-yl)pyrimidin-4-amine (187 mg, 0.54
mmol) in DMF (4 mL) was prepared at rt and 3-pyridylboronic acid
(132, 1.08 mmol) added followed by potassium phosphate (228 mg,
1.08 mmol) in water (2 mL). Pd tetrakis (31 mg, 0.03 mmol) was
added and the mixture heated in a microwave to 130 °C for 1 h. The
mixture was diluted with dichloromethane (10 mL) and filtered
through an SCX-2 column, washed with methanol (2 × 10 mL), and
flushed with 7 M ammonia in methanol (2 × 10 mL) and filtrate
concentrated under reduced pressure. The mixture was then purified
by mass directed autoprep to afford 14 (161 mg, 0.41 mmol, 77%) as a
colorless solid. Purity by LCMS (UV chromatogram, 190−450 nm) >
95%. 1H NMR (500 MHz, CDCl3) δ 9.27 (d, 1H, J = 1.8 Hz), 8.75
(dd, 2H, J = 1.6, 4.5 Hz), 8.72 (dd, 1H, J = 1.6, 4.8 Hz), 8.45 (dt, 1H, J
= 2.0, 9.9 Hz), 8.32 (d, 2H, J = 8.3 Hz), 7.45 (dd, 1H, J = 3.1, 7.3 Hz),
6.70 (s, 1H), 6.04 (brs, 1H), 3.78 (t, 4H, J = 4.4 Hz), 3.52 (brs, 2H),
2.49 (brs, 4H), 2.43 (t, 2H, J = 7.1 Hz), 1.80 (p, 2H, J = 6.8 Hz), 1.69
(p, 2H, J = 7.1 Hz); LRMS (ES+) m/z 389 [M + H]+.
(R)-2-(6-(Pyridin-3-yl)-2-(pyridine-4-yl)pyrimidin-4-yl)-

octahydropyrrolo[1,2-a]pyrazine (15). 15 was prepared in an
analogous four-step procedure as that of compound 12: To a stirred
solution of (R)-2-(6-chloro-2-(pyridin-4-yl)pyrimidin-4-yl)octahydro-
pyrrolo[1,2-a]pyrazine (0.14 g, 0.44 mmol) and 3-pyridylboronic acid
(0.16 g, 1.31 mmol) in DMF (4.5 mL), a solution of potassium
phosphate (0.28 g, 1.31 mmol) in water (1.5 mL) was added. The
reaction mixture was degassed by bubbling argon through for 5 min,
and then Pd(PPh3)4 (0.015 g, 0.013 mmol) was added. The reaction
was heated at 120 °C under microwave irradiation for 30 min.
Reaction crude was filtered through Celite, quenched with water (20
mL), and extracted with DCM (2 × 50 mL). The organic phases were
combined, dried over magnesium sulfate, and solvents were removed
under reduced pressure. The product was purified by column
chromatography (12 g silica cartridge) using (A) DCM and (B)
20% MeOH in DCM as eluents and the following gradient: 3 min hold
at 100% A, 18 min ramp to 45% B, 3 min hold at 45% B. The fractions
containing product were pooled together and solvents were removed
to obtain 15 as white solid (119 mg, 75% yield). Purity by LCMS (UV
chromatogram, 190−450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ
9.22 (s, 1H), 8.69−8.65 (m, 3H), 8.37−8.35 (m, 1H), 8.28−8.27 (m,
2H), 7.37 (dd, 1H, J = 4.8, 7.8 Hz), 6.84 (s, 1H), 4.56 (broad peak,
2H), 3.16−3.09 (m, 3H), 2.78−2.74 (m, 1H), 2.27−2.22 (m, 1H),
2.18−2.13 (m, 1), 2.04−1.98 (m, 1H) 1.94−1.82 (m, 2H), 1.78−1.70
(m, 1H), 1.54−1.45 (m, 1H); LRMS (ES+) m/z 359 [M + H]+.

4-(1-(6-Cyclopropyl-2-(pyridin-4-yl)pyrimidin-4-yl)piperidin-
4-yl)morpholine (16). 16 was prepared in an analogous four-step
procedure to that of compound 12: A mixture of 4-[1-[6-chloro-2-(4-
pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g, 0.14 mmol),
potassium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4 (0.005 g, 0.004
mmol), cyclopropylboronic acid (0.012 g, 0.014 mmol) in 1,4-dioxane
(1.6 mL) and water (0.4 mL) was heated at 120 °C under microwave
irradiation for 30 min. The cooled reaction mixture was evaporated to
dryness. The residue was dissolved in MeOH/DCM and purified by
SCX 2 g column eluting with MeOH and then 2 M NH3 in MeOH.
The fraction containing product was evaporated to dryness. The
residue was dissolved in DMF and purified by mass directed HPLC 5−
95% MeCN, basic, to afford 16 as a white solid (15 mg, 28% yield).
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Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR
(500 MHz, CDCl3) δ 8.68 (d, 2H, J = 5.5 Hz), 8.19 (d, 2H, J = 5.65
Hz), 6.42 (s, 1H), 4.59 (bs, 2H), 3.86−3.74 (broad peak, 4H), 2.96
(m, 2H), 2.76−2.51 (broad peak, 5H), 2.07−1.98 (broad peak, 2H),
1.88 (m, 1H), 1.65−1.52 (broad peak, 2H), 1.19 (m, 2H), 0.98 (m,
2H); LRMS (ES+) m/z 366 [M + H]+.
6-(4-Morpholinopiperidin-1-yl)-N-(3-morpholinopropyl)-2-

(pyridin-4-yl)pyrimidin-4-amine (17). To a mixture of 4-[1-[6-
chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g,
0.14 mmol) in anhydrous NMP (1 mL) was added 3-morpholino-
propan-1-amine (60 mg, 0.41 mmol), and the mixture was heated at
200 °C under microwave irradiation for 10 min. The cooled reaction
mixture was purified by mass directed HPLC 5−95% MeCN, basic, to
afford 17 as a yellow solid (38 mg, 55% yield). Purity by LCMS (UV
chromatogram, 190−450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ
8.69- 8.65 (m, 2H), 8.18−8.16 (m, 2H), 5.61 (bs, 1H), 5.43 (s, 1H),
4.50−4.45 (m, 2H), 3.80−3.70 (m, 8H), 3.44−3.38 (m, 2H), 2.90 (m,
2H), 2.62−2.44 (m, 11H), 1.97−1.94 (m, 2H), 1.87−1.80 (m, 2H),
1.58−1.48 (m, 2H); LRMS (ES+) m/z 468 [M + H]+.
3-((6-(4-Morpholinopiperidin-1-yl)-2-(pyridin-4-yl)-

pyrimidin-4-yl)amino)propanamide (18). A mixture of 4-[1-[6-
chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g,
0.14mmol), N,N-diisopropylethylamine (0.072ml, 0.41mmol), 3-
aminopropanamide hydrochloride (0.052 g, 0.41mmol) in anhydrous
NMP (1 mL) was heated at 200 °C under microwave irradiation for 10
min. The cooled reaction mixture was purified by mass directed HPLC
5−95% MeCN, basic, to afford 18 as a yellow solid (16 mg, 26%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H
NMR (500 MHz, (CD3)2SO) δ 8.67−8.64 (m, 2H), 8.15−8.12 (m,
2H), 7.33 (bs, 1H), 6.84−6.75 (broad peaks, 2H), 5.7 (s, 1H), 4.41−
4.32 (m, 2H), 3.48−3.47 (m, 6H), 2.83 (m, 2H), 2.52−2.34 (m, 7H),
1.88−1.82 (m, 2H), 1.40−1.30 (m, 2H); LRMS (ES+) m/z 412 [M +
H]+.
4-(1-(6-Morpholino-2-(pyridin-4-yl)pyrimidin-4-yl)piperidin-

4-yl)morpholine (19). To a mixture of 4-[1-[6-chloro-2-(4-pyridyl)-
pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g, 0.14 mmol) in
anhydrous NMP (1 mL) was added morpholine (36 mg, 0.41
mmol), and the mixture was heated at 200 °C under microwave
irradiation for 10 min. The cooled reaction mixture was purified by
mass directed HPLC 5−95% MeCN, basic, to afford 19 as a white
solid (30 mg, 57% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ 8.69−8.67 (m, 2H),
8.20−8.18 (m, 2H), 5.61 (s, 1H), 4.55−4.49 (m, 2H), 3.83−3.80 (m,
4H), 3.68−3.71 (broad peak, 4H), 3.66−3.63, (m, 4H), 2.92 (m, 2H),
2.62−2.57 (broad peak, 5H), 2.00−1.93 (m, 2H), 1.62−1.52 (m, 2H);
LRMS (ES+) m/z 411 [M + H]+.
4-(1-(6-(3,5-Dimethylisoxazol-4-yl)-2-(pyridin-4-yl)-

pyrimidin-4-yl)piperidin-4-yl)morpholine (20). 20 was prepared
in an analogous four-step procedure to that of compound 51: A
mixture of 4-[1-[6-chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]-
morpholine (0.050 g, 0.14 mmol), potassium phosphate (0.088 g,
0.41 mmol), Pd(PPh3)4 (0.005 g, 0.004 mmol), 3,5-dimethyl-4-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoxazole (0.093 g, 0.41
mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL) was heated at 120
°C under microwave irradiation for 30 min. The cooled reaction
mixture was filtered through a Celite cartridge (2.5 g), washing the
cartridge with DCM. The filtrate was partitioned between saturated
NaHC03 (5 mL) and DCM (10 mL). The DCM extract was
evaporated to dryness. The residue was dissolved in MeOH and
purified by SCX 2 g column eluting with MeOH and then 2 M NH3 in
MeOH. The fraction containing product was evaporated to dryness.
The residue was dissolved in DMF and purified by mass directed
HPLC 5−95% MeCN, basic, to afford 20 as a white solid (36 mg, 61%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H
NMR (500 MHz, CDCl3) δ 8.75−8.73 (m, 2H), 8.25−8.23 (m, 2H),
6.51 (s, 1H), 4.61 (bs, 2H), 3.92−3.67 (broad peak, 4H), 3.05 (m,
2H), 2.75−2.55 (m, 8H), 2.53 (s, 3H), 2.16−2.00 (broad peak, 2H),
1,72−1.49 (broad peak, 2H); LRMS (ES+) m/z 421 [M + H]+.
4-(1-(6-(3-Fluorophenyl)-2-(pyridin-4-yl)pyrimidin-4-yl)-

piperidin-4-yl)morpholine (21). 21 was prepared in an analogous

four-step procedure to that of compound 12: A mixture of 4-[1-[6-
chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g,
0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4
(0.005 g, 0.004 mmol), (3-fluorophenyl)boronic acid (0.058 g, 0.41
mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL) was heated at 120
°C under microwave irradiation for 30 min. The cooled reaction
mixture was evaporated to dryness. The residue was dissolved in
MeOH/DCM and purified by SCX 2 g column eluting with MeOH
and then 2 M NH3 in MeOH. The fraction containing product was
evaporated to dryness. The residue was dissolved in DMF and purified
by mass directed HPLC 5−95% MeCN, basic, to afford 21 as a white
solid (47 mg, 76% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ 8.76−8.74 (m, 2H),
8.35−8.33 (m, 2H), 7.88−7.83 (m, 2H), 7.49−7.44 (m, 1H), 7.2−7.16
(m, 1H), 6.90 (s, 1H), 4.68 (bs, 2H), 3.85−3.73 (broad peak, 4H),
3.06 (m, 2H), 2.76−2.59 (broad peak, 5H), 2.14−2.04 (m, 2H), 1.69−
1.54 (m, 2H); LRMS (ES+) m/z 420 [M + H]+.

4-(1-(6-(4-Fluorophenyl)-2-(pyridin-4-yl)pyrimidin-4-yl)-
piperidin-4-yl)morpholine (22). 22 was prepared in an analogous
four-step procedure to that of compound 12: A mixture of 4-[1-[6-
chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g,
0.1389 mmol), potassium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4
(0.005 g, 0.004 mmol), (4-fluorophenyl)boronic acid (0.058 g, 0.41
mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL) was heated at 120
°C under microwave irradiation for 30 min. The cooled reaction
mixture was evaporated to dryness. The residue was dissolved in
MeOH/DCM and purified by SCX 2 g column eluting with MeOH
and then 2 M NH3 in MeOH. The fraction containing product was
evaporated to dryness. The residue was dissolved in DMF and purified
by mass directed HPLC 5−95% MeCN, basic, to afford 22 as a white
solid (38 mg, 61% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ 8.74 (d, 2H, J = 5.35
Hz), 8.35−8.32 (m, 2H), 8.14−8.09 (m, 2H), 7.21−7.16 (m, 2H),
6.87 (s, 1H), 4.67 (broad peak, 2H), 3.84−3.7 (broad peak, 4H), 3.05
(m, 2H), 2.71−2.55 (broad peak, 5H), 2.10−2.00 (m, 2H), 1.67−1.52
(m, 2H); LRMS (ES+) m/z 420 [M + H]+.

4-(1-(2-(Pyridin-4-yl)[4,5′-bipyrimidin]-6-yl)piperidin-4-yl)-
morpholine (23). 23 was prepared in an analogous four-step
procedure to that of compound 12: A mixture of 4-[1-[6-chloro-2-(4-
pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g, 0.14 mmol),
potassium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4 (0.005 g, 0.004
mmol), 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidine
(0.085 g, 0.41 mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL)
was heated at 120 °C under microwave irradiation for 30 min. The
cooled reaction mixture was evaporated to dryness. The residue was
dissolved in MeOH/DCM and purified by SCX 2 g column eluting
with MeOH and then 2 M NH3 in MeOH. The fraction containing
product was evaporated to dryness. The residue was dissolved in DMF
and purified by mass directed HPLC 5−95% MeCN, basic, to afford
23 as a white solid (26 mg, 44% yield). Purity by LCMS (UV
chromatogram, 190−450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ
9.41 (s, 2H), 9.32 (s, 1H), 8.78−8.75 (m, 2H), 8.33−8.31 (m, 2H),
6.92 (s, 1H) 4.70 (bs, 2H), 3.99−3.66 (broad peak, 4H), 3.11 (m,
2H), 2.82−2.52 (broad peak, 5H), 2.19−2.01 (broad peak, 2H), 1.77−
1.49 (broad peak, 2H); LRMS (ES+) m/z 404 [M + H]+.

4-(1-(6-(5-Methoxypyridin-3-yl)-2-(pyridin-4-yl)pyrimidin-4-
yl)piperidin-4-yl)morpholine (24). 24 was prepared in an
analogous four-step procedure to that of compound 12: A mixture
of 4-[1-[6-chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine
(0.050 g, 0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol),
Pd(PPh3)4 (0.005 g, 0.004 mmol), (5-methoxy-3-pyridyl)boronic acid
(0.063 g, 0.41 mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL) was
heated at 120 °C under microwave irradiation for 30 min. The cooled
reaction mixture was evaporated to dryness. The residue was dissolved
in MeOH/DCM and purified by SCX 2 g column eluting with MeOH
and then 2 M NH3 in MeOH. The fraction containing product was
evaporated to dryness. The residue was dissolved in DMF and purified
by mass directed HPLC 5−95% MeCN, basic, to afford 24 as a white
solid (38 mg, 60% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ 8.82 (d, 1H, J = 1.7
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Hz), 8.76−8.74 (m, 2H), 8.41 (d, 1H, J = 2.85 Hz), 8.34−8.32 (m,
2H), 8.00−7.98 (m, 1H), 6.93 (s, IH), 4.71 (broad peak, 2H), 3.98 (s,
3H), 3.86−3.74 (broad peak, 4H), 3.13−3.04 (m, 2H), 2.76−2..04
(broad peak, 5H), 2.16−2.04 (broad peak, 2H), 1.7−1.56 (broad peak,
2H); LRMS (ES+) m/z 433 [M + H]+.
5-(6-(4-Morpholinopiperidin-1-yl)-2-(pyridin-4-yl)pyrimidin-

4-yl)nicotinonitrile (25). 25 was prepared in an analogous four-step
procedure to that of compound 12: A mixture of 4-[1-[6-chloro-2-(4-
pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g, 0.14 mmol),
potassium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4 (0.005 g, 0.004
mmol), (3-cyanophenyl)boronic acid (0.061 g, 0.41 mmol) in 1,4-
dioxane (1.6 mL) and water (0.4 mL) was heated at 120 °C under
microwave irradiation for 60 min. The cooled reaction mixture was
evaporated to dryness. The residue was dissolved in MeOH/DCM and
purified by SCX 2 g column eluting with MeOH and then 2 M NH3 in
MeOH. The fraction containing product was evaporated to dryness.
The residue was dissolved in DMF and purified by mass directed
HPLC 5−95% MeCN, basic, to afford 25 as a white solid (14 mg, 22%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) 97%. 1H
NMR (500 MHz, CDCl3) δ 9.45 (d, 1H, J = 2.09 Hz), 8.97 (d, 1H, J =
1.94 Hz), 8.79−8.72 (m, 3H), 8.34−8.29 (m, 2H), 6.94 (s, 1H), 4.69
(broad peak, 2H), 3.84−3.72 (broad peak, 4H), 3.12 (m, 2H), 2.70−
2.58 (broad peak, 5H), 2.15−2.03 (m, 2H), 1.71−1.54 (broad peak,
2H); LRMS (ES+) m/z 428 [M + H]+.
4-(1-(6-(5-Fluoropyridin-3-yl)-2-(pyridin-4-yl)pyrimidin-4-

yl)piperidin-4-yl)morpholine (26). 26 was prepared in an
analogous four-step procedure to that of compound 12: A mixture
of 4-[1-[6-chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine
(0.050 g, 0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol),
Pd(PPh3)4 (0.005 g, 0.004 mmol), (5-fluoropyridin-3-yl)boronic acid
(0.058 g, 0.41 mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL) was
heated at 120 °C under microwave irradiation for 30 min. The cooled
reaction mixture was evaporated to dryness. The residue was dissolved
in MeOH/DCM and purified by SCX 2 g column eluting with MeOH
and then 2 M NH3 in MeOH. The fraction containing product was
evaporated to dryness. The residue was dissolved in DMF and purified
by mass directed HPLC 5−95% MeCN, basic, to afford 26 as a yellow
solid (13 mg, 21% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ 9.07 (m, 1H), 8.76
(m, 2H), 8.58 (d, 1H, J = 2.8 Hz), 8.34 (m, 2H), 8.22−8.19 (m, 1H),
6.94 (s, IH), 4.67 (bs, 2H), 3.76−3.74 (m, 4H), 3.13−3.07 (m, 2H),
2.64−2.62 (m, 5H), 2.07−2.04 (m, 2H), 1.64−1.56 (m, 2H); LRMS
(ES+) m/z 421 [M + H]+.
5-(6-(4-Morpholinopiperidin-1-yl)-2-(pyridin-4-yl)pyrimidin-

4-yl)pyridin-3-yl)methanamine (27). 27 was prepared in an
analogous four-step procedure to that of compound 12: A solution
of 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)picolinaldehyde
(0.100 g, 0.43 mmol) in ammonia (7 M in MeOH, 2 mL) was
stirred at room temperature overnight. Sodium borohydride (0.035 g,
0.92 mmol) was added and the reaction mixture stirred at room
temperature under argon for 5 h. Water (1 mL) was added and the
reaction mixture evaporated to dryness. The residue was dissolved in
MeOH and purified by SCX 2 g column eluted MeOH and then 2 M
NH3 in MeOH. The fractions containing product were evaporated to
dryness to give impure (5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)pyridin-3-yl)methanamine (0.090 g) as a brown gum. A mixture of
impure (5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-
methanamine (0.090 g, 0.38 mmol), 4-[1-[6-chloro-2-(4-pyridyl)-
pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g, 0.14 mmol), potas-
sium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4 (0.005 g, 0.004
mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL) was heated at 120
°C under microwave irradiation for 30 min. The cooled reaction
mixture was evaporated to dryness. The residue was dissolved in
MeOH/DCM and purified by SCX 2 g column eluting with MeOH
and then 2 M NH3 in MeOH. The fraction containing product was
evaporated to dryness. The residue was dissolved in DMF and purified
by mass directed HPLC 5−95% MeCN, basic, to afford 27 as a white
solid (13 mg, 20% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) 95%. 1H NMR (500 MHz, CDCl3) δ 9.16 (d, 1H, J = 1.9
Hz), 8.77−8.74 (m, 2H), 8.34 (d, 1H, J = 1.85 Hz), 8.47 (m, 1H),

8.35−8.33 (m, 2H), 6.95 (s, 1H), 4,65 (bs, 2H) 4.04 (s, 2H), 3.76−
3.70 (m, 4H), 3.09 (m, 2H), 2.62−2.56 (m, 5H), 2.07−1.99 (m, 2H),
1.65−1.54 (m, 2H); LRMS (ES+) m/z 432 [M + H]+.

5-(6-(4-Morpholinopiperidin-1-yl)-2-(pyridin-4-yl)pyrimidin-
4-yl)pyridin-3-yl)methanone (28). 28 was prepared in an
analogous four-step procedure to that of compound 12: A mixture
of 4-[1-[6-chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine
(0.050 g, 0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol),
Pd(PPh3)4 (0.005 g, 0.004 mmol), morpholino(5-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)pyridin-3-yl)methanone (0.132 g, 0.41 mmol)
in 1,4-dioxane (1.6 mL) and water (0.4 mL) was heated at 120 °C
under microwave irradiation for 30 min. The cooled reaction mixture
was evaporated to dryness. The residue was dissolved in MeOH/DCM
and purified by SCX 2 g column eluting with MeOH and then 2 M
NH3 in MeOH. The fraction containing product was evaporated to
dryness. The residue was dissolved in DMF and purified by mass
directed HPLC 5−95% MeCN, basic, to afford 28 as a light brown
solid (52 mg, 68% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ 9.35 (d, 1H, J = 2.11
Hz), 8.77−8.73 (m, 3H), 8.51 (m, 1H), 8.33−8.30 (m, 2H), 6.95 (s,
1H), 4.70 (bs, 2H), 3.92−3.64 (broad peaks, 12H), 3.09 (m, 2H),
2.77−2.55 (broad peak, 5H), 2.17−2.03 (broad peak, 2H), 1.73−1.53,
(broad peak, 2H); LRMS (ES+) m/z 516 [M + H]+.
5-(6-(4-Morpholinopiperidin-1-yl)-2-(pyridin-4-yl)pyrimidin-

4-yl)pyridin-2-amine (29). A mixture of 4-[1-[6-chloro-2-(4-
pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g, 0.14
mmol), potassium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4
(0.005 g, 0.004 mmol), 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)pyridin-2-amine (0.091 g, 0.41 mmol) in 1,4-dioxane (1.6 mL) and
water (0.4 mL) was heated at 120 °C under microwave irradiation for
30 min. The cooled reaction mixture was evaporated to dryness. The
residue was dissolved in MeOH/DCM and purified by SCX 2 g
column eluting with MeOH and then picolinamide, 2 M NH3 in
MeOH. The fraction containing product was evaporated to dryness.
The residue was dissolved in DMF and purified by mass directed
HPLC 5−95% MeCN, basic, to afford 29 as a white solid (42 mg, 68%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) 96%. 1H
NMR (500 MHz, (CD3)2SO) δ 8.92 (d, 1H, J = 2.05 Hz), 8.74−8.72
(m, 2H), 8.32−8.28 (m, 3H), 7.23 (s, 1H), 6.54 (d, 1H, J = 8.75 Hz),
6.48 (bs, 2H), 4.70 (bs, 2H), 3.59−3.55 (m, 4H), 3.04−2.97 (m, 2H),
2.55−2.48 (m, 5H), 1.94−1.88 (m, 2H), 1.45−1.36 (m, 2H); LRMS
(ES+) m/z 418 [M + H]+.

4-(1-(6-(6-Methoxypyridin-3-yl)-2-(pyridin-4-yl)pyrimidin-4-
yl)piperidin-4-yl)morpholine (30). 30 was prepared in an
analogous four-step procedure to that of compound 12: A mixture
of 4-[1-[6-chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine
(0.050 g, 0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol),
Pd(PPh3)4 (0.005 g, 0.004 mmol), (6-methoxypyridin-3-yl)boronic
acid (0.063 g, 0.41 mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL)
was heated at 120 °C under microwave irradiation for 30 min. The
cooled reaction mixture was filtered through a Celite cartridge (2.5 g).
The cartridge was washed with DCM. The filtrate was partitioned
between saturated NaHCO3 (5 mL) and DCM (10 mL). The DCM
extract was evaporated to dryness. The residue was dissolved in
MeOH and purified by SCX 2 g column eluting with MeOH and then
2 M NH3 in MeOH. The fraction containing product was evaporated
to dryness. The residue was dissolved in DMF and purified by mass
directed HPLC 5−95% basic to afford impure product. The sample
was dissolved in DMF and purified by mass directed HPLC 25−75%
MeCN, basic, to afford 30 as a white solid (17 mg, 26% yield). Purity
by LCMS (UV chromatogram, 190−450 nm) 96%. 1H NMR (500
MHz, CDCl3) δ 8.9 (m, 1H), 8.75−8.73 (m, 2H), 8.34−8.31 (m, 3H),
6.88−6.85 (m, 1H), 6.84 (s, 1H), 4.67 (broad peak, 2H), 4.01 (s, 3H),
3.87−3.79 (broad peak, 4H), 3.06 (m, 2H), 2.76−2.58 (broad peak,
5H), 2.14−2.08 (broad peak 2H), 1.69−1.55 (broad peak 2H); LRMS
(ES+) m/z 433 [M + H]+.

N-Methyl-5-(6-(4-morpholinopiperidin-1-yl)-2-(pyridin-4-yl)-
pyrimidin-4-yl)picolinamide (31). 31 was prepared in an analogous
four-step procedure to that of compound 12: A mixture of 4-[1-[6-
chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.050 g,
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0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol), Pd(PPh3)4
(0.005 g, 0.004 mmol), N-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxa-
borolan-2-yl)picolinamide (0.109 g, 0.41 mmol) in 1,4-dioxane (1.6
mL) and water (0.4 mL) was heated at 120 °C under microwave
irradiation for 30 min. The cooled reaction mixture was evaporated to
dryness. The residue was dissolved in MeOH/DCM and purified by
SCX 2 g column eluting with MeOH and then 2 M NH3 in MeOH.
The fraction containing product was evaporated to dryness. The
residue was dissolved in DMF and purified by mass directed HPLC 5−
95% MeCN, basic, to afford 31 as a white solid (22 mg, 32% yield).
Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR
(500 MHz, CDCl3) δ 9.25 (m, 1H), 8.77 (bs, 2H), 8.53−8.49 (m,
1H), 8.36−8.30 (m, 3H), 8.10−8.04 (m, 1H), 6.95 (s, 1H), 4.72 (bs,
2H), 3.96−3.67 (broad peak, 4H), 3.013−3.04 (m, 5H), 2.75−2.60
(broad peak, 5H), 2.16−2.03 (broad peak, 2H), 1.75−1.55 (broad
peak, 2H); LRMS (ES+) m/z 460 [M + H]+.
4-(5-(6-(4-Morpholinopiperidin-1-yl)-2-(pyridin-4-yl)-

pyrimidin-4-yl)pyridin-2-yl)morpholine (32). 32 was prepared in
an analogous four-step procedure to that of compound 12: A mixture
of 4-[1-[6-chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine
(0.050 g, 0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol),
Pd(PPh3)4 (0.005 g, 0.004 mmol), 4-(5-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)pyridin-2-yl)morpholine (0.121 g, 0.41 mmol) in
1,4-dioxane (1.6 mL) and water (0.4 mL) was heated at 120 °C under
microwave irradiation for 30 min. The cooled reaction mixture was
filtered through a Celite cartridge (2.5 g), washing the cartridge with
DCM. The filtrate was partitioned between saturated NaHC03 (5 mL)
and DCM (10 mL). The DCM extract was evaporated to dryness. The
residue was dissolved in MeOH and purified by SCX 2 g column
eluting with MeOH and then 2 M NH3 in MeOH. The fraction
containing product was evaporated to dryness. The residue was
dissolved in DMF and purified by mass directed HPLC 5−95%
MeCN, basic, to afford impure product. The sample was dissolved in
DMF and purified by mass directed HPLC 25−75%, basic, to afford
32 as a white solid (40 mg, 56% yield). Purity by LCMS (UV
chromatogram, 190−450 nm) 95%. 1H NMR (500 MHz, (CD3)2SO)
δ 9.12−9.09 (m, 1H), 8.72 (d, 2H, J = 5.78 Hz), 8.48−8.42 (m, 1H),
8.30 (d, 2H, J = 5.93 Hz), 7.3 (s, 1H), 6.95 (d, 1H, J = 9.08 Hz), 4.65
(bs, 2H), 3.78−3.50 (m, 12H), 3.01 (m, 2H), 2.58−2.38 (m, 5H),
1.97−1.84 (m, 2H), 1.50−1.29 (m, 2H); LRMS (ES+) m/z 488 [M +
H]+.
4-(1-(6-(4-Methoxypyridin-3-yl)-2-(pyridin-4-yl)pyrimidin-4-

yl)piperidin-4-yl)morpholine (33). 33 was prepared in an
analogous four-step procedure to that of compound 12: A mixture
of 4-[1-[6-chloro-2-(4-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine
(0.050 g, 0.14 mmol), potassium phosphate (0.088 g, 0.41 mmol),
Pd(PPh3)4 (0.005 g, 0.004 mmol), (4-methoxypyridin-3-yl)boronic
acid (0.068 g, 0.41 mmol) in 1,4-dioxane (1.6 mL) and water (0.4 mL)
was heated at 120 °C under microwave irradiation for 30 min. The
cooled reaction mixture was evaporated to dryness. The residue was
dissolved in MeOH/DCM and purified by SCX 2 g column eluting
with MeOH and then 2 M NH3 in MeOH. The fraction containing
product was evaporated to dryness. The residue was dissolved in DMF
and purified by mass directed HPLC 5−95% MeCN, basic, to afford
33 as a white solid (46 mg, 72% yield). Purity by LCMS (UV
chromatogram, 190−450 nm) >98%. 1H NMR (500 MHz, CDCl3) δ
9.16 (s, 1H), 8.75−8.71 (m, 2H), 8.56 (d, 1H, J = 5.75 Hz), 8.32−8.29
(m, 2H), 7.13 (s, 1H), 6.94 (d, 1H, J = 5.80 Hz), 4.65 (bs, 2H), 3.97
(s, 3H), 3.85−3.76 (broad peak, 4H), 3.04 (m, 2H), 2.72−2.65 (broad
peak, 5H), 2.15−2.02 (m, 2H), 1.67−1.54 (m, 2H); LRMS (ES+) m/z
433 [M + H]+.
4-(4-(4-Morpholinopiperidin-1-yl)-6-(pyridin-3-yl)pyrimidin-

2-yl)benzonitrile (34). 34 was prepared in an analogous three-step
procedure to that of compound 43: In a sealed 5 mL microwave vial, a
solution of 4-[1-[2-methylsulfanyl-6-(3-pyridyl)pyrimidin-4-yl]-4-
piperidyl]morpholine (0.075 g, 0.20 mmol) in THF (4 mL) was
degassed by bubbling argon through for 5 min. (4-Cyanophenyl)-
boronic acid (0.030 g, 0.20 mmol), thiophene-2-carbonyloxycopper
(0.058 g, 0.30 mmol), and Pd(PPh3)4 (0.023 g,0.02 mmol) were added
at room temperature. The reaction was heated in the sealed tube at 85

°C for 18 h. Reaction was filtered through Celite and partitioned
between DCM (10 mL) and NH3 aq (5 mL). The organic phase was
dried over magnesium sulfate, and solvents were removed under
reduced pressure. The product was purified by mass directed
autopreparative HPLC under basic conditions. The fractions
containing product were pooled together and solvents were removed
to obtain 34 as off-white solid (12 mg, 14% yield). Purity by LCMS
(UV chromatogram, 190−450 nm) >98%. 1H NMR (500 MHz,
CDCl3) δ 9.27 (d, 1H, J = 1.7 Hz), 8.72 (dd, 1H, J = 1.6z, 4.8 Hz),
8.64−8.61 (m, 2H), 8.44−8.42 (m, 1H), 7.78−7.76 (m, 2H), 7.45
(ddd, 1H, J = 0.7, 4.8, 7.9 Hz), 6.92(s, 1H), 4.74−4.61 (m, 2H), 3.79−
3.72 (m, 4H), 3.49 (d, 2H, J = 5.2 Hz), 3.11−3.06 (m, 2H), 2.69−2.52
(m, 5H), 2.08−2.03 (m, 2H), 1.63−1.54 (m, 2H); LRMS (ES+) m/z
427 [M + H]+.

4-(4-Morpholinopiperidin-1-yl)-6-(pyridin-3-yl)pyrimidine-
2-carbonitrile (35). In a stirred sealed tube a solution of 4-[1-(6-
chloro-2-iodo-pyrimidin-4-yl)-4-piperidyl]morpholine (0.29 g, 0.72
mmol) and copper cyanide (0.077 g, 0.86 mmol) in NMP (3 mL)
was heated at 120 °C for 5 h. Reaction crude was applied to a SCX
cartridge (5 g), and the product was diluted with a solution of 2 N
NH3 in methanol. The product was further purified by column
chromatography (12 g silica cartridge) using (A) DCM, (B) 10%
MeOH in DCM as eluents and the following gradient: 1 min hold at
100% A, 10 min ramp to 50% B, and 3 min hold at 50% B. The
fractions containing product were pooled together and solvents were
removed to obtain 4-chloro-6-(4-morpholinopiperidin-1-yl)-
pyrimidine-2-carbonitrile as an off-white solid (139 mg, 62% yield).
Purity by LCMS (UV chromatogram, 190−450 nm) 90%. 1H NMR
(500 MHz, CDCl3) δ 6.44 (s, 1H), 3.73−3.71 (m, 4H), 3.06−3.01 (m,
2H), 2.56−2.48 (m, 5H), 1.99−1.96 (m, 2H), 1.55−1.47 (m, 2H);
LRMS (ES+) m/z 308 [M + H]+.

To a stirred solution of 6-chloro-4-(4-morpholino-1-piperidyl)-1,6-
dihydropyrimidine-2-carbonitrile (0.128 g, 0.41 mmol) and 3-
pyridylboronic acid (0.103 g, 0.83 mmol) in DME (4 mL), an
aqueous solution of sodium carbonate (2 M, 0.26 g, 1.24 mmol) and
PdCl2(PPh3)2 (0.014 g, 0.02 mmol) were added. The reaction was
heated at 120 °C for 20 min under microwave irradiation. The reaction
crude was diluted with methanol (5 mL) and applied to a SCX column
(5 g), and the product was eluted with 2 M NH3 in MeOH. The
product was further purified by preparative HLPC under acidic
conditions. The fractions containing product were pooled together and
solvents were removed to obtain 35 as off-white solid (47 mg, 31%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) 98%. 1H
NMR (500 MHz, CDCl3) δ 9.14−9.13 (m, 1H), 8.72 (dd, 1H, J = 1.7,
4.8 Hz), 8.36−8.34 (m, 1H), 7.45 (ddd, 1H, J = 0.8, 4.8, 8.0 Hz), 6.97
(s, 1H), 4.59−4.56 (m, 2H), 3.76−3.74 (m, 4H), 3.10−3.05 (m, 2H),
2.63−2.57 (m, 5H), 2.04−2.02 (m, 2H), 1.60−1.52 (m, 2H); LRMS
(ES+) m/z 351 [M + H]+.

1-(4-(4-Morpholinopiperidin-1-yl)-6-(pyridine-3-yl)-
pyrimidin-2-yl)thiomorpholine 1,1-Dioxide (36). 36 was pre-
pared in an analogous three-step procedure to that of compound 74: A
solution of 4-[1-(6-chloro-2-iodo-pyrimidin-4-yl)-4-piperidyl]-
morpholine (0.15 g, 0.37 mmol), thiomorpholine 1,1-dioxide (0.06
mg, 0.40 mmol), and DIPEA (0.13 mL, 040 mmol) in NMP (2 mL)
was heated at 200 °C for 15 min under microwaved irradiation.
Reaction crude was diluted with MeOH (5 mL) and applied to a SCX
cartridge (5 g), and the product was diluted with a solution of 2 N
NH3 in methanol. Solvents were removed under reduced pressure and
the product was further purified by column chromatography (12 g
silica cartridge) using (A) DCM, (B) 10% MeOH in DCM as eluents
and the following gradient: 1 min hold at 100% A, 18 min ramp to
50% B, and 3 min hold at 50% B. The fractions containing product
were pooled together and solvents were removed to obtain 1-(4-
chloro-6-(4-morpholinopiperidin-1-yl)pyrimidin-2-yl)thiomorpholine
1,1-dioxide as an off-white solid (149 mg, 98%, 91% purity by LCMS).
The product was used for the next step without further purification.

To a stirred solution of 1-(4-chloro-6-(4-morpholinopiperidin-1-
yl)pyrimidin-2-yl)thiomorpholine 1,1-dioxide (0.15 g, 0.36 mmol) and
3-pyridylboronic acid (0.09 g, 0.76 mmol) in DMF (3 mL), Pd(PPh3)4
(0.015 g, 0.01 mmol) and an aqueous solution of potassium carbonate
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(2 M, 0.5 mL) were added. The reaction was heated at 120 °C for 20
min under microwave irradiation. The reaction crude was diluted with
methanol (10 mL) and applied to a SCX column (2 g), and the
product was eluted with 2 M NH3 in MeOH. The product was further
purified by preparative HLPC under basic conditions. The fractions
containing product were pooled together, and solvents were removed
to obtain 36 as off-white solid (67 mg, 41% yield). Purity by LCMS
(UV chromatogram, 190−450 nm) 98%. 1H NMR (500 MHz,
CDCl3) δ 9.13 (dd, 1H, J = 0.7, 2.2 Hz), 8.66 (dd, 1H, J = 1.7, 4.8 Hz),
8.22−8.20 (m, 1H), 7.37 (ddd, 1H, J = 0.8, 4.8, 8.0 Hz), 6.42 (s, 1H),
4.45−4.40 (m, 6H), 3.73−3.71 (m, 4H), 3.07−3.05 (m, 4H), 2.53−
2.93 (m, 2H), 2.58−2.56 (m, 4H), 2.52−2.47 (m, 1H), 1.97−1.94 (m,
2H), 1.55−1.47 (m, 2H); LRMS (ES+) m/z 459 [M + H]+.
4-(4-Morpholinopiperidin-1yl)-6-(pyridin-3-yl)pyrimidin-2-

ol (37). To a stirred solution of 4-[1-(2,6-dichloropyrimidin-4-yl)-4-
piperidyl]morpholine (0.60 g, 1.89 mmol) in THF (10 mL) in a 20
mL microwave vial, a solution of NaOH (1M, 9.8 mL) was added at
room temperature. The reaction mixture was heated 150 °C for 1 h
under microwave irradiation. The reaction crude was washed with
ethyl acetate (2 × 100 mL). The pH of the aqueous layer was adjusted
to pH 6 with 10% HCl, and then MeOH (40 mL) added. The water/
methanol mixture was applied onto an SCX column (20 g) and the
compound was eluted from the column with 2 M NH3 in methanol.
Solvents were removed under reduced pressure to obtain 4-chloro-6-
(4-morpholinopiperidin-1-yl)pyrimidin-2-ol as a white solid (256 mg,
45% yield). Purity by LCMS (UV chromatogram, 190−450 nm) 86%.
1H NMR (500 MHz, CDCl3) δ 5.86 (s, 1H), 4.26 (broad peak, 2H),
3.69 (broad peak, 4H), 2.94−2.89 (m, 2H), 2.51−2.40 (m, 5H), 1.90−
1.87 (m, 2H), 1.46−1.40 (m, 2H); LRMS (ES+) m/z 299 [M + H]+.
To a stirred suspension of 4-chloro-6-(4-morpholinopiperidin-1-

yl)pyrimidin-2-ol (0.26 g, 0.86 mmol) and 3-pyridylboronic acid (0.32
g, 2.57 mmol) in DMF (3 mL), a solution of potassium phosphate
(0.55 g, 2.57 mmol) in water (1 mL) was added. The reaction mixture
was degassed by bubbling argon through for 5 min, and then
Pd(PPh3)4 (0.049 g, 0.04 mmol) was added. The reaction was heated
at 130 °C under microwave irradiation for 20 min. Reaction was
filtered through Celite and partitioned between DCM (50 mL) and a
saturated aqueous solution of NaHCO3 (15 mL). The organics phase
was dried over MgSO4 before concentration to dryness. The crude was
then purified by column chromatography (12 g silica cartridge) using
(A) DCM and (B) MeOH as eluents and the following gradient: 1
min hold at 100% A, 20 min ramp to 20% B, 5 min hold to 10% B.
The fractions containing product were pooled together and solvents
were removed to obtain 37 as a white solid (50 mg, 17% yield). Purity
by LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR (500
MHz, DMSO-d6) δ 11.02 (bs, 1H), 9.07 (d, 1H, J = 2.0 Hz), 8.77 (dd,
1H, J = 1.5, 4.8 Hz), 8.28−8.25 (m, 1H), 7.61 (dd, 1H, J = 4.8, 8.0
Hz), 6.58(s, 1H), 4.84−4.32 (broad peak, 2H), 3.65−3.63 (m, 4H),
3.02 (broad peak, 2H), 2.54 (broad peak, 5H), 1.93−1.91 (m, 2H),
1.45−1.33 (m, 2H); LRMS (ES+) m/z 342 [M + H]+.
4(4-(4-Morpholinopiperidin-1-yl)-6-(pyridine-3-yl)-

pyrimidin-2yl)piperazine-2-one (38). 38 was prepared in an
analogous three-step procedure to that of compound 74: A solution
of 4-[1-(6-chloro-2-iodo-pyrimidin-4-yl)-4-piperidyl]morpholine (0.15
g, 0.37 mmol), piperazine-2-one (0. 04 mg, 0.40 mmol), and DIPEA
(0.13 mL, 0.40 mmol) in NMP (2 mL) was heated at 200 °C for 15
min under microwave irradiation. Reaction crude was diluted with
MeOH (5 mL) and applied to a SCX cartridge (5 g), and the product
was diluted with a solution of 2 N NH3 in methanol. Solvents were
removed under reduced pressure, and the product was further purified
by column chromatography (12 g silica cartridge) using (A) DCM,
(B) 10% MeOH in DCM as eluents and the following gradient: 1 min
hold at 100% A, 18 min ramp to 50% B, and 3 min hold at 50% B. The
fractions containing product were pooled together and solvents were
removed to obtain 4-chloro-N-(2-morpholinoethyl)-6-(4-morpholino-
piperidin-1-yl)pyrimidin-2-amine as an off-white solid (159 mg,
quantitiative yield, 83% purity by LCMS). The product was used for
the next step without further purification. To a stirred solution of 4-
chloro-N-(2-morpholinoethyl)-6-(4-morpholinopiperidin-1-yl)-
pyrimidin-2-amine (0.16 g, 0.41 mmol) and 3-pyridylboronic acid

(0.10 g, 0.82 mmol) in DMF (3 mL), Pd(PPh3)4 (0.015 g, 0.01 mmol)
and an aqueous solution of potassium carbonate (2 M, 0.5 mL) were
added. The reaction was heated at 120 °C for 20 min under microwave
irradiation. The reaction crude was diluted with methanol (10 mL)
and applied to a SCX column (2 g), and the product was eluted with 2
M NH3 in MeOH. The product was further purified by preparative
HLPC under basic conditions. The fractions containing product were
pooled together and solvents were removed to obtain 38 as off-white
solid (70 mg, 40% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) 98%. 1H NMR (500 MHz, CDCl3) δ 9.17 (dd, 1H, J = 0.7,
2.2 Hz), 8.67 (dd, 1H, J = 1.7, 4.8 Hz), 8.31−8.29 (m, 1H), 7.38 (ddd,
1H, J = 0.8, 4.8, 8.0 Hz), 6.47 (bs, 1H), 6.41 (s,1H), 4.52−4.49 (m,
4H), 4.16−4.13 (m, 2H), 3.16−3.74 (m, 4H), 3.53−3.50 (m, 2H),
2.99−2.94 (m, 2H), 2.60−2.59 (m, 4H), 2.54−2.48 (m, 1H), 1.98−
1.95 (m, 2H), 1.57−1.49 (m, 2H); LRMS (ES+) m/z 425 [M + H]+.

N1,N1-Dimethyl-N2-(4-(4-morpholinopiperidin-1-yl)-6-(pyri-
dine-3-yl)pyrimidin-2-yl)ethane-1,2-diamine (39). 39 was pre-
pared in an analogous three-step procedure to that of compound 5: To
a stirred suspension of N1-(4-chloro-6-(4-morpholinopiperidin-1-
yl)pyrimidin-2-yl)-N2,N2-dimethylethane-1,2-diamine (0.04 g, 0.11
mmol) and 3-pyridylboronic acid (0.41 g, 0.33 mmol) in DMF (3
mL), a solution of potassium phosphate (0.07 g, 0.33 mmol) in water
(1 mL) was added. The reaction mixture was degassed by bubbling
argon through for 5 min, and then Pd(PPh3)4 (0.004 g, 0.003 mmol)
was added. The reaction was heated at 130 °C under microwave
irradiation for 20 min. Reaction was filtered through Celite and
partitioned between DCM (10 mL) and a saturated aqueous solution
of NaHCO3 (5 mL). The organics phase was dried over MgSO4 before
concentration to dryness. The crude was then purified by preparative
mass directed autopreparative HPLC (method: 5−95 basic). The
fractions containing product were pooled together and solvents were
removed to obtain 39 as a white solid (18 mg, 39% yield). Purity by
LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR (500
MHz, DMSO-d6) δ 9.11 (s, 1H), 8.63 (dd, 1H, J = 1.6, 4.8 Hz), 8.24
(d, 1H, J = 7.9 Hz), 7.35 (dd, 1H, J = 4.8, 7.9 Hz), 6.32 (s, 1H), 4.51−
4.48 (m, 2H), 3.73−3.55 (m, 4H), 3.55−3.52 (m, 2H), 2.90 (t, 1H, J =
12.7 Hz), 2.58−2.54 (m, 4H), 2.53−2.51 (m, 2H), 2.49−2.44 (m,
1H), 2.27 (s, 6H), 1.94−1.91 (m, 2H), 1.54−1.45 (m, 2H); LRMS
(ES+) m/z 412 [M + H]+.

4-(1-(2-(2,6-Dimethylpyridin-4-yl)-6-(pyridin-3-yl)pyrimidin-
4-yl)piperidin-4-yl)morpholine (40). To a stirred solution of 4-[1-
[6-chloro-2-(2,6-dimethyl-4-pyridyl)pyrimidin-4-yl]-4-piperidyl]-
morpholine (0.042 g, 0.11 mmol) and 3-pyridylboronic acid (0.040 g,
0.32 mmol) in DMF (3 mL), a solution of potassium phosphate
(0.069 g, 0.32 mmol) in water (1 mL) was added. The reaction
mixture was degassed by bubbling argon through for 5 min, and then
Pd(PPh3)4 (0.006 g, 0.005 mmol) was added. The reaction was heated
at 130 °C under microwave irradiation for 20 min. The reaction crude
was partitioned between DCM (15 mL) and saturated aqueous
solution of NaHCO3 (5 mL). The organics phase was dried over
MgSO4 before concentration to dryness. The crude was then purified
by preparative HLPC. The fractions containing product were pooled
together and solvents were removed to obtain 40 as off-white solid (8
mg, 17% yield). Purity by LCMS (UV chromatogram, 190−450 nm)
>98%. 1H NMR (500 MHz, CDCl3) δ 9.27−9.26 (m, 1H), 8.72 (dd,
1H, J = 1.6, 4.8 Hz), 8.45−8.42 (m, 1H), 8.03 (bs, 2H), 7.46 (ddd, 1H,
J = 0.6, 4.8, 8.0 Hz), 6.93 (s, 1H), 4.69 (broad m, 2H), 3.78 (broad m,
4H), 3.12−3.06 (m, 2H), 2.67−2.61 (m, 11H), 2.09−2.07 (m, 2H),
1.67−1.57 (m, 2H); LRMS (ES+) m/z 431 [M + H]+.

4-(1-(2-(2-Methylpyridin-4-yl)-6-(pyridin-3-yl)pyrimidin-4-
yl)piperidin-4-yl)morpholine (41). 41 was prepared in an
analogous three-step procedure to that of compound 43: In a sealed
5 mL microwave vial, a solution of 4-[1-[2-methylsulfanyl-6-(3-
pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.07 g, 0.20 mmol) in
THF (4 mL) was degassed by bubbling argon through for 5 min. (2-
Methyl-4-pyridyl)boronic acid (0.03 g, 0.20 mmol), thiophene-2-
carbonyloxycopper (0.06 g, 0.30 mmol), and Pd(PPh3)4 (0.02 g, 0.02
mmol) were added at room temperature. The reaction was heated in a
sealed tube at 85 °C for 18 h. The reaction crude was filtered through
Celite and partitioned between DCM (10 mL) and ammonium
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hydroxide (5 mL). The organic phase was dried over magnesium
sulfate, and solvents were removed under reduced pressure. The
product was purified by mass directed autopreparative HPLC under
basic conditions (5−95 prep basic). The fractions containing product
were pooled together and solvents were removed to obtain 41 as white
solid (9 mg, 10% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) 97%. 1H NMR (500 MHz, CDCl3) δ 9.26 (d, 1H, J = 2.0
Hz), 8.72−8.71 (m, 1H), 8.62 (d, 1H, J = 5.2 Hz), 8.45−8.42 (m, 1H),
8.19 (s, 1H), 8.13 (d, 1H, J = 5.1 Hz), 7.44 (dd, 1H, J = 4.8, 7.9 Hz),
6.92 (s, 1H), 4.67−4.66 (m, 2H), 3.75−3.73 (m, 4H), 3.10−3.04 (m,
2H), 2.67 (s, 3H), 2.61−2.54 (m, 5H), 2.05−2.00 (m, 2H), 1.63−1.55
(m, 2H); LRMS (ES+) m/z 417 [M + H]+.
4-(1-(6-(Pyridine-3-yl)-2-(2-(trifluoromethyl)pyridine-4-yl)-

pyrimidin-4-yl)piperidin-4-yl)morpholine (42). 42 was prepared
in an analogous three-step procedure to that of compound 63: To a
solution of 4-[1-(6-chloro-2-iodo-pyrimidin-4-yl)-4-piperidyl]-
morpholine (0.15 g, 0.37 mmol) and (2-(trifluoromethyl)pyridine-
4yl)boronic acid (0.07 mg, 0.37) in DME (3 mL) in a 5 mL sealed
microwave tube, Pd(PPh3)2Cl2 (0.01 g, 0.02 mmol) and an aqueous 2
M Na2CO3 solution (0.55 mL) were added. The reaction was heated
at 120 °C for 20 min under microwave irradiation. The reaction
mixture was diluted with methanol (10 mL) and applied to a SCX
column (5 g), and the product was eluted with 2 M NH3 in MeOH.
Solvents were removed under reduced pressure and the product was
further purified by column chromatography (12 g silica cartridge)
using (A) DCM, (B) 10% MeOH in DCM as eluents and the
following gradient: 1 min hold at 100% A, 18 min ramp to 50% B, and
3 min hold at 50% B. The fractions containing product were pooled
together and solvents were removed to obtain 4-(1-(6-chloro-2-(2-
(trifluoromethyl)pyridine-4-yl)pyrimidin-4-yl)piperidin-4-yl)-
morpholine as an off-white solid (100 mg, 64% yield, 77% purity by
LCMS). The product was used for the next step without further
purification. To a stirred solution of 4-(1-(6-chloro-2-(2-
(trifluoromethyl)pyridine-4-yl)pyrimidin-4-yl)piperidin-4-yl)-
morpholine (0.10 g, 0.23 mmol) and 3-pyridylboronic acid (0.057 g,
0.46 mmol) in DME (3 mL), Pd(PPh3)4 (0.015 g, 0.01 mmol) and an
aqueous solution of potassium phosphate (2M, 0.5 mL) were added.
The reaction was heated at 120 °C for 20 min under microwave
irradiation. The reaction crude was diluted with methanol (5 mL) and
applied to a SCX column (1 g), and the product was eluted with 2 M
NH3 in MeOH. The product was further purified by preparative
HLPC under basic conditions. The fractions containing product were
pooled together and solvents were removed to obtain 42 as off-white
solid (69 mg, 63% yield). Purity by LCMS (UV chromatogram, 190−
450 nm) 98%. 1H NMR (500 MHz, CDCl3) δ 9.27 (d, 1H, J = 1.5
Hz), 8.87−8.86 (m, 1H), 8.74 (dd, 1H, J = 1.2, 4.6 Hz), 8.74−8.71 (m,
1H), 8.55 (dd, 1H, J = 1.1, 5.0 Hz), 8.45−8.43 (m, 2H), 7.47 (dd, 1H,
J = 5.1, 7.7 Hz), 6.97 (s, 1H), 4.69−4.61 (m, 2H), 3.75−3.73 (m, 4H),
3.15−3.10 (m, 2H), 2.61−2.55 (m, 5H), 2.07−2.04 (m, 2H), 1.64−
1.56 (m, 2H); LRMS (ES+) m/z 471 [M + H]+.
4-(1-(2-(3-Methylpyridin-4-yl)-6-(pyridin-3-yl)pyrimidin-4-

yl)piperidin-4-yl)morpholine (43). In a sealed 5 mL microwave
vial, a solution of 4-[1-[2-methylsulfanyl-6-(3-pyridyl)pyrimidin-4-yl]-
4-piperidyl]morpholine (0.10 g, 0.26 mmol) in 1,4-dioxane (4 mL)
was degassed by bubbling argon through for 5 min. (3-Methyl-4-
pyridyl)boronic acid (0.073 g, 0.54 mmol), thiophene-2-carbon-
yloxycopper (0.102 g, 0.54 mmol), and Pd(PPh3)4 (0.031 g, 0.03
mmol) were added at room temperature. The reaction was heated
under microwave irradiation at 130 °C for 1 h. The reaction crude was
applied to a SCX column (2 g), and the product was eluted with 2 M
NH3 in MeOH. Solvents were removed, and the product was purified
by mass directed autopreparative HPLC under basic conditions. The
fractions containing product were pooled together and solvents were
removed to obtain 43 as off-white solid (31 mg, 26% yield). Purity by
LCMS (UV chromatogram, 190−450 nm) 95%. 1H NMR (500 MHz,
CDCl3) δ 9.26−9.21 (m, 1H), 8.72−8.71 (m, 1H), 8.69−8.52 (m,
2H), 8.39−8.37 (m, 1H), 7.87 (d, 1H, J = 4.5 Hz), 7.43 (dd, 1H, J =
4.8, 7.8 Hz), 6.91(s, 1H), 4.62−4.59 (m, 2H), 3.80−3.72 (m, 4H),
3.10−3.04 (m, 2H), 2.66 (s, 3H), 2.64−2.52 (m, 5H), 2.06−2.03 (m,
2H), 1.65−1.55 (m, 2H); LRMS (ES+) m/z 417 [M + H]+.

4-(1-(2-(3-Fluoropyridin-4-yl)-6-(pyridin-3-yl)pyrimidin-4-
yl)piperidin-4-yl)morpholine (44). 44 was prepared in an
analogous three-step procedure to that of compound 43: In a sealed
5 mL microwave vial, a solution of 4-[1-[2-methylsulfanyl-6-(3-
pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine (0.10 g, 0.26 mmol) in
1,4-dioxane (4 mL) was degassed by bubbling argon through for 5
min. (3-Fluoro-4-pyridyl)boronic acid (0.076 g, 0.54 mmol),
thiophene-2-carbonyloxycopper (0.102 g, 0.54 mmol), and Pd(PPh3)4
(0.031 g, 0.03 mmol) were added at room temperature. The reaction
was heated under microwave irradiation at 130 °C for 1 h. The
reaction crude was applied to a SCX column (2 g), and the product
was eluted with 2 M NH3 in MeOH. Solvents were removed and the
product was purified by mass directed autopreparative HPLC under
basic conditions. The fractions containing product were pooled
together and solvents were removed to obtain 44 as off-white solid (10
mg, 9% yield). Purity by LCMS (UV chromatogram, 190−450 nm)
>98%. 1H NMR (500 MHz, CDCl3) δ 9.32−9.31 (m, 1H), 8.58−8.51
(m, 1H), 8.96−8.52 (m, 2H), 8.55−8.54 (m, 1H), 8.49−8.47 (m, 1H),
8.10−8.08 (m, 1H), 7.51−7.47 (m, 1H), 7.00 (s, 1H), 4.88−4.84 (m,
2H), 3.41−3.38 (m, 2H), 4.03−3.99 (m, 2H), 3.42−3.36 (m, 3H),
3.08−2.95 (m, 4H), 2.47−2.45 (m, 2H), 2.00−1.91 (m, 2H); LRMS
(ES+) m/z 421 [M + H]+.

4-(4-(4-Morpholinopiperidin-1-yl)-6-(pyridin-3-yl)pyrimidin-
2-yl)pyridine-2-ol (45). 45 was prepared in an analogous three-step
procedure to that of compound 43: In a sealed vial, a solution of 4-[1-
[2-methylsulfanyl-6-(3-pyridyl)pyrimidin-4-yl]-4-piperidyl]morpholine
(0.15 g, 0.40 mmol) in THF (8 mL) was degassed by bubbling argon
through for 5 min. 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-
pyridin-2-ol (0.09 g,0.40 mmol), thiophene-2-carbonyloxycopper (0.12
g, 0.61 mmol), and Pd(PPh3)4 (0.05 g, 0.04 mmol) were added at
room temperature. The reaction was heated in a sealed tube at 85 °C
for 16 h. The reaction crude was applied to a SCX column (2 g), and
the product was eluted with 2 M NH3 in MeOH. Solvents were
removed under reduced pressured, and the product was purified by
mass directed autopreparative HPLC under basic conditions (5−95
prep basic). The fractions containing product were pooled together
and solvents were removed to obtain the product as white solid (10
mg, 6% yield). Purity by LCMS (UV chromatogram, 190−450 nm)
>97%. 1H NMR (500 MHz, DMSO-d6) δ 11.73 (bs, 1H), 9.43−9.42
(m, 1H), 8.70−8.69 (m, 1H), 8.61−8.60 (m, 1H), 7.56 (dd, 1H, J =
4.8, 8.0 Hz), 7.49 (s, 1H), 7.48 (d, 1H, J = 6.8 Hz), 7.32 (s, 1H), 7.13
(d, 1H, J = 6.9 Hz), 4.70−4.67 (m, 2H), 3.57−3.55 (m, 4H), 3.06−
3.01 (m, 2H), 1.92−1.90 (m, 2H), 1.44−1.36 (m, 2H); LRMS (ES+)
m/z 419 [M + H]+.

4-(1-(2-(1-Methyl-1H-pyrazol-4-yl)-6-(pyridin-3-yl)pyrimidin-
4-yl)piperidin-4-yl)morpholine (46). 46 was prepared in an
analogous three-step procedure to that of compound 40: To a stirred
solution of 4-[1-[6-chloro-2-(1-methylpyrazol-4-yl)pyrimidin-4-yl]-4-
piperidyl]morpholine (0.070 g, 0.19 mmol) and 3-pyridylboronic acid
(0.071 g, 0.58 mmol) in DMF (3 mL), a solution of potassium
phosphate (0.122 g, 0.58 mmol) in water (1 mL) was added. The
reaction mixture was degassed by bubbling argon through for 5 min,
and then Pd(PPh3)4 (0.011 g, 0.010 mmol) was added. The reaction
was heated at 130 °C under microwave irradiation for 20 min.
Reaction was filtered through Celite and partitioned between DCM
(15 mL) and a saturated aqueous solution of NaHCO3 (5 mL). The
organics phase was dried over MgSO4 before concentration to dryness.
The crude was then purified by preparative HLPC. The fractions
containing product were pooled together and solvents were removed
to obtain 46 as off-white solid (27 mg, 35% yield). Purity by LCMS
(UV chromatogram, 190−450 nm) 96%. 1H NMR (500 MHz,
CDCl3) δ 9.21 (m, 1H), 8.70−8.69 (m, 1H), 8.38−8.36 (m, 1H), 8.17
(s, 1H), 8.10 (s, 1H), 7.43−7.40 (m, 1H), 6.74 (s, 1H), 4.66−4.60 (m,
2H), 3.97 (m, 3H), 3.79−3.68 (m, 4H), 3.03−2.97 (m, 2H), 2.62−
2.56 (m, 5H), 2.05−1.95 (m, 2H), 1.58−1.54 (m, 2H); LRMS (ES+)
m/z 406 [M + H]+.

4-(1-(6-(Pyridin-3-yl)-[2,4′-bipyrimidin]-4-yl)piperidin-4-yl)-
morpholine (47). 47 was prepared in an analogous three-step
procedure to that of compound 43: In a sealed 5 mL microwave vial, a
solution of 4-[1-[2-methylsulfanyl-6-(3-pyridyl)pyrimidin-4-yl]-4-
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piperidyl]morpholine (0.075 g, 0.20 mmol) in THF (4 mL) was
degassed by bubbling argon through for 5 min. Pyrimidin-4-ylboronic
acid (0.037 g, 0.30 mmol), thiophene-2-carbonyloxycopper (0.058 g,
0.30 mmol), and Pd(PPh3)4 (0.023 g,0.02 mmol) were added at room
temperature. The reaction was heated in the sealed tube at 85 °C for
18 h. Reaction was filtered through Celite and partitioned between
DCM (10 mL) and NH3 aq (5 mL). The organic phase was dried over
magnesium sulfate, and solvents were removed under reduced
pressure. The product was purified by the product was purified by
mass directed autopreparative HPLC under basic conditions. The
fractions containing product were pooled together and solvents were
removed to obtain 47 as off-white solid (10 mg, 12% yield). Purity by
LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR (500
MHz, CDCl3) δ 9.45 (d, 1H, J = 1.3 Hz), 9.23 (dd, 1H, J = 0.7, 2.3
Hz), 8.93 (d, 1H, J = 5.2 Hz), 8.72 (dd, 1H, J = 1.6, 4.8 Hz), 8.46−
8.43 (m, 2H), 7.45 (ddd, 1H, J = 0.8, 4.8, 8.0 Hz), 7.00 (s, 1H), 4.77−
4.75 (m, 2H), 3.82−3.70 (m, 4H), 3.14−3.09 (m, 2H), 3.67−2.55 (m,
5H), 2.11−2.01 (m, 2H), 1.62−1.61 (m, 2H); LRMS (ES+) m/z 404
[M + H]+.
Scheme 2 (General Procedure for Intermediates). 4-(1-(6-

Chloro-2-(2,6-dimethylpyridin-4-yl)pyrimidin-4-yl)piperidin-4-
yl)morpholine (54). To a solution of 2,4,6-trichloropyrimidine (52)
(10 g, 54.52 mmol) in ethanol (125 mL) at −5 °C (salt−ice bath), a
solution of 4-(4-piperidyl)morpholine (9.28 g, 54.52 mmol) in ethanol
(100 mL) was added dropwise followed by N,N-diethylethanamine
(8.27 g, 81.78 mmol). Reaction mixture was stirred at −5 °C for 4 h. A
white precipitate was formed. Solvents were removed under vacuum,
and the reaction crude was partitioned between DCM (300 mL) and a
saturated aqueous solution of NaHCO3 (2 × 200 mL). The organic
phase was dried over MgSO4, filtered, and solvents were removed
under reduced pressure. The product was purified by column
chromatography (330 g silica cartridge) using (A) DCM and (B)
5% MeOH in DCM as eluents and the following gradient: 2 min hold
to 100% A, 20 min ramp to 50% B, 3 min hold to 50% B. Fractions
containing pure product were pooled together and solvents were
removed to obtain intermediate 4-(1-(2,6-dichloropyrimidin-4-yl)-
piperidin-4-yl)morpholine as a white solid (5.6 g). Column fractions
that contained a mixture of the desired product and a side product
resulting from substitution at C-2 were pooled together and solvents
removed under vacuum. The mixture was suspended in methanol, and
DCM was added to obtain a clear solution that was left standing at
−20 °C. The precipitate was filtered and dried to obtain 4-(1-(2,6-
dichloropyrimidin-4-yl)piperidin-4-yl)morpholine as a white solid (1.7
g). Both product fractions were mixed together (7.3 g, 42% yield).
Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR
(500 MHz, CDCl3) δ 6.42 (s, 1H), 4.41 (broad peak, 2H), 3.72 (broad
peak, 4H), 2.01−2.97 (m, 2H), 2.55−2.47 (m, 5H), 1.97−1.94 (m,
2H), 1.54−1.46 (m, 2H); LRMS (ES+) m/z 317 [M + H]+.
To a stirred solution of 4-[1-(2,6-dichloropyrimidin-4-yl)-4-

piperidyl]morpholine (0.20 g, 0.63 mmol) and 2,6-dimethyl-4-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (0.16 g,0.69
mmol) in 1,4-dioxane (6 mL), a solution sodium carbonate (0.20 g,
1.89 mmol) in water (2 mL) was added. The reaction mixture was
degassed by bubbling argon through for 5 min, and then Pd(PPh3)4
(0.036 g,0.03 mmol) was added. The reaction was heated at 120 °C
under microwave irradiation for 1 h. The reaction crude filtered
through Celite and partitioned between DCM (15 mL) and saturated
aqueous solution of NaHCO3 (5 mL). The organics phase was dried
over MgSO4 before concentration to dryness. The product was
purified by column chromatography (4 g silica cartridge) using (A)
DCM and (B) 10%MeOH in DCM as eluents and the following
gradient: 1 min hold at 100% A, 18 min ramp to 40% B, 5 min hold at
40% B. The fractions containing product were pooled together and
solvents were removed to obtain 54 as an off-white solid (42 mg, 15%
yield). Purity by LCMS (UV chromatogram, 190−450 nm) 88%. 1H
NMR (500 MHz, DMSO-d6) δ 7.81 (s, 2H), 6.47 (s, 1H), 4.64 (broad
peak, 2H), 3.71−3.69 (m, 4H), 3.02−2.97 (m, 2H), 2.58 (s, 6H),
2.56−2.43(m, 5H), 1.98−1.86 (m, 2H), 1.55−1.47 (m, 2H); LRMS
(ES+) m/z 388 [M + H]+.

Scheme 3 (General Procedure for Intermediates). 4-(1-(2-
(Methylthio)-6-(pyridin-3-yl)pyrimidin-4-yl)piperidin-4-yl)-
morpholine (58). To a stirred solution of 4-(4-piperidyl)morpholine
(4.36 g, 25.63 mmol) in ethanol (50 mL), a solution of 4,6-dichloro-2-
methylsulfanylpyrimidine (56) (5.00 g, 25.63 mmol) in ethanol (50
mL) was added dropwise at room temperature. N,N-Diethylethan-
amine (3. 89 g, 38.45 mmol) was then added, and the reaction mixture
was stirred at room temperature for 3 h. A white precipitate was
formed. Solvents were removed under reduced pressured, and the
reaction crude was purified by filtration through a silica plug. First,
impurities were removed with a mixture 1/1 of petroleum ether and
ethyl acetate, and then the product eluted with methanol. The
fractions containing product were pooled together and methanol was
removed to obtain 4-[1-(6-chloro-2-methylsulfanyl-pyrimidin-4-yl)-4-
piperidyl]morpholine (57) as off-white solid (7.17 g, 84% yield).
Purity by LCMS (UV chromatogram, 190−450 nm) >98%. 1H NMR
(500 MHz, CDCl3) δ 6.19 (s, 1H), 4.37 (broad peak, 2H), 3.76 (broad
peak, 4H), 2.95−2.90 (m, 2H), 2.69−2.53 (m, 5H), 2.47 (s, 3H),
1.98−1.96 (m, 2H), 1.54−1.48 (m, 2H); LRMS (ES+) m/z 329 [M +
H]+.

A solution of 57 (4.00 g, 12.16 mmol) and 3-pyridylboronic acid
(2.99 g, 24.3 mmol) in 1,4-dioxane (60 mL) was divided equally into
four 20 mL microwave vials. A solution of K3PO4 (5.16 g, 24.32
mmol) in water (20 mL) was prepared, and an amount of 5 mL was
added to each reaction vial. The reaction mixtures were degassed by
bubbling argon through for 5 min. Then, Pd(PPh3)4 (0.70 mg, 0.61
mmol) was added and the reaction mixtures were heated under
microwave irradiation at 130 °C for 30 min. The contents of the three
vials were pooled together, and the reaction was filtered through Celite
and partitioned between DCM (2 × 200 mL) and a saturated aqueous
solution of NaHCO3 (20 mL). The product was purified by column
chromatography (120 g silica cartridge) using (A) DCM and (B) 10%
MeOH in DCM as eluents and the following gradient: 1 min hold at
100% A, 20 min ramp to 50% B, 10 min hold at 50% B. The fractions
containing product were pooled together and the solvents removed to
obtain a dark color solid. The solid was dissolved in methanol (50 mL)
and 3-mercaptopropyl ethyl sulfide silica (2 g, 60−200 μM,
Phosphonics SPM-32) was added. The stirred suspension was heated
at 50 °C overnight. The silica was filtered and washed with methanol
(100 mL). Methanol was removed under reduced pressure to obtain
the 58 as an off-white solid (2.24 g, 50% yield). Purity by LCMS (UV
chromatogram, 190−450 nm) 98%. 1H NMR (500 MHz, CDCl3) δ
9.14 (dd, 1H, J = 0.6, 2.2 Hz), 8.66 (dd, 1H, J = 1.7, 4.8), 8.32−8.29
(m, 1H), 7.37 (ddd, 1H, J = 0.7, 4.8, 7.9 Hz), 6.61 (s, 1H), 4.49−4.51
(m, 2H), 3.73−3.71 (m, 4H), 3.00−2.94 (m, 2H), 2.58−2.56 (m, 7H),
2.53−2.46(m, 1H), 1.97−1.95 (m, 2H), 1.52 (ddd, 2H, J = 4.3, 12.3,
24.2 Hz); LRMS (ES+) m/z 372 [M + H]+.

Scheme 4 (General Procedure for Intermediates). 4,6-
Dichloro-2-iodopyrimidine (60). To a stirred solution 4,6-
dichloropyrimidin-2-amine (4.23 g, 25.8 mmol) and diiodomethane
(6.91 g, 25.8 mmol) in anhydrous acetonitrile (36 mL) was added tert-
butyl nitrite (11.97 g, 116.1 mmol) at room temperature under
nitrogen. The reaction mixture was heated at 80 °C for 3 h and 30
min. The reaction crude was concentrated under reduced pressure and
purified by column chromatography (80 g silica cartridge) using (A)
Hex, (B) ethyl acetate as eluents and the following gradient: 5 min
hold at 100% A, 10 min ramp to 20% B, 1 min hold at 20% B.
Fractions containing product were pooled together and solvents
removed under reduced pressure to obtain 12 as an off-white solid
(4.49 g, 63% yield). Purity by LCMS (UV chromatogram, 190−450
nm) 98%. 1H NMR (500 MHz, CDCl3) δ 7.42 (m, 1H).

4-(1-(6-Chloro-2-iodopyrimidin-4-yl)piperidin-4-yl)-
morpholine (61). To a stirred solution of 4,6-dichloro-2-iodopyr-
imidine (60) (6.14 g, 22.33 mmol) in ethanol (120 mL), a solution of
4-(4-piperidyl)morpholine (3.80 g, 22.33 mmol) in 7 mL of ethanol
was added in an ice bath. N,N-Diethylethanamine (6.78 g, 66.98
mmol) was then added, and the reaction was stirred for 3 h at 0 °C.
Solvents were removed under reduced pressure, and the reaction was
partitioned between a saturated aqueous solution of NaHCO3 (50
mL) and DCM (150 mL). Solvents were removed under vacuum, and
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reaction crude was purified by column chromatography (80 g silica
cartridge) using (A) Hex, (B) ethyl acetate as eluents and the
following gradient: 1 min hold at 100% A, 25 min ramp to 100% B, 15
min hold at 100% B. Fractions containing product were pooled
together and solvents removed under reduced pressure to obtain 61 as
yellow solid (7 g, 77% yield). Purity by LCMS (UV chromatogram,
190−450 nm) 98%. 1H NMR (500 MHz, CDCl3) δ 6.44 (s, 1H),
3.72−3.70 (m, 4H), 2.97−2.93 (m, 2H), 2.55−2.53 (m, 4H), 2.50−
2.45 (m, 1H), 1.95−1.92 (m, 2H), 1.52−1.43 (m, 2H); LRMS (ES+)
m/z 409 [M + H]+.
4-Chloro-6-(4-morpholinopiperidin-1-yl)pyrimidine-2-car-

bonitrile (62). In a stirred sealed tube a solution of 4-[1-(6-chloro-2-
iodo-pyrimidin-4-yl)-4-piperidyl]morpholine (61) (0.29 g, 0.72 mmol)
and copper cyanide (0.077 g, 0.86 mmol) in NMP (3 mL) was heated
at 120 °C for 5 h. Reaction crude was applied to a SCX cartridge (5 g),
and the product was diluted with a solution of 2 N NH3 in methanol.
The product was further purified by column chromatography (12 g
silica cartridge) using (A) DCM, (B) 10% MeOH in DCM as eluents
and the following gradient: 1 min hold at 100% A, 10 min ramp to
50% B, and 3 min hold at 50% B. The fractions containing product
were pooled together and solvents were removed to obtain 4-chloro-6-
(4-morpholinopiperidin-1-yl)pyrimidine-2-carbonitrile (62) as an off-
white solid (139 mg, 62% yield). Purity by LCMS (UV chromatogram,
190−450 nm) 90%. 1H NMR (500 MHz, CDCl3) δ 6.44 (s, 1H),
3.73−3.71 (m, 4H), 3.06−3.01 (m, 2H), 2.56−2.48 (m, 5H), 1.99−
1.96 (m, 2H), 1.55−1.47 (m, 2H); LRMS (ES+) m/z 308 [M + H]+.
Biology Materials and Methods. This information is in the

Supporting Information.
Ethical Statements. In vivo antimalarial efficacy studies in P.

berghei carried out at the Swiss Tropical and Public Health Institute
(Basel, Switzerland) adhere to local and national regulations of
laboratory animal welfare in Switzerland (awarded permission no.
1731). Protocols are regularly reviewed and revised following approval
by the local authority (Veterinar̈amt Basel Stadt).
In vivo antimalarial efficacy studies using P. falciparum in SCID mice

carried out at GSK were approved by the Diseases of the Developing
World Ethical Committee on Animal Research and carried out in
accordance with European Directive 2010/63/EU and the GSK Policy
on the Care, Welfare and Treatment of Animals. The animal studies
were performed at DDW Laboratory Animal Science facilities
accredited by AAALAC. The human biological samples were sourced
ethically, and their research use was in accord with the terms of the
informed consents.
Mouse pharmacokinetics were carried out at the University of

Dundee. All regulated procedures on living animals were carried out
under the authority of a license issued by the Home Office under the
Animals (Scientific Procedures) Act 1986, as amended in 2012 (and in
compliance with EU Directive EU/2010/63). License applications will
have been approved by the University’s Ethical Review Committee
(ERC) before submission to the Home Office. The ERC has a general
remit to develop and oversee policy on all aspects of the use of animals
on University premises and is a subcommittee of the University Court,
its highest governing body.
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