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ABSTRACT Each market agent (producer or consumer) in a power market pursues its own objective,
typically to maximize its own profit. As such, the specific behavior of each agent in the market is conveniently
formulated as a bi-level optimization problem whose upper-level problem represents the profit seeking
behavior of the agent and whose lower-level problem represents the clearing of the market. The objective
function and the constraints of this bi-level problem depend on the agent’s own decision variables and on
those of other agents as well. Understanding the outcomes of the market requires considering and solving
jointly the interrelated bi-level problems of all market agents, which is beyond the purview of optimization.
Solving jointly a set of bi-level (or single-level) optimization problems that are interrelated is the purview
of complementarity. In this paper and in the context of power markets, we review complementarity using a
tutorial approach.

INDEX TERMS Complementarity, optimization, power markets, power systems.

I. INTRODUCTION
A. BACKGROUND

WEDESCRIBE in this paper a number of mathematical
models to represent the behavior of the agents of

a power market, namely, producers, consumers and market
operator. These models rely on economic rationality [1].

Pursuing maximum social welfare, the market operator (or
independent system operator, ISO) clears the market using
an optimization problem. We assume that such optimization
problem is convex or that a convex approximation of it, which
is accurate enough, can be obtained.

Each producer seeks to maximize its owns profit by sub-
mitting to the market operator a strategic offer consisting
of prices and quantities. The offer prices do not need to
be equal to marginal cost of the producer. To identify its
strategic offer, the producer solves a bi-level optimization
problem whose upper-level problem represents its profit
seeking behavior and whose lower-level problem represents
the clearing of the market. The market clearing price and
production level of the producer, derived from the lower-level
problem, are used in the upper-level problem to compute
the producer profit, and in turn, to derive its strategic
offer.

Likewise, each consumer seeks to maximize its owns profit
(or surplus) by submitting to the market operator a strate-
gic bid consisting of prices and quantities. Bid prices do
not need to be equal to marginal utility of the consumer.
To identify its strategic bid, the consumer solves a bi-level
optimization problem whose upper-level problem represents
its profit seeking behavior and whose lower-level problem
represents the clearing of the market. The market clearing
price and consumption level of the consumer, derived from
the lower-level problem, are used in the upper-level problem
to compute the consumer profit, and in turn, to derive its
strategic bid.

To analyze the market as a whole, we jointly consider and
solve the interrelated bi-level problems of all producers and
all consumers. Solutions that are common to all these bi-level
problems are equilibrium candidates in the Nash sense [2].

The methodology that we describe allows us searching
for single-strategy equilibria, but does not guarantee finding
all such equilibria. Moreover, single-strategy equilibria may
or may not exist, but practical experience indicates that in
power markets multiple equilibria do exist. We do not search
for equilibria in mixed strategies as these equilibria have a
limited relevance in practice [3].
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FIGURE 1. Market clearing: optimization problem.

The most common strategy to solve a bi-level problem,
whose lower-level problem is convex, is to replace such
lower-level problem by its Karush-Kuhn-Tucker (KKT) opti-
mality conditions. Such conditions include complementarity
constraints of the form:

0 ≤ x ⊥ y ≥ 0.

The above complementarity constraint is equivalent to:

x ≥ 0

y ≥ 0

x · y = 0,

which define a complementarity condition: either x = 0 and
y > 0 or the other way around y = 0 and x > 0. The case
x = 0 and y = 0 is also feasible, but generally irrelevant.

The denomination complementarity or complementarity
theory referring to the analysis and solution of bi-level prob-
lems and of set of interrelated bi-level problems comes from
the complementarity constraints included in the KKT condi-
tions, as described above.

B. MARKET CLEARING
Themarket operator typically uses an (single-level) optimiza-
tion problem to clear the market. This is illustrated in Fig. 1
(lower box). The objective of such optimization problem is to
maximize the social welfare, computed as the area between
the demand and supply curves. Under no network congestion,
the social welfare is also equal to the producers’ profit (or
surplus) plus the consumers’ profit (or surplus). If, on the
other hand, the network is congested, the network surplus
needs to be added. The constraints of this problem include
both power balances and production/consumption bounds.

It is most important that the optimization problem used to
clear the market (lower box in Fig. 1) is convex, since convex
clearing optimization problems result in meaningful clearing
prices. Using a non-convex problem for market clearing is
looking for trouble, as analyzed in [4].

C. STRATEGIC AGENTS
A producer or consumer generally seeks maximizing its own
profit. For this, it is convenient to use a bi-level problem as
illustrated in Fig. 2 (lower box). The upper-level problem of
this bi-level problem represents the profit seeking behavior
of the agent, while the lower-level problem (inner box of the
lower box of Fig. 2) represents the clearing of the market.
The upper-level problem allows the agent to determine its best

FIGURE 2. Strategic agent: MPEC.

FIGURE 3. Agents’ equilibria: EPEC.

offering/bidding strategy (to be transferred to the lower-level
problem), while the lower-level problem provides the market
clearing price (as a dual variable) needed to compute the
agent’s profit at the upper-level problem. Further details are
provided in [3], [5], [6] and [7].

The lower-level problem (inner box of the lower box of
Fig. 2) is generally replaced by its optimality (also called
equilibrium) conditions, rendering a Mathematical Program
with Equilibrium Constraints (MPEC). An MPEC is also
referred to as a single-leader single-follower game [8], being
the single-leader the agent itself and the single-follower the
market.

D. EQUILIBRIUM
In a market, every agent has a say and thus, to understand
the market and its outcomes, we need to consider simulta-
neously the behaviors of all agents. We do so by consider-
ing jointly the MPECs of all market agents and taking into
account that such MPECs are related to one another. The
joint considerations of these MPECs constitutes an equilib-
rium problem (set of interrelated optimization problems) of
bi-level problems, referred to as Equilibrium Problem with
Equilibrium constraints (EPEC) [9]–[11]. It is also referred
to as multiple-leader common-follower game [8], being the
multiple leaders the agents and the common follower the
market. Fig. 3 illustrates an EPEC of n agents.

E. CONTRIBUTION AND PAPER ORGANIZATION
The contribution of this paper is simple: providing a tutorial
overview of the mathematical models needed to understand
power markets, market agents’ behavior and the outcomes of
such markets. For additional details, we provide a number of
representative references.
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FIGURE 4. Three-agent market.

The rest of this paper is organized as follows. Section II
reviews market clearing, Section III analyzes the strate-
gic behavior of market-agents, Section IV considers market
equilibria among agents, and Section V concludes listing
pressing research needs. To provide adequate background,
Appendix A reviews the Karush-Kuhn-Tucker optimality
conditions and Appendix B the diagonalization algorithm.

II. MARKET CLEARING
This section reviews succinctly optimization models for mar-
ket clearing. A simple example is discussed first, followed by
a general formulation.

A. ILLUSTRATIVE EXAMPLE
The key objective of the market operator is to clear the mar-
ket, which can be represented by a (single-level) optimization
problem. This is illustrated below through an example.

We consider a market comprising two producers (upper
part of Fig. 4) and one consumer (lower part of Fig. 4).
Producer 1 has a capacity of 6 power units and a marginal
cost c1 = $1 per energy unit, while producer 2 has a
capacity of 6 power units as well and a marginal cost c2 =
$2 per energy unit. The consumer has a maximum demand
of 10 power units and a marginal utility of u = $3 per energy
unit.

If the productions of producers 1 and 2 are denoted by
p1 and p2, respectively, and the demand of the consumer by
d , the market operator clears the market seeking maximum
social welfare, or minimum minus social welfare, z, by solv-
ing the following primal optimization problem:

min
p1,p2,d≥0

z = 1 · p1 + 2 · p2 − 3 · d (1a)

s. t. p1 + p2 − d = 0 : λ (1b)

p1 ≤ 6 : µp1 (1c)

p2 ≤ 6 : µp2 (1d)

d ≤ 10 : µd , (1e)

where the objective function (1a) is the minus social welfare
(cost minus utility), constraint (1b) is the power balance, and
constraints (1c)-(1e) are bounds. Dual variable λ (of power
balance constraint (1b)) is the market clearing price, and µp1,
µ
p
2 and µ

d are dual variables related to bounds.

The solution of problem (1) can be easily obtained by
inspection and is: p∗1 = 6, p∗2 = 4, d∗ = 10, λ∗ = 2 and z∗ =
−16. That is, since the marginal utility of the consumer is
higher than the marginal cost of the most expensive producer
and there is enough production capacity to supply the whole
demand, the whole demand is served and thus d∗ = 10, the
cheapest producer produces at capacity, p∗1 = 6, and the most
expensive producer covers the remaining demand, p∗2 = 4.
Since the marginal producer (the producer not producing at
capacity) is producer 2, the market clearing price is λ∗ = 2.
Finally, the minus social welfare (objective function value) is
z∗ = −16.

The profit or surplus (production × (price − marginal
cost)) of producer 1 is πp1 = 6 · (2 − 1) = 6 and that of
producer 2, πp2 = 4 · (2− 2) = 0, while the profit or surplus
(demand × (marginal utility − price)) of the consumer is
πd = 10 · (3− 2) = 10.
The total producer surplus (πp1 + π

p
2 = 6 + 0 = 6) plus

the total consumer surplus (πd = 10) is the social welfare, w.
We verify that in the considered market condition w = −z∗

The dual problem [12] of primal problem (1) is:

max
λ∈R;µp1,µ

p
2,µ

d≤0
z = 6 · µp1 + 6 · µp2 + 10 · µd (2a)

s. t. λ+ µ
p
1 ≤ 1 : p1 (2b)

λ+ µ
p
2 ≤ 2 : p2 (2c)

− λ+ µd ≤ −3 : d . (2d)

Considering primal and dual problems (1) and (2), respec-
tively, generic production offers o1 (instead of c1 = 1) and
o2 (instead of c2 = 2), and generic demand bid b (instead of
u = 3), the necessary and sufficient optimality conditions of
either of these problems are [12]:

(a) p1 + p2 − d = 0
(b) p1 ≤ 6, p2 ≤ 6, d ≤ 10
(c) p1 ≥ 0, p2 ≥ 0, d ≥ 0
(d) λ+ µ

p
1 ≤ o1

(e) λ+ µ
p
2 ≤ o2

(f) −λ+ µd ≤ −b
(g) λ ∈ R;µp1 ≤ 0, µp2 ≤ 0, µd ≤ 0
(h) o1 · p1 + o2 · p2 − b · d = 6 · µp1 + 6 · µp2 + 10 · µd

(3)

The system of equalities and inequalities (3) includes pri-
mal constraints: conditions (a) and (b), dual constraints: con-
ditions (d) to (f), primal and dual variable bounds: conditions
(c) and (g), respectively, and condition (h) that states that
the primal objective function value equals the dual objective
function value at the optimizer (strong duality theorem [12]).

The solutions of problems (1) or (2) are obtained solving
(3) with values o1 = c1 = 1, o2 = c2 = 2 and b = u = 3.
The system of equalities and inequalities (3) is a particular

instance of the more general KKT conditions for convex
optimization problems. We remind the reader that KKT con-
ditions are necessary and sufficient optimality conditions for
convex optimization problems [12].
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Finally, we note that instead of (1) or (2), if convenient,
we can use (3).

B. MATHEMATICAL FORMULATION
The general formulation of problem (1) above is:

min
x

f (x) (4a)

s. t. h(x) = 0 : λ (4b)

g(x) ≤ 0 : µ, (4c)

where x is the decision variable vector, f (x) the minus social
welfare, and h(x) = 0 and g(x) ≤ 0 equality and inequity
constraints, respectively.

If problem in (4) is convex or has been convexified [13],
the optimality conditions below (KKT conditions) identify
optimal solutions:{

∇xf (x)+ λ>∇xh(x)+ µ>∇xg(x) = 0

h(x) = 0, 0 ≤ µ ⊥ g(x) ≤ 0
(5)

where 0 ≤ x ⊥ y ≤ 0 is equivalent to x ≥ 0, y ≤ 0 and
x · y = 0.

Note that deriving KKT conditions is a relatively simple
exercise. For example, the solver EMP,1 which is available in
GAMS, derives KKT conditions automatically.

KKT conditions can be directly solved by using appropri-
ate solvers, such as PATH2 or MILES.3 Alternatively, they
can be solved using an auxiliary problem with an arbitrary
objective function and the KKT conditions (linearized or not)
as constraints [5].

III. STRATEGIC AGENTS
This section reviews bi-level problems for producers and
consumers as strategic market agents. A strategic market
agent actively pursues altering the market clearing price to
its own benefit.

We discuss first simple examples and provide then a gen-
eral formulation.

A. STRATEGIC AGENT EXAMPLES
We consider first that producer 1 is strategic, but pro-
ducer 2 and the consumer are not. The bi-level problem to
be solved by producer 1 is:

max
o1

π
p
1 = (λ− 1) · p1 (6a)

s. t. o1 ≥ 1 (6b)
min

p1,p2,d≥0
z = o1 · p1 + 2 · p2 − 3 · d (6c)

s. t. d − p1 − p2 = 0 : λ (6d)

p1 ≤ 6, p6 ≤ 6, d ≤ 10, (6e)

where o1 is the strategic offer price of producer 1, p1 its
production, πp1 its profit, λ the market clearing price, p2 and

1https://www.gams.com/latest/docs/UG_EMP.html
2http://pages.cs.wisc.edu/ ferris/path.html
3https://www.gams.com/latest/docs/S_MILES.html

TABLE 1. Producer 1 strategies.

d the production of producer 2 and the consumption of the
demand, respectively, and z the declared social welfare for
the price offer o1 submitted by producer 1.
Upper-level problem (6a)-(6b) seeks to identify the best

choice for o1 so that producer 1’s profit (π
p
1 (·)) is maximized.

Lower-level problem (6c)-(6e) clears the market and provides
the market clearing price λ (dual variable of constraint (6d)),
used to calculate the profit of producer 1 in the objective
function (6a) of the upper-level problem.

Regarding the optimal selection of o1 (solution of the
upper-level problem) in this simple example, two strategies
are worthy exploring, offering at o1 = 3 − ε (ε is a small
enough positive constant) to raise the clearing price as much
as possible without losing demand (o1 < u = 3), and offering
at o1 = 2−ε to undercut producer 2 (o1 < c2 = 2). Outcomes
for these two cases are reported in Table 1. For the sake of
comparison, the last row of this table provides the competitive
equilibrium.

The first solution maximizes the profit of producer 1, πp1 ,
but the second one drives the profit of producer 2, πp2 to 0.
Both outcomes might be relevant for producer 1. We note
that the second solution corresponds to the competitive one.

Observe that −z is the declared social welfare, computed
using the offer/bid prices declared by producers/consumers,
while w is the true social welfare, computed using the true
marginal costs/utilities of producers/consumers. In the com-
petitive case, −z = w, but in strategic cases, this is not
generally so.

We consider second that producer 2 is strategic, but that
producer 1 and the consumer are not. The bi-level problem to
be solved by producer 2 is:

max
o2

π
p
2 = (λ− 2) · p2 (7a)

s. t. o2 ≥ 2 (7b)
min

p1,p2,d≥0
z = 1 · p1 + o2 · p2 − 3 · d (7c)

s. t. d − p1 − p2 = 0 : λ (7d)

p1 ≤ 6, p6 ≤ 6, d ≤ 10. (7e)

Regarding the optimal selection of o2 in this simple example,
a single strategy is worthy to explore, offering at o2 = 3− ε
to raise the clearing price as much as possible without losing
demand (o2 < u = 3). The outcome is provided in Table 2.
For the sake of comparison, the last row of this table provides
the competitive equilibrium.

We consider third that the consumer is strategic, but that
producers 1 and 2 are not. The bi-level problem to be solved
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TABLE 2. Producer 2 strategy.

TABLE 3. Consumer strategies.

by the consumer is:

max
b≥0

πd = (3− λ) · d (8a)

s. t. b ≤ 3 (8b)
min

p1,p2,d≥0
z = 1 · p1 + 2 · p2 − b · d (8c)

s. t. d − p1 − p2 = 0 : λ (8d)

p1 ≤ 6, p6 ≤ 6, d ≤ 10. (8e)

Regarding the optimal selection of b in this simple example,
two strategies are worthy to explore, bidding at b = 2+ ε to
lower the clearing price as much as possible without losing
demand (b > c2 = 2), and bidding at b = 1+ ε to lower the
clearing price ever further at the cost of losing some demand
(b > c1 = 1). Outcomes for these two cases are reported in
Table 3. For the sake of comparison, the last row of this table
provides the competitive equilibrium.

The second solution maximizes the profit of the consumer,
πd , but at the cost of consuming solely 6 units. On the other
hand, the first solution allows supplying the whole load, but
with a comparatively lower profit for the consumer. We note
that the first solution corresponds to the competitive one.

B. BI-LEVEL MODEL OF A STRATEGIC AGENT
In general, the bi-level problem of each agent (producer or
consumer) in the market can be formulated as:

max
4(i)

π (i)
(
x(i),λ

)
(9a)

s. t. o(i) ∈ O(i) (9b)

min
x

f (x, o) (9c)

s. t. h(x) = 0 : λ (9d)

g(x, o) ≤ 0 : µ, (9e)

where 4(i)
= {o(i)} ∪ {x,λ,µ}.

The notation used is as follows: π (i) (·) is the profit of
agent (i), x the vector of optimization variables, x(i) the
sub-vector (of vector x) of optimization variables that pertains
to agent (i), λ and µ vectors of dual variables, o the offer/bid
vector, o(i) the offer/bid sub-vector (of vector o) pertain-
ing to agent (i), and O(i) the feasible set of offers/bids of
agent (i).

Upper-level problem (9a)-(9b) represents the profit
of the agent (producer or consumer), while lower-level
problem (9c)-(9e) represents the clearing of the market.

C. MPEC OF A STRATEGIC AGENT
Considering bi-level problem (9), and assuming that
lower-level power problem (9c)-(9e) is convex or have been
convexified [13], we can replace it with its corresponding
KKT optimality conditions (or alternative optimality condi-
tions) rendering the Mathematical Program with Equilibrium
Constraints (MPEC) below [3], [5], [14]:

max
4(i)

π (i)
(
x(i),λ

)
(10a)

s. t. o(i) ∈ O(i) (10b)

∇xf (·)+ λ>∇xh(·)+ µ>∇xg(·) = 0 (10c)

h(·) = 0 (10d)

0 ≤ µ ⊥ g(·) ≤ 0. (10e)

MPEC (10) above is a single-level optimization prob-
lem that can be solved using conventional optimization
techniques [12].

Regarding the simple examples previously considered in
this section, bi-level problem (6) can be solved by solving
the single-level problem:

max
o1

π
p
1 = (λ− 1) · p1 (11a)

s. t. o1 ≥ 1 (11b)
(3), (11c)

where (3) is stated with o2 = c2 = 2 and b = u = 3.
Bi-level problem (7) can be solved by solving the

single-level problem:

max
o2

π
p
2 = (λ− 2) · p2 (12a)

s. t. o2 ≥ 2 (12b)
(3), (12c)

where (3) is stated with o1 = c1 = 1 and b = u = 3.
Finally, bi-level problem (8) can be solved by solving the

single-level problem:

max
b≥0

πd = (3− λ) · d (13a)

s. t. b ≤ 3 (13b)
(3), (13c)

where (3) is stated with o1 = c1 = 1 and o2 = c2 = 2.

IV. AGENTS’ EQUILIBRIA
This section reviews equilibrium models in markets with
strategic agents. An example is considered first, followed by
a general formulation.

A. ALL AGENTS’ VIEW
We consider again the market example involving two pro-
ducers and one consumer (Fig. 4). We assume that every
agent is strategic. Thus, we need to simultaneously solve the
three bi-level problems below, which constitutes an equilib-
rium problem (set of interrelated optimization problems) of
bi-level problems:

max
o1

π
p
1 = (λ− 1) · p1 (14a)

s. t. o1 ≥ 1 (14b)
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min
p1,p2,d≥0

z = o1 · p1 + o2 · p2 − b · d (14c)

s. t. d − p1 − p2 = 0 : λ (14d)

p1 ≤ 6, p6 ≤ 6, d ≤ 10 (14e)

max
o2

π
p
2 = (λ− 2) · p2 (14f)

s. t. o2 ≥ 2 (14g)
min

p1,p2,d≥0
z = o1 · p1 + o2 · p2 − b · d (14h)

s. t. d − p1 − p2 = 0 : λ (14i)

p1 ≤ 6, p6 ≤ 6, d ≤ 10 (14j)

max
b≥0

πd = (3− λ) · d (14k)

s. t. b ≤ 3 (14l)
min

p1,p2,d≥0
z = o1 · p1 + o2 · p2 − b · d (14m)

s. t. d − p1 − p2 = 0 : λ (14n)

p1 ≤ 6, p6 ≤ 6, d ≤ 10. (14o)

Alternatively, we can solve the three interrelated MPECs
below:

max
o1

π
p
1 = (λ− 1) · p1 (15a)

s. t. o1 ≥ 1 (15b)
(3) (15c)

max
o2

π
p
2 = (λ− 2) · p2 (15d)

s. t. o2 ≥ 2 (15e)
(3) (15f)

max
u
πd = (3− λ) · d (15g)

s. t. u ≤ 3 (15h)
(3) (15i)

We note that the set of interrelated bi-level problems (14)
and the set of MPECs (15) are equivalent.

It is particularly relevant to note that in case that no agent
acts strategically, i.e., producer 1 offers at o1 = c1 = 1,
producer 2 offers at o2 = c2 = 2, and the consumer bids
at b = u = 3, EPEC (15) reduces to the simple optimization
problem (1).

The general form of the equilibrium problem of bi-level
problems (14) is:

max
4(i)

π (i)
(
x(i),λ

)
s. t. o(i) ∈ O(i)

min
x

f (x, o)

s. t. h(x) = 0 : λ

g(x, o) ≤ 0 : µ


∀i, (16)

and that of EPEC (15):

max
4(i)

π (i)
(
x(i),λ

)
s. t. o(i) ∈ O(i)

∇xf (·)+ λ>∇xh(·)+ µ>∇xg(·) = 0
h(·) = 0
0 ≤ µ ⊥ g(·) ≤ 0


∀i. (17)

In case that no agent offers/bids strategically, EPEC (17)
reduces to optimization problem (4) [3].

Solving (17) is generally complex. We describe in Subsec-
tion IV-B below a solution strategy.
We note that in case that no agent acts strategically, i.e.,

each producer offers at its marginal cost, and each consumer
bids at its marginal utility, EPEC (17) reduces to an optimiza-
tion problem. Further details are provided in [3].

B. EPEC SOLUTION
The KKT optimality conditions of any of the MPECs consti-
tuting EPEC (17) (single-agent optimality conditions) can be
easily obtained [3] and represented as:

KKT(i). (18)

However, since any of the MPECs in EPEC (17) is generally
non-convex and its constraints are generally non-regular [12],
its optimality conditions as given by (18) identify points that
might or might not be maxima. Thus, solution points need to
be checked for optimality.

We then consider all set of conditions (18) (one per agent)
and solve them jointly to search for equilibria. This consti-
tutes a solution strategy for EPEC (17). It can be expressed
as: {

KKT(i)
∀i , (19)

and constitutes a system of nonlinear equalities and inequal-
ities, generally difficult to solve.

The auxiliary problem below can be used to solve (19), i.e.,
to search for equilibria:

max OF(·) (20a)

s. t. KKT(i)
∀i, (20b)

where OF(·) is a suitable objective function.
Problem (20) is generally nonlinear and non-convex. Its

solution can be attempted via linearization or using nonlinear
solvers, such as IPOPT [15], BARON [16], or KNITRO [17].

It is important to note that since the constraints of any of the
MPECs of EPEC (17) are generally non-regular, (19) identi-
fies equilibria and other points [18]. Therefore, once potential
equilibrium points (solutions of (20)) are found, a diagonal-
ization algorithm [3] should be used to verify whether or not
these points are indeed equilibria. Such algorithm can be seen
as a modified version of the Gauss-Seidel method for solving
systems of equations. It works as follows. Given a candidate
solution for the EPEC, the algorithm verifies that no sin-
gle player (producer or consumer) benefits by individually
deviating from this solution. If this is the case, the resulting
strategies (offers and bids) lead to a Nash equilibrium [2].

The EPECs formulated in this paper allow searching for
pure-strategy equilibria. Such equilibria may or may not
exist; however, our experience analyzing both operation and
investment EPECs for electricity markets indicates that mul-
tiple pure-strategy equilibria do exist. On the other hand,
we do not search for mixed-strategy equilibria because such
equilibria have a very limited practical relevance in power
markets [3].
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TABLE 4. EPEC solution: offers, bid and price.

TABLE 5. EPEC solution: productions, demand, profits and
social welfare.

C. EQUILIBRIUM EXAMPLE
Regarding the simple example considered throughout this
paper, to solve (14), we solve the nonlinear system of equal-
ities and inequalities [5]:

KKTs of problem (15a)− (15c)
KKTs of problem (15d)− (15f)
KKTs of problem (15g)− (15i),

(21)

by solving the auxiliary problem:

max OF(·) (22a)
s. t. (21) (22b)

KKTs (21) are provided in Appendix A.
Solving (22) results in the outcomes reported in

Tables 4 and 5. The first column of these tables indicates
the alternative objective functions OF(·) considered to iden-
tify candidate solutions. Then, the diagonalization algorithm
described in Appendix B is used to verify whether or not these
candidate solutions are Nash equilibria. This is reported in the
last column of Table 4.
Four relevant candidate solutions are discussed below.

We note that the fourth candidate solution (fifth row of
Tables 4 and 5) corresponds to the competitive equilibrium.

1) FIRST CANDIDATE SOLUTION
The EPEC solution that entails maximum profit for
producer 1 (max π

p
1 ), reported in the second row of

Tables 4 and 5, requires that the offer price of producer 2 is
o2 = 3 and that the price bid of the consumer bid is b = 3
as well, which leads to a market clearing price of λ = 3.
This renders a profit for producer 1 of πp1 = 12, which is the
maximum profit this producer can achieve. We note that the
same market outcome is obtained if producer’s 1 price offer
is within the interval 1 ≤ o1 ≤ 3 − ε. We note as well that
this candidate solution is not a Nash equilibrium since the
consumer has an incentive to lower its bid price b below 3.
For instance, if the consumer bid price is b = 1, the market
price decreases and the consumer’s profit increases.

2) SECOND CANDIDATE SOLUTION
Analogously, the EPEC solution that achieves maximum
profit for producer 2 (max πp2 ), reported in the third row of
Tables 4 and 5, is not a Nash equilibrium. In this case, the
offer price of producer 1 is o1 = 3, while that of producer 2 is
slightly below 3 (o2 = 3−ε) to ensure being fully dispatched
at the clearing price λ = 3. This solution is not a Nash
equilibrium since producer 1, which is more competitive than
producer 2 (its production cost is lower), is willing to reduce
its offer price o1 to force being dispatched.

3) THIRD CANDIDATE SOLUTION
On the other hand, the EPEC solution that achieves maximum
profit for the consumer (max πd ), reported in the fourth row
of Tables 4 and 5, is a Nash equilibrium. In this case, the
offer price of producer 1 is o1 = 1 and the bid price of
the consumer b = 1, leading to a market clearing price
λ = 1, and a consumer’s profit πd = 12. Producer 1 is
fully dispatched at this clearing price, but since this price is
equal to its marginal cost, its profit is 0. Producer 2, whose
production cost is c2 = 2, cannot lower its offer price o2
below this value and thus, it is not dispatched. We note that
for these strategies, there is no incentive for any of the two
producers to raise its offer, as such action will not increase the
corresponding profit. Similarly, the consumer is not willing
to further decrease its bid b below producer’s 1 marginal cost
c1 = 1, as such action would entail no energy being supplied
(d = p1 = p2 = 0).
This equilibrium is illustrated in Fig. 5 (top graphic).

4) FOURTH CANDIDATE SOLUTION
A second Nash equilibrium occurs for the EPEC solution
that maximizes social welfare OF(·) = w. This equilibrium
is reported in the fifth row of Tables 4 and 5. In this case,
the market clearing price is λ = 2, since the price offer of
producer 2 is o2 = 2 and the price bid of the consumer
is b = 2. Both producers are dispatched to satisfy the
maximum demand of the consumer d = 10. We note that
producer 1 slightly lowers its price offer below producer’s
2 marginal cost, i.e., o1 = 2 − ε, to ensure being fully
dispatched. The above strategies result in a social welfare
w = 16. We note that neither of the two producers nor the
consumer has an incentive to modify its offer or bid. Produc-
ers 1 and 2 are not willing to further raise their offer prices as
such move would entail not being dispatched. Similarly, the
consumer is not willing to decrease its bid b below 2 as this
would entail no energy being supplied (d = p1 = p2 = 0).
This equilibrium is illustrated in Fig. 5 (center graphic).

We note that in terms of clearing price, production levels
and demand served, this equilibrium is unique. However,
in terms of offer/bid prices, there are infinitely many identical
equilibria, since for o1 ∈ [1, 2) identical values are obtained
for clearing price, production levels and demand served.

For the sake of comparison, the competitive equilibrium
(producers/consumers offer/bid their respective marginal
costs/utilities) is also illustrated in Fig. 5 (bottom graphic).
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FIGURE 5. Example equilibria.

Using a game-theoretical perspective (not a complemen-
tarity one), we may recast the search for equilibria in this
example as follows. Each of the two producers should
select its offer price between its marginal cost (assuming
economic rationality, offering below marginal cost is not
considered) and the marginal utility of the consumer. The
consumer should select its bid price between its marginal
utility and the lowest marginal cost of the producers (to
ensure a non-zero non-trivial solution). Note that offer/bid
prices can be changed, but not offer/bid quantities. The
search for equilibria seeks to answer the following question:
Which are the sets of offer/bid prices that lead to Nash
equilibria?

Finally, we note that a game-theoretical approach (not a
complementarity one) is not generally insightful in power
markets due to the curse of dimensionality.

V. RESEARCH NEEDS
Pressing research needs include:

1) Since a number of real-world markets use non convex
problems for market clearing, appropriate convexifica-
tion techniques (such as convex relaxations [19]) are

needed to represent such problems within equilibrium
models.

2) Since binary variables might be needed to represent
specific market constraints, developing necessary and
or sufficient optimality conditions for problems with
binary variables is most needed [20].

3) An equilibrium model for a realistic market typically
results in a large-scale problem. Since such prob-
lem often embodies a decomposable structure, tailored
decomposition techniques to address such large-scale
equilibrium problems are needed [21].

4) The increasing interdependency between the power and
natural-gas markets, which are independently operated,
needs to be represented in equilibrium models for
power markets [22].

5) Finally, we note that the proposed framework can be
used to analyze a distribution market that includes a
number of proactive prosumers and is managed by a
distribution system operator. Research is most needed
in this area as well [23], [24].

APPENDIX
A. KARUSH–KUHN–TUCKER OPTIMALITY CONDITIONS
For the sake of generality, we extend the market setting
described in the body of the paper (two producers and one
consumer) to consider |I | producers and |J | consumers,
where I and J are the sets of producers and consumers,
respectively. Additionally, i and k are equivalent indices for
producers, i.e., i, k ∈ I , and j and l, equivalent indices for
consumers, i.e., j, l ∈ J .

Producers MPECs (11) and (12) are generalized as:

max
4
p
i

(λ− ci)pi (23a)

s. t.

oi ≥ ci : η
p
i (23b)∑

k∈I

pk −
∑
j∈J

dj = 0 : δpi (23c)

0 ≤ pk ≤ p̂k : β̌
pp
ik , β̂

pp
ik , ∀k ∈ I (23d)

0 ≤ dj ≤ d̂j : β̌
pd
ij , β̂

pd
ij , ∀j ∈ J (23e)

µ
p
k + λ ≤ ok : α

pp
ik , ∀k ∈ I (23f)

µdj − λ ≤ −bj : α
pd
ij , ∀j ∈ J (23g)

µ
p
k ≤ 0 : θppik , ∀k ∈ I (23h)

µdj ≤ 0 : θpdij , ∀j ∈ J (23i)∑
k∈I

okpk −
∑
j∈J

bjdj −
∑
k∈I

p̂kµ
p
k −

∑
j∈J

d̂jµdj = 0 : γ pi

(23j)

where 4p
i = {oi, pk , dj, λ, µ

p
k , µ

d
j } ∀k ∈ I and ∀j ∈

J is the set of producer’s i decision variables. Parame-
ters p̂i and d̂j represent producer’s i capacity and con-
sumer’s j maximum demand, respectively. Dual variables
are indicated at their corresponding constraints following a
colon.
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Similarly, MPEC (13) is generalized as:

max
4dj

(uj − λ)dj (24a)

s. t.

bj ≤ uj : ηdj (24b)∑
i∈I

pi −
∑
l∈J

dl = 0 : δdj (24c)

0 ≤ pi ≤ p̂i : β̌
dp
ji , β̂

dp
ji , ∀i ∈ I (24d)

0 ≤ dl ≤ d̂l : β̌ddjl , β̂
dd
jl , ∀l ∈ J (24e)

µ
p
i + λ ≤ oi : α

dp
ji , ∀i ∈ I (24f)

µdl − λ ≤ −bl : α
dd
jl , ∀l ∈ J (24g)

µ
p
i ≤ 0 : θdpji , ∀i ∈ I (24h)

µdl ≤ 0 : θddjl , ∀l ∈ J (24i)∑
i∈I

oipi −
∑
l∈J

bldl −
∑
i∈I

p̂iµ
p
i −

∑
l∈J

d̂lµdl = 0 : γ dj

(24j)

where 4d
j = {bj, pi, dl, λ, µ

p
i , µ

d
l } ∀l ∈ J and ∀i ∈ I , is the

set of consumer’s j decision variables.
The KKT conditions of producer’s iMPEC (23) are:
∂Li
∂oi
= −η

p
i − α

pp
ii + piγ

p
i = 0 (25a)

∂Li
∂pi
= ci − λ+ δ

p
i − β̌

pp
ii + β̂

pp
ii + γ

p
i oi = 0 (25b)

∂Li
∂pk
= δ

p
i − β̌

pp
ik + β̂

pp
ik + γ

p
i ok = 0 ∀(k 6= i) ∈ I (25c)

∂Li
∂dj
= −δ

p
i − β̌

pd
ij + β̂

pd
ij − γ

p
i bj = 0 ∀j ∈ J (25d)

∂Li
∂λ
= −pi +

∑
k∈I

α
pp
ik −

∑
j∈J

α
pd
ij = 0 (25e)

∂Li
∂µ

p
k
= α

pp
ik + θ

pp
ik − p̂kγ

p
i = 0 ∀k ∈ I (25f)

∂Li
∂µdj
= α

pd
ij + θ

pd
ij − d̂jγ

p
i = 0 ∀j ∈ J (25g)

0 ≤ oi − ci ⊥ η
p
i ≥ 0 (25h)

0 ≤ pk ⊥ β̌
pp
ik ≥ 0 ∀k ∈ I (25i)

0 ≤ p̂k − pk ⊥ β̂
pp
ik ≥ 0 ∀k ∈ I (25j)

0 ≤ dj ⊥ β̌
pd
ij ≥ 0 ∀j ∈ J (25k)

0 ≤ d̂j − dj ⊥ β̂
pd
ij ≥ 0 ∀j ∈ J (25l)

0 ≤ ok − µ
p
k − λ ⊥ α

pp
ik ≥ 0, ∀k ∈ I (25m)

0 ≤ λ− µdj − bj ⊥ α
pd
ij ≥ 0, ∀j ∈ J (25n)

0 ≥ µpk ⊥ θ
pp
ik ≥ 0 ∀k ∈ I (25o)

0 ≥ µdj ⊥ θ
pd
ij ≥ 0 ∀j ∈ J (25p)∑

k∈I

pk −
∑
j∈J

dj = 0 (25q)∑
k∈I

okpk −
∑
j∈J

bjdj −
∑
k∈I

p̂kµ
p
k −

∑
j∈J

d̂jµdj = 0 (25r)

where Li is the Lagrangian function of problem (23).

The Karush–Kuhn–Tucker conditions of consumer’s j
MPEC (24) are:

∂Lj
∂bj
= ηdj + α

dd
jj − djγ

d
j = 0 (26a)

∂Lj
∂pi
= δdj − β̌

dp
ji + β̂

dp
ji + γ

d
j oi = 0 ∀i ∈ I (26b)

∂Lj
∂dj
= λ− uj − δdj − β̌

dd
jj + β̂

dd
jj − γ

d
j bj = 0 (26c)

∂Lj
∂dl
= −δdj − β̌

dd
jl + β̂

dd
jl − γ

d
j bl = 0 ∀(l 6= j) ∈ J

(26d)
∂Lj
∂λ
= dj +

∑
i∈I

α
dp
ji −

∑
l∈J

αddjl = 0 (26e)

∂Li
∂µ

p
i
= α

dp
ji + θ

dp
ji − p̂iγ

d
j = 0 ∀i ∈ I (26f)

∂Lj
∂µdl
= αddjl + θ

dd
jl − d̂lγ

d
j = 0 ∀l ∈ J (26g)

0 ≤ uj − bj ⊥ ηdj ≥ 0 (26h)

0 ≤ pi ⊥ β̌
dp
ji ≥ 0 ∀i ∈ I (26i)

0 ≤ p̂i − pi ⊥ β̂
dp
ji ≥ 0 ∀i ∈ I (26j)

0 ≤ dl ⊥ β̌ddjl ≥ 0 ∀j ∈ J (26k)

0 ≤ d̂l − dl ⊥ β̂ddjl ≥ 0 ∀l ∈ J (26l)

0 ≤ oi − µ
p
i − λ ⊥ α

dp
ji ≥ 0, ∀i ∈ I (26m)

0 ≤ λ− µdl − bl ⊥ α
dd
jl ≥ 0, ∀l ∈ J (26n)

0 ≥ µpi ⊥ θ
dp
ji ≥ 0 ∀i ∈ I (26o)

0 ≥ µdl ⊥ θ
dd
ji ≥ 0 ∀l ∈ J (26p)∑

i∈I

pi −
∑
l∈J

dl = 0 (26q)∑
i∈I

oipi −
∑
l∈J

bldl −
∑
i∈I

p̂iµ
p
i −

∑
l∈J

d̂lµdl = 0 (26r)

where Lj represent the Lagrangian function of problem (24).

B. DIAGONALIZATION CHECKING
We consider vector y ∈ R|I |+|J | that includes both strategic
offers and bids, i.e., oi ∀i ∈ I and bj ∀j ∈ J , respectively.
Specifically, ym represents the strategic offer or bid of player
m ∈ M ≡ (I ∪ J ).

Then, the diagonalization algorithm to verify whether
or not an optimal solution of problem (22), ys =

{ys1, . . . , y
s
m, . . . , y

s
|M |}, is a Nash equilibrium works as

follows:
1) Set initial values for the players’ offers/bids as y0m =

ysm ∀m ∈ M . Set y1m = y0m ∀m ∈ M .
2) Repeat for m = 1, . . . , |M | (the order is immaterial):

a) Solve MPEC (23) if player m is a producer or
MPEC (24) if it is a consumer to obtain the
optimal solution y∗m. The values of other players’
offers/bids y1m′ ∀(m

′
6= m) ∈ M are kept fixed.

b) Set y1m equal to y∗m.
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3) If |y1m − y0m| ≤ ε ∀m ∈ M , the solution ys=
{ys1, . . . , y

s
m, . . . , y

s
|M |} is a Nash equilibrium, else, it is

not.
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