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Abstract: Bio-based composites are reinforced polymeric materials in which one of the matrix and
reinforcement components or both are from bio-based origins. The biocomposite industry has
recently drawn great attention for diverse applications, from household articles to automobiles.
This is owing to their low cost, biodegradability, being lightweight, availability, and environmental
concerns over synthetic and nonrenewable materials derived from limited resources like fossil fuel.
The focus has slowly shifted from traditional biocomposite systems, including thermoplastic polymers
reinforced with natural fibers, to more advanced systems called hybrid biocomposites. Hybridization
of bio-based fibers/matrices and synthetic ones offers a new strategy to overcome the shortcomings of
purely natural fibers or matrices. By incorporating two or more reinforcement types into a single
composite, it is possible to not only maintain the advantages of both types but also alleviate some
disadvantages of one type of reinforcement by another one. This approach leads to improvement
of the mechanical and physical properties of biocomposites for extensive applications. The present
review article intends to provide a general overview of selecting the materials to manufacture
hybrid biocomposite systems with improved strength properties, water, and burning resistance in
recent years.
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1. Introduction

Nowadays, global environmental safety, ecological concerns, recyclability, eco-efficiency, and
economic factors are fundamental driving forces to increase the employment of bio-based materials [1,2].
The EU Bioeconomy Strategy [3] is one of the developed plans or policies to accelerate the UN Sustainable
Development Goals (SDGs). This strategy focuses not only on shifting from fossil resources to renewable
raw materials but also on recycling renewable bio-based raw materials and innovating in the production
and consumption of materials [3]. In this regard, biocomposites are among the potential sectors for the
bioeconomy. Renewable and sustainable biomaterials as an alternative for petroleum-based materials
prevent generating carbon dioxide causing global warming. They would be a solution to alleviating
the petroleum supplies’ uncertainty, which are about to decline shortly [4,5]. Within recent years,
biopolymers or green polymers have received tremendous interest among biomaterials. The term
biopolymer is a polymer of monomeric molecules derived from natural resources, including biological
systems or living organisms. Moreover, biopolymers can be found in nature and daily life, such as
natural rubber, starch, cotton, leather, wool, etc. [6–8]. Biopolymers are renewable, environmentally
friendly, or/and biodegradable materials, which can be divided into two broad groups of natural and
synthetic (Figure 1) with the following origins [9–13]:

• Natural biopolymers extracted from biomass (e.g., polysaccharides, proteins)
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• Synthetic biopolymers produced by a micro-organism or bacteria (e.g., bacterial cellulose,
polyhydroxyvalerate, polyhydroxybutyrate)

• Synthetic biopolymers synthesized from renewable bio-based monomers or mixed sources of
biomass and petroleum (e.g., polylactic acid, aliphatic polyester, aliphatic-aromatic copolyesters)

• Biodegradable polymers that are derived from nonrenewable resources (petroleum sources)
(e.g., polycaprolactone)
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Despite the advantages of biopolymer materials, they have some limitations compared to
petroleum-based materials, such as relatively low stiffness, tensile strength, permeability, and thermal
stability [8,9]. Therefore, to modify biopolymers’ properties and commercial importance, “biopolymer
composites” are tremendously explored by adding reinforcement materials within the micro or
nanoscale [14–18]. These composites have a large assortment of applications in construction, medicine,
electronics, packaging, and automotive sectors [19–24].

Composite materials systems are made from one or more discontinuous reinforcing phases
embedded in a continuous matrix phase. Biopolymer composites or biocomposites are referred to
as composites in which at least one constituent is bio-based or biodegradable [25]. The focus of this
review will be on the fibrous composites rather than laminate and particulate composites. Fibrous
composites can be made of natural/biofiber and synthetic fiber. Biocomposite systems can be classified
into partial biodegradable and complete biodegradable biocomposites on the basis of the matrix
and fibers (Figure 2) [2,5,26]. In the complete biodegradable biocomposites, bio-fibers are employed
with the matrices are made of biodegradable polymers such as renewable biopolymer matrices
(e.g., cellulosic plastic, soy plastic, starch plastic) or petro-based biodegradable polymer matrices
(e.g., aliphatic co-polyester, polyesteramides). However, in the partial biodegradable biocomposites,
bio-based matrices are reinforced with synthetic fibers, or non-biodegradable polymers matrices such
as traditional thermoplastic polymers (e.g., polypropylene, polyethylene) and thermoset polymers
(e.g., epoxy, polyester) are reinforced with bio-fibers [5,26]. It is worth noting this classification of
biocomposites does not estimate time or amount of degradation, which depends on many parameters,
such as environment, temperature, and micro-organisms and can be defined by standard degradation
tests. This classification emphasizes that if both fibers and matrix be 100% biodegradable materials,
a composite will decompose at the end of its life and completely go back into the natural environment.
Otherwise, if one of them be non-biodegradable, the composite doesn’t show full biodegradability
properties. Recently, the blending of two or more polymers reinforced with one or more fibers that
produce hybrid composites materials has become an effective way to manipulate biocomposites
properties and maintain the balance among ecology-economy-technology. The present study reviews
the recent progress of hybrid biocomposites in improving their mechanical properties, water, and
burning resistance.
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2. Hybridization

The concept of hybridization can be found in various fields, such as mechanics, polymer and
chemistry, metallurgy, physics, science and technology, and energy fuels. Regardless of the research area,
this process’s main objective is to combine three or more materials to achieve improved performance
or properties compared to each substance for a proposed application [27]. In the field of composite
materials, by incorporating two or more filler/fiber into a matrix material, the disadvantages of
one type of reinforcement can be reduced by another one [28]. For example, by hybridization of
natural fibers with any synthetic fibers, although the main benefits of natural fiber composites such as
biodegradability, easy handling and processing, and natural resources are being reduced, hybridization
can decrease the cost, weight, and environmental concerns produced by the synthetic fiber composites
effectively. Several publications scientifically prove that hybridization techniques can enhance the
composites’ mechanical, thermal, and dynamic characteristics, such as minimizing water absorption
and increasing flame retardancy [29–31]. The main parameters, which significantly affect the properties
of the manufactured hybrid composite products, are as follows [27]:

• Materials selection (matrix and fiber), which depend mostly on the proposed application;
• Preparation technique, which depends on the fiber, matrix, and working conditions (viz. outdoors

or indoors);
• Interaction between the fibers and matrix, which can be controlled by fiber treatment or the use of

coupling agents.

Considering the mentioned parameters is significantly essential, since they could cause unexpected
effects in the results. Many studies have reported adverse effects of hybridization due to the
inappropriate selection of materials, processing techniques, a sequence of layers in a hybrid structure,
and the loading arrangement. For instance, Sreekala et al. [32] reported a negative effect of oil palm
empty fruit bunch (OPEFB) fiber hybridization on the tensile strength and tensile modulus at very
low and high fiber volume fractions. Zweben [33] predicted that high elongation fibers might behave
like crack arrestors on a micromechanical level when introduced in low elongation fiber composites.
This behavior increases the strain level needed for fiber break propagation. Hariharan and Abdul
Khalil [34], who hybridized oil palm fibers with glass fibers, also stated an undesired hybrid effect on
the strength properties. Marom et al. [35] investigated positive or negative hybrid effects in hybrid
composites as a positive or negative deviation of a specific mechanical property according to the
rule-of-mixtures behavior. It is based on the weighted average of the characteristic properties of
the distinct composites [36]. Based on biocomposites classification (Figure 2) and the concept of
hybridization, different configurations of hybrid fiber-reinforced biocomposites could be manufactured
as some of them are depicted in Figure 3.
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Figure 3. Some configurations of hybrid biocomposites (NA: natural, Syn: synthetic): (a) hybridization
of natural and synthetic fibers with biopolymer matrix; (b) hybridization of two or more natural
fibers with synthetic matrix; (c) hybridization of two or more natural fibers with biopolymer matrix;
(d) hybridization of two or more biopolymer matrices with synthetic fiber; (e) hybridization of natural
and synthetic fibers with fillers with biopolymer matrix (f) hybridization of biopolymer and synthetic
matrices with natural fiber. [©MB, JA, MAM_UC3M2020].

3. Materials Selection

3.1. Fiber Selection

Fibers’ function as a discontinuous reinforcement phase in fiber-reinforced composites is modifying
properties to obtain desired enhancement in the composite structure’s strength or/and stiffness. They can
be subdivided into synthetic or natural fibers according to their origin, as illustrated in Figure 4 [37,38].
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3.1.1. Natural Fibers

Natural fibers can be extracted from different renewable resources of animals, vegetable plants,
and minerals. The major constituents of natural fibers are cellulose, hemicellulose, lignin, and pectin,
and their general chemical structures are illustrated in Figure 5 [39].
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Cellulose, which is the most abundant organic polymer on earth, includes plenty of β-D-glucose
(C6H11O5) units linked by glycoside linkages at the C1 and C4 carbon positions (Figure 5a) [40,41].
Cellulose, which is strong and durable, exists in both microcrystalline and amorphous structures with
regions of a high order and low order, respectively [1]. It is resistant to strong alkali and oxidizing
agents. Still, it is susceptible to hydrolysis with acid to water-soluble sugars and also is degradable
when exposed to chemical and solution treatments [13].

Hemicellulose is the second-largest biomolecules, which includes polysaccharide units comprised
of a highly branched polymer of carbon ring sugars (Figure 5b). It has a lower degree of polymerization
and much shorter chains in comparison to cellulose. Moreover, it is hydrophilic and soluble in alkali
solutions [26,42]. It can bond to the cellulose and lignin components in the cell wall to increase fibers’
rigidity and flexibility [43].

Lignin is a complex nanocrystalline molecule with hydroxyl, methoxyl, and carbonyl functional
groups; however, lignin’s exact chemical nature remains unknown (Figure 5c). Lignin is formed
within a plant cell wall composed of aromatic units and is amorphous and insoluble in most solvents.
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This biochemical polymer is a high molecular-weight phenolic compound, generally resistant to
microbial degradation, and cannot be broken down to a monomeric unit [1,2,44,45]. When the
hydrophobic lignin acts as a compatibilizer between hydrophilic cellulose and hemicellulose, it can
improve the plant’s stiffness [46,47].

Pectin includes a complex group of heteropolysaccharides called galacturonoglycans with different
methyl ester content. The simplest pectin, as presented in Figure 5d, is homogalacturonan (HG) and an
unbranched polymer of α-(1–4) linked D-galacturonic acid [48]. Pectin indicates the luster and touch
of fibers and acts as a binder of fibers into the bundles [45].

Wax makes mainly the outer part of the natural fibers and consists of different types of alcohol,
which are soluble in water and acids. Wax provides a soft touch, low friction that results in fibers
moving [45,49]. This constitution also affects the wettability and adhesion between fiber and matrix [50].

Natural fibers’ chemical composition, which depends on plant species, age, climate, and soil
conditions, is crucial in their performance and application. Each constitution can induce different types
of susceptibility to the natural fibers, i.e., biological, chemical, mechanical, thermal, photochemical,
and aqueous. For example, cellulose is a governing constitute to improve the strength and modulus of
fibers. Hemicellulose is in charge of biological and thermal degradation besides high water absorption
(2.6 times higher than lignin); however, lignin mainly controls UV and fire degradation [43,51–53].
Another critical parameter of natural fibers that highly affect their mechanical properties is microfibrils’
orientation to the cell axis, determining the fibers’ stiffness [54]. Table 1 shows the chemical composition
and structural parameters of common natural fibers.

Table 1. Chemical composition of various natural fibers.

Fiber Cellulose Hemicellulose Lignin Pectin Wax Microfibrillar
Angle Ref.

(%) (%) (%) (%) (%) (◦)

Bast/Stem
fiber

Flax 64–81 14–20.6 2–5 0.9–2.3 1.7 5–10 [53,55–59]
Hemp 57–92 14–22.4 3.7–13 0.9 0.8 2–6.2 [53–55,58–61]

Jute 45–84 12–21 5–13 0.2 0.5 8 [57–60]
Kenaf 44–72 21–24 8–21 2–5 - 2–6.2 [38,53,55,61]
Ramie 68.6–76.2 5–16.7 0.6–1 1.9–2 0.3 7.5 [53,56–60]
Banana 60–65 6–19 5–10 3–5 - 11 [53,58,62]
Nettle 86 10 5.4 0.6 3.1–4 - [38,60,61,63]

Leaf fiber

Sisal 43–78 10–24 4–13 0.8–2 2 10–22 [53,55,57,58,60,
62,64]

Curaua 70.7–73.6 4–9.9 7.5–13.1 - - - [38,56,60,61]
Pineapple 80–83 15–20 4.6–12 2–4 4–7 8–15 [38,58,63,65]

Abaca 56–64 21–25 7–13 0.8–1 3 - [56,58,60,62]
Henequen 60–77.6 4–8 8–13.1 - 0.5 - [38,57,59,60]

Fruit/Seed
fiber

Cotton 82–96 2–6 0.5–1.6 0–7 0.6 20–30 [38,55,58,60]
Coir 36–46 0.15–0.3 41–45 3–4 - 30–49 [53,55,56,58,66]

Oil palm 65 0–29 19 - 4 46 [38,56,60,62]

Wood

Hardwood 43–47 25–35 16–24 - - - [38]
Softwood 40–44 25–29 25–31 - - - [38,53]

Grass fiber

Bagasse 32–55.2 16.8–21 19.9–25.3 10 - - [56,60,63]
Bamboo 26–43 15–30 21–31 - - - [53,56,58,60]

Rice 28–57 33 8–19 8–38 - - [56]
Wheat 29–45 15–31 13–20 - - - [53,56,60]
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The relatively good specific mechanical and physical properties of natural fibers are due to their
low density and particular microstructure. Table 2 compares the physical and mechanical properties of
some natural and synthetic fibers. Furthermore, the natural fibers’ pros and cons with respect to the
synthetic fibers are listed in Table 3. Since the pros and cons depending on the application of fibers,
it is worth mentioning that Table 3 was written to utilize fibers in biocomposite with environmental,
economic, recycling, and eco-efficiency concerns. In this regard, for example, breaking down the fibers
with micro-organisms to CO2, methane, and biomass (biodegradability) would be an advantage for
environmental concerns.

Table 2. Mechanical properties of some natural and synthetic fibers.

Fiber Density
(g/cm3)

Tensile Strength
(MPa)

E-Modulus
(GPa)

Elongation at
Break (%) Ref.

Bast fiber

Flax 1.5 345–1100 27.6 0.2–3.2 [50,56,57,60]
Hemp 1.48 690 30–70 1.6–4 [54,56,57,60]

Jute 1.3–1.45 393–773 10.0–30.0 1.2–1.8 [50,56,57,60]
Kenaf - 930 22.0–60.0 1.6 [50,56,60]
Ramie 1.5 400–938 44–128.0 1.2–3.8 [50,57,59,61]

Leaf fiber

Sisal 1.5 468–640 9.4–22.0 3.0–7.0 [56,57,59,67]
Curaua 1.4 500–1150 9–11.8 3.7–7.5 [50,56,60]

Pineapple 1.5 413–1627 34.5–82.5 0.8–1.6 [38,50,62,63]
Abaca 1.5 400 12.0 3.0–10.0 [50,56,60,61]

Fruit/Seed fiber

Cotton 1.5–1.6 287–800 5.5–12.6 7.0–8.0 [50,59,60]
Coir 1.2 131–175 4.0–6.0 15.0–40 [50,56,59,60]

Oil palm 0.7–1.55 248 3.2 25.0 [50,56,60,61]

Grass fiber

Bagasse 1.25 290 11–17 - [50,56,60,62]
Bamboo 0.6–1.1 140–441 11–17 - [50,55,56,60]

Synthetic fiber

Aramid 1.4 3000–3150 63.0–67.0 3.3–3.7 [50,57,59]
Carbon 1.7 4000 230–240 1.4–1.8 [50,57,59]
E-glass 2.5 2000–3500 70.0 2.5 [55,57,59,62]
S-glass 2.5 4570 86.0 2.8 [50,57,59,62]

Table 3. Natural fibers’ advantages and disadvantages. Adapted from [68–70].

Advantages Disadvantages

Biodegradability High water absorption
Renewability Limited processing temperature
Low density Dimensional instability

High filling levels and non-abrasive to the molding
machinery Poor fire resistance

Easily colored Lower strength and lower thermal resistance
Non-abrasive to processing equipment Anisotropic behavior

Good thermal and acoustic insulating properties Sensitive to UV, microbial and fungus attach
Friendly processing atmosphere, non-harmful gases

generation, reduced thermal and respiratory
irritations

The volatility of properties and price based on the
location

Zero fingerprint CO2 Incompatibility with most hydrophobic polymers
Low production energy Poor fiber/matrix adhesion

Non-brittle fracture on impact Lower strength, especially impact strength
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3.1.2. Engineered Fibers

Engineered or synthetic fibers can be either organic or inorganic. The organic fibers are commonly
divided into modified natural and synthetic polymers (Figure 4). The inorganic fibers are mostly
derived from petroleum-based by-products and a combination of different chemicals. Glass, carbon,
and aramid fibers are the most frequently used synthetic fibers in composites in varied areas of aerospace,
defense, construction, sports, naval, etc. One of these fibers’ benefits over natural ones is that they are
independent of growing conditions and can be manufactured with distinct functionalities needed for
the proposed application [29,71]. Synthetic fibers are well known for their superior mechanical and
thermal properties as compared to natural fibers. For example, carbon fibers with a wide range of aspect
ratio, low thermal expansion, high stiffness, tensile strength, chemical resistance, and temperature
tolerance are utilized as multifunctional fillers to improve polymers properties [72]. Glass fibers
with low cost, high tensile strength, high chemical resistance, and excellent insulating properties
are employed to manufacture the largest group of composite materials that is glass fiber-reinforced
polymer (GFRP) composites. Glass fibers with varied forms such as long longitudinal, woven mat,
chopped strand fiber, and chopped strand mat are incorporated into matrix to enhance mechanical
and tribological properties of polymer composites [73]. Aramid fibers are mainly employed in high
temperatures and high resistance applications such as manufacturing body parts in the aerospace
and automobile industry, ballistic accessories in the military, boat hulls, heat-resistant helmets, etc.
Their specific properties include high abrasive resistance, good fabric integrity at elevated temperatures,
no melting point, high degradation temperature (starting from 500 ◦C), and low flammability [29,73].

3.2. Matrix Selection

A matrix in the composites provides the overall durability, including surface appearance, shape,
and environmental tolerance. Another function of the matrix is to efficiently bind the fibers to transfer
load between them [74]. These matrices depending on the processing technique and type of bonding
present in them can be classified into thermoplastic and thermosets. Major polymers used as a matrix
for composites are presented in Table 4.

Table 4. Major polymers used as a matrix for composites.

Polymers
Thermoplastics Thermosets

Polylactic acid (PLA) Epoxy
Poly butylene succinate (PBS) Phenolic
Polyhydroxyalkanoate (PHA) Polyester

Polyamide (PA) Polyurethane (PU)
Polyethylene (PE) Vinyl ester

Polycarbonate (PC) Silicone
Polyvinyl chloride (PVC) Melamine

Polystyrene (PS) -
Polypropylene (PP) -
Polyurethane (PU) -

Both thermoplastics and thermosets polymers have certain advantages and disadvantages as
matrix materials in polymer matrix composites (PMC). The primary difference between thermoset
and thermoplastic polymers is their behavior in exposure to heat. Thermoplastics can be reheated,
remolded, and reprocessed into a new shape without any chemical changes, while thermosets that
strengthen after heating cannot be remolded or dissolved in a solvent [74,75]. This behavior is attributed
to the polymer chains’ interaction with each other. This interaction in thermosets is strong covalent
bonds and chains have a highly cross-linked structure [76]. Therefore, thermoset resins such as epoxy,
polyester, and polyamide have excellent dimensional stability and resistance against high temperatures
without losing their structural integrity. Moreover, they have limited water absorption, high modulus,
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high strength, and good chemical resistance. The major drawback of thermosets is that recycling and
reprocessing are virtually impossible after the initial forming [77,78]. On the other hand, thermoplastics
that also have non-covalent bonds (i.e., relatively weak Van der Waals forces between long-chain
molecules) are often chosen over thermosets due to their reversible changes, recyclability, moldability
into various shapes, relatively low processing costs, and easy manufacturing with high volume and
precision [79].

Resins or matrices in the concept of biopolymer can be defined by two criteria (Figure 6): (1)
biodegradability of the polymer, (2) source of raw materials [80]. The first group (A) of resins are
biodegradable biopolymers made from renewable raw materials (bio-based). The second group (B) of
resins are non-biodegradable biopolymers made from renewable raw materials (bio-based). The last
group (C) of resins are biodegradable biopolymers made from fossil fuels. The biodegradable bio-based
resins (type A) are divided into three groups: (1) synthetic polymers from renewable resources, e.g.,
PLA; (2) biopolymers generated by micro-organisms, e.g., PHA; (3) natural occurring biopolymers, e.g.,
starch or proteins. The non-biodegradable bio-based resins (type B) that can be produced from biomass
or renewable resources are divided into two groups: (1) synthetic polymers from renewable resources
such as specific PAs from castor oil (PA 11); (2) natural occurring biopolymers, e.g., natural rubber or
amber. The biodegradable resins of type C, such as polybutylene succinate (PBS) and polycaprolactone
(PCL), are produced from fossil fuel such as synthetic aliphatic polyesters made from crude oil or
natural gas [59,80,81]. Accordingly, not all the bio-based polymers are biodegradable, and not all the
biodegradable polymers are bio-based, while some belong to both, such as PHA. Based on the above
categories, the biopolyethylene derived from sugarcane, namely “green polyethylene,” developed
recently, is classified in type B of novel biopolymers [82].
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3.2.1. Bio-Based Thermoplastics

The bio-based thermoplastics with renewable resources have attracted significant attention as
an alternative to oil-based thermoplastics in recent years. In this section, some of the most critical
bio-based thermoplastics are explained.

• Polylactic acid

Polylactic acid (PLA) is the most extensively explored and utilized biodegradable thermoplastic
material produced from plant-derived carbohydrates such as glucose and starch, which are achieved
from corn, potatoes, beets and cane, and so forth [83,84]. PLA with backbone formula (C3H4O2)n
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(Figure 7a) is a hydrophobic polyester with a basic monomer of lactic acid. This monomer
can be polymerized to PLA by direct polycondensation, ring-opening polymerization, solid-state
polymerization, and azeotropic condensation polymerization [85,86]. PLA polymer can be amorphous,
semi-crystalline, and highly crystalline polymer depending on the stereoisomer composition. PLA’s
mechanical properties depend on various parameters, e.g., component isomers, processing temperature,
annealing time, and molecular weight (Mw). Generally, it has high strength and moderate barrier
properties. Simultaneously, it is relatively less thermally stable, decomposing below 230 ◦C and has
a poor toughness with a low deformation at the break. For example, semicrystalline PLA, which is
preferred over the amorphous PLA from the mechanical properties point of view, has an approximate
tensile modulus of 3 GPa, a tensile strength of 50–70 MPa, and an elongation at break of about
4% [86–88].

• Polyhydroxyalkanoates

Polyhydroxyalkanoate (PHA) is a family of water-insoluble, biodegradable, and biocompatible
natural polyesters that are biosynthesized from micro-organisms, modified plants, or through chemical
reactions [89,90]. This thermoplastic polymer covers a broad range of mechanical properties, from hard
and brittle poly(3-hydroxybutyrate) (PHB) to soft and elastomeric poly(3-hydroxyoctanoate) (PHO) [91].
PHB homopolymer (Figure 7b) is the main variant of the PHA family that is highly crystalline (50–70%),
relatively hydrophobic, and an excellent gas barrier. Moreover, it has an elasticity modulus of 3 GPa,
a tensile strength at break of 25 MPa, and has similar physical properties to conventional plastics such
as polypropylene [92–94]. Due to the high melting temperature of PHB (about 173–180 ◦C), which is
very close to its thermal decomposition temperature, it is hard to process it. Another drawback of PHB
is an extreme brittleness due to the large spherulite formation and secondary crystallization [95]. The
first attempt to overcome the mentioned disadvantages was the copolymerization of 3-hydroxybutyrate
with other monomers to reduce the melting point and confer less stiffness [96]. Thus, various
copolymers have been biosynthesized, such as poly(hydroxybutyrate-co hydroxyvalerate) (PHBV),
poly(hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx), poly(hydroxybutyrate-co-hydroxyoctanoate)
(PHBO), and poly(hydroxybutyrate cohydroxyoctadecanoate) (PHBOd) [95,97]. Furthermore,
the reinforcing of PHAs with natural fibers could be another solution for brittleness and low-impact
resistance [45].

• Polybutylene succinate

Polybutylene succinate (PBS) is one of the most favorable biodegradable polyesters, which is
chemically synthesized through polycondensation of 1,4-butanediol and succinic acid or its anhydride
in the presence of a catalyst [98,99]. This thermoplastic is a promising biopolymer owing to its
mechanical properties and other beneficial properties, such as biodegradability, high crystallinity,
melt processability, and thermal and chemical resistance. PBS consists of polymerized butylene units
succinate with backbone formula (C8H12O4)n (Figure 7c). It is fully decomposed into biomass, CO2,
and H2O like PLA [100,101]. Although PBS has many exciting properties, its softness, high electrical
resistivity, and low gas barrier limit this polymer’s practical applications. A diverse array of matrix
polymers has been used to modify the PBS properties, such as PLA, poly(ε-caprolactone) and
poly(hydroxybutyrate). Furthermore, adding reinforced fillers such as carbon nano tube (CNT), carbon
black, layered silicate, and organoclay would be another method to improve PBS properties [102–105].

• Polyamide

Polyamide (PA) is a significant thermoplastic consisting of amide linkage (–NH–C=O) (Figure 7d).
Polyamides that are crystalline polymers and commonly known as nylon can be classified into many
categories depending on monomers’ arrangement and chemical nature. Aromatic, cycloaliphatic,
and aliphatic polyamides are the most important ones [106,107]. Biopolyamides include both bio-based
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and biodegradable fossil fuel-based polyamides [80]. One of the most imperative bio-based polyamides
is PA11, which is produced from 11-aminodecanoic acid derived from castor oil [108]. PA11 is
a commercial aliphatic polyamide used in various fields, including automotive, food packaging,
and offshore applications, thanks to its relatively good oil and saltwater resistance, biocompatibility,
and lower hydrophilicity than PA 6 and 66 [109,110]. PA11 is a semi-crystalline polymer that is rigid
at room temperature with a glass transition temperature (Tg) of 43 ◦C [111]. Various efforts have
been reported to improve the properties of PA11 that most of them have focused on the blending
of PA11 with other polymers, especially bio-based ones like PLA [109,112,113], PHA [114,115] and
PBS [108,116] and also the incorporation of PA11 with inorganic fillers [117–119].
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3.2.2. Bio-Based Thermosets

The raw material for bio-based thermosets can be in the form of oil or other liquids extracted
from diverse plants and animals. For example, verity thermoset resins are oil derived from fish, corn,
soybean, cashew nutshell, linseed, etc. [124]. Thermosetting bioresins can be divided into epoxy,
phenolic, polyurethane, polyester, and other resins. Table 5 presents a few thermoset bioresins available
commercially on a large scale for industrial applications, and the bio-based content can be varied from
18% to 50–90% in them.

Table 5. Examples of few commercially available bio-based thermosets.

Resin Type Resin Base Trade Name Ref.

Unsaturated polyester Soybean oil Ashland’s Envirez [124]
Acrylated epoxidized
soybean oil (AESO) Soybean oil Ebecryl 860 [125]

Epoxidized soybean oil Soybean oil Vikoflex 7170 [126]
Epoxidized pine and

vegetable oils Pine and vegetable oils Super Sap 100 Epoxy [126]

Epoxidized linseed oil Linseed oil Vikoflex 7190 [126]
Acrylate functional resin Soya oil Cognis Tribest [125]

Natural phenols Distilled from forest
industry waste stream Amroy Europe Oy EpoBioXTM [124]

Furfuryl alcohol-based resins Biomass TransFurans Chemicals bvba
BioRez™ furfuryl resin [124]

Alkyl phenolic oil Cashew nut CNSL [126]

• Epoxy resins
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Epoxy resins are one of the most functional thermosetting polymers often synthesized by the
reaction of polyols, polyphenols, or other active hydrogen compounds with epichlorohydrin [127].
Thermosetting epoxy resins can provide various properties depending on the curing agents and
proportions, curing cycles, and additives added during their production [128]. Tensile strength for
epoxies is in the range of 90–120 MPa, and the tensile modulus ranging from 3100 to 3800 MPa [129].
According to their Tg, which varies from 150 to 220 ◦C (for uncured epoxies), they are the first or
second common resin systems in aerospace. Apart from the properties mentioned above, epoxy resins’
main drawbacks are their brittleness, moisture sensitivity, and recycling difficulty [129,130]. Since most
of the conventional epoxy resins are strongly dependent on fossil sources and also their raw materials
are hazardous for human health and the environment (such as diglycidyl ether bisphenol A (DGEBA)),
a significant amount of research is dedicated to finding more environmentally friendly epoxies [131,132].
In this regard, after high demand for green industries, thermosetting bio-based epoxies such as natural
oil-based epoxies, isosorbide-based epoxies, furan-based epoxy systems, phenolic and polyphenolic
epoxies, as well as epoxy lignin derivatives, have been introduced in recent years [133].

• Phenolic resins

Phenolic resins are one of the favorable thermoset polymers that retain their industrial and
commercial interest a century after their introduction due to their appropriate characteristics, such as
superior mechanical strength, heat resistance, infusibility, flame retardancy, dimensional stability,
as well as high resistance against numerous solvents, acids, and water [134]. They have been widely
utilized in the manufacture of wood products, molded plastics, and aerospace components. Phenolic
resins are prepared by the reaction of formaldehyde (F) with phenol (P). They can be synthesized in both
acidic and alkaline environments depending on the F:P molar ratio, either acid-catalyzed resins (called
Novolacs) (0.75 < F:P ratio < 0.85) or alkaline-catalyzed resins (called Resoles) (F:P ratio > 1.0) [135].
Recently, many attempts have been made to replace petroleum-based phenolic resins with bio-based
phenolic products from biomass feedstock by liquefaction and pyrolysis process [136,137]. The U.S.
National Renewable Energy Laboratory (NREL) has reported that it is possible to produce phenolic
resins from wood rather than fossil fuels with about half the cost [138]. The principal chemical
compounds of biomass are cellulose, hemicellulose, and lignin. Forestry residues/wastes that contain
40–45% cellulose, 15–35% hemicellulose, and 20–35% lignin would be valuable resources for bio-based
phenolic resins [139,140].

• Polyester resins

Polyester resins are the most economical resin systems utilized in engineering applications,
particularly in the maritime and automotive industries [141,142]. Polyester is a viscous liquid resin
produced by a condensation reaction between a glycol and an unsaturated dibasic acid. It is consists
of a double bond between its carbon atoms (C=C) and is recognized by clear pale yellow color [143].
Unsaturated polyester resins (UPRs), which are vital cross-linkable polymeric materials, are extensively
used as a matrix for fiber-reinforced composites in a broad range of engineering applications such as
construction, automotive, marine, electrical, decorative, and aerospace industry [144,145]. They have
the right balance of mechanical, thermal, electrical, and chemical resistant properties, easy processability,
low density, and low cost [146,147]. Plant oils are the primary choice between all biomass-derived
feedstocks to prepare UPRs with renewable resources, owing to their abundance, low toxicity,
biodegradability, and triglyceride structures appropriate for further chemical modification [148,149].
There is a growing interest in incorporating natural oils or their derivatives into UPR, aiming to
fabricate novel structural bioplastics. For example, Mehta et al. [150] used methyl ester of soybean
oil and epoxidized methyl linseedate (EML) to produce biocomposites containing the modified UPR.
Das et al. [151] developed novel biomaterials through blending UPR with tung oil with improved
impact strength.
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4. Mechanical Properties of Hybrid Biocomposites

Mechanical properties of hybrid biocomposites may depend on various features such as
reinforcements and matrix mechanical properties, reinforcements dispersion and distribution,
reinforcements volume fractions and aspect ratio, interfacial adhesion between polymer and
reinforcements, loading and test conditions, fibers dimension and orientation, as well as surface
modification [16,152–156]. In the following sections, some of the mechanical properties of recently
developed hybrid biocomposites are reviewed.

4.1. Strength (Tensile, Flexural, Impact)

Mechanical testing, such as tensile, flexural, and impact tests, is the most common investigated
hybrid biocomposites feature. The tensile strength of fiber-reinforced biocomposites generally increases
with fiber content, up to optimum value, then will drop. This is due to the much higher strength and
stiffness values of fibers than polymeric matrices [157–159]. When the natural fibers are introduced to the
hydrophobic polymer matrices, their hydrophilic nature contrasts with matrices that induce high water
absorption and subsequently result in low tensile strength of biocomposites. The surface treatment is a
crucial solution to modify the fiber hydrophobicity and interfacial interaction of fiber/matrix, leading
to improved tensile properties [160–162]. The longitudinal tensile modulus follows the linear rule of
mixtures in the hybrid biocomposites, as many researchers have reported [35,75,163–165].

Impact resistance is another vital property of hybrid biocomposites, which is strongly related
to toughness. It can be identified by energy absorption during a penetration impact, residual
properties after impact, and damaged area after a nonpenetration impact. Moreover, dispersion
and positioning of layers in hybrid biocomposites layup are known to be essential parameters for
impact [166]. Laminated composites are the most common manufactured configuration among the
various composites’ structures. Figure 8 presented a few samples of the recent hybrid biocomposites
with laminated design and different stacking sequences of layers. According to these configurations
and other reported results [167–172], positioning of fibers with the highest energy-absorption on the
outside layer rather than inside allows the hybrid composite to absorb more energy and achieve higher
penetration impact resistance consequently. Furthermore, a higher degree of dispersion demonstrated
better penetration impact resistance due to the smaller delaminated area and higher interfaces between
distinct layers that absorb more energy [173–175]. Impact performance is also sensitive to interfacial
adhesion between fiber and matrix [53]. The low adhesion in natural fiber-reinforced composites
(NFRCs) and the load transfer between fiber and matrix would be improved by hybridization with
synthetic fibers. In contrast, even synthetic reinforcements such as carbon fibers need to increase their
surface energy by surface modifications to ensure the proper adhesion with matrices [176].
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(a) Hemp/sisal/epoxy. Adapted from [177], (b) Kenaf/kevlar/epoxy. Adapted from [178], (c) Jute/flax/

Polypropylene (PP). Adapted from [179], (d) Glass/flax/epoxy. Adapted from [180], (e) Coir/kenaf/epoxy,
bamboo/coir/epoxy and kenaf/bamboo/coir/epoxy. Adapted from [181].

The flexural properties of hybrid composites, which reflect the laminate stiffness and dimensional
constancy, are more difficult to understand than tensile properties [81]. The flexural strength and
modulus are strongly dependent on the layup, as the longitudinal stress increases by moving away
from the neutral line. Besides, changing the ply angles, material type, and stacking sequences of fibers
can alter the flexural properties [166,182].
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As mentioned earlier, the impact properties of polymeric materials depend essentially on the
toughness of them. The material’s toughness can be referred to as the material’s capability to absorb the
dynamic impact energy [183]. Natural fiber-based composites have desired interfacial properties and
can dissipate a large amount of dynamic impact energy through the breakage and pull out the fibers.
Moreover, hybridization of natural fiber composites with synthetic fibers is an effective technique
to improve mechanical properties, especially the toughness [184]. Glass fibers—the most common
synthetic fibers for hybridization of natural fibers—have high mechanical strength and good mechanical
interlocking with hydrophobic matrices [185]. The most effective routes for hybridization of glass
and natural fibers are (i) effective dispersion of short glass fibers with small loading into the bulk of
short natural fibers, and (ii) laminated hybrid composite with glass fibers plies as an external skin and
natural fibers as core laminates [186]. For example, in the glass/hemp hybrid composite, higher impact
damage tolerance and toughness can be obtained using 11 vol % of glass fibers to reinforce the skin of
hemp fibers composites due to superior stiffness and bending strength of glass fibers [187]. Another
example is employing the small loading of glass fibers (up to 8.6 wt %) in alkali-treated sisal fibers
and pineapple leaf fibers (PALF) to improve the toughness and impact strength (up to 87%) of hybrid
composites [188]. Furthermore, it has been reported that the delamination fracture toughness of the
glass/silk hybrid composite can be enhanced by placing the silk fabrics in the middle of the laminate
composite to hinder the propagation of crack and control the crack delamination through the bending
process [189]. The toughness of composites also depends on the fabrication method. Among the
various techniques to improve interlaminar fracture toughness, through-the-thickness stitching is a
promising technique using reinforcements at out of plane directions. In this technique, the composite
can be fabricated by (i) reinforcement of un-cured pre-preg (pre-impregnated) laminates in the direction
of a thickness (Z-pinning technique) (Figure 9a), and (ii) employment of dry fabric preforms that
already includes the through-thickness reinforcement before the resin infusion (stitching). Modified
lockstitch, lockstitch, and chain stitch are commonly used stitching techniques (Figure 9b–d) [190–193].
As for the weave preform, the best structural arrangement is the twill weave fabric due to its having
the highest impact strength, which results in higher required force to pull out or break the fibers [194].
Moreover, incorporating nano and micro fillers has significant effects on the fracture properties of
multi-scale composites. Nano and micro fillers contribute to toughening mechanisms by bridging
micro-cracks and slowing down the crack initiation and crack growth. The average weight fraction
required to enhance the composites’ toughness and mechanical properties is in the range of 0.1–10 wt
% and 10–50 wt % for the nano and micro-fillers, respectively [195–198]. Recently, Zhang et al. [199]
reported robust laminated biocomposites with improved mechanical strength and toughness. Figure 10
shows how a bridging structure is formed between alternating layers of chiral nematic cellulose
nanocrystal (CNC) and random cellulose nanofiber (CNF) phase. This configuration would be useful
when there are ductile and brittle phases in the composite. The more ductile material (CNF) has a
mechanical buffering performance with the alternating sequence of layers. It prevents the initiation
and propagation of cracks within the brittle material (CNC). Moreover, the ductile CNF layers provide
strong hydrogen bonding networks with brittle CNC layers that optimize load transferring between
brittle and ductile layers and improve strength and toughness. This manufactured biocomposite
increases damage-tolerant property for soft-robotics and colorimetric sensors. Table 6 summarized the
recent signs of progress on the mechanical properties of hybrid biocomposites.
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biocomposite with an alternating sequence of layers and corresponding SEM image of layers. Adapted
from [199].
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Table 6. Mechanical properties of recently developed hybrid biocomposites.

Matrix Fibers Manufacturing Process and Conditions Mechanical Properties Ref.

Vinyl ester/unsaturated
polyester Bagasse/henequen

Hand lay-up
Alkali treatment (5% NaOH)

Fiber length = 2 cm

TS 1 = 150 MPa
FS 2 = 159 MPa
IS 3 = 335 J/m

[201]

Epoxy resin (EpoxAmite 100)
modified with multi-walled
carbon nanotube (MWCNTs)

Flax/carbon (FLXC)
Flax/glass (FLXG)

Flax/Kevlar (FLXK)

Mechanical stirring and hand lay-up
Dispersing agent: dimethyl ketone (2

propanone) with 1wt % CNT

Improvement of tensile properties with 1 wt % CNT
TS FLXC = 340.13 MPa
TS FLXK = 216.23 MPa
TS FLXG = 114.82 MPa

[154]

PLA PALF/coir fiber (CF)
Hot press

Fiber loading: 30 wt %
CF:PALF = 1:1

Hybrid composite of C1P1 (15% CF 1 15% PALF)
showed better mechanical properties respect to

single fiber composites
TM 4 = 4.75 GPa
TS = 19.15 MPa
FM 5 = 4.86 GPa
FS = 33.04 MPa
IS = 4.24 kJ/m2

[202]

Epoxy resin Napier/carbon
Napier/glass

Vacuum infusion
Napier:carbon and Napier:glass = 30:0, 24:6,

18:12, 12:18, 6:24

Increase of carbon and glass vol fraction increased
the flexural properties (max at 6:24% vol)

FS:
Napier/carbon biocomposites = 456.31 MPa
Napier/glass biocomposites = 124.94 MPa

FM:
Napier/carbon biocomposites = 25.76 GPa
Napier/glass biocomposites = 13.15 GPa

[203]

PLA
Kenaf/coir (KCCK) Bamboo/coir

(BCCB)
Kenaf/bamboo/coir (KBCCBK)

Hot press

TS of KBCCBK = 187 MPa (20 and 78% higher than
BCCB and KCCK)

FS of KBCCBK and BCCB = 199 MPa, 206 MPa (16%
and 20% higher than KCCK)

FM of KCCK = 15 GPa (70% higher than others)

[181]

EpoxAmite 100 with MWCNTs
as a nanofiller

FLXC
FLXG

Wet lay-up
1 wt % concentration of MWCNT

Better impact properties and higher compressive
strength of FLXG compared to FLXC [204]

Vinyl ester (VE) PALF/glass Automated spray up
Vol. ratio of fibers = 50/50

TS (71.86 MPA) increased by 171% compared to
PALF-VE composite

FS (146.60 MPA) increased by 164.66% compared to
PALF-VE composite

[205]
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Table 6. Cont.

Matrix Fibers Manufacturing Process and Conditions Mechanical Properties Ref.

PLA-g-GMA Agave fibers/nanoclay particles
Extrusion

Compatibilizer: glycidyl methacrylate
(GMA)

Using GMA caused an increment in TS and FS
Nanoclay particles improved the tensile and flexural

properties of the biocomposite
[206]

PLA Alkali treated sisal and coir
fibers (ASF and ACF)

Compression molding
Sisal:coir ratio = 7:3

IS increased by 22.8% to PLA/ASF
FS improved (92.6 MPa)

Decline of TS
[207]

PLA
Treated Kenaf fiber

(TKF)/montmorillonite clay
(MMT)

Screw extruder and compression molding
Alkali treatment (6% NaOH) Composition:

30TKF-1MMT-69PLA

FS and TS are improved by 46.41% and 5.87% than
PLA/TKF [208]

Epoxy polymer (RenLam M- 1
and Hardener HY 951)

Sisal/glass/portland cement
particles

Hand lay-up
Fiber-matrix mass fraction: 30/70

Stacking sequence: five layers of sisal/glass
and glass/sisal

Increase of FS due to the cement microparticles and
appropriate stacking sequence [209]

PHB
Woven kenaf bast fiber

(KBFw)/oil palm empty fruit
bunches (EFB)

Lamination and compression molding
Plasticizer: triethyl citrate (TEC).

Arrangement: 11 layers (3KBF, 2EFB, 6PHB)

11-layer hybrid composite with improved
mechanical properties can be an alternative for some

woody products
TS = 53.3 MPa
TM = 5.4 GPa

FS = 77.90 MPa
FM = 7.3 GPa
IS = 40.6 J/m

[210]

Epoxy resin PALF/coir
Hand lay-up molding

Application environment: natural soil
Fiber/resin ratio = 40:60

Decrease of mechanical strength of hybrid
composites in burial condition compared to the pure

PALF-Epoxy composite
[211]

Polyester resin Bamboo/PLF/coir

Hand lay-up followed by hot compression
molding

Fibers loading: 45%, 30% and 15% vol
Bamboo:PLF:coir = 15:15:15, 10:10:10 and

5:5:5

Higher mechanical strength of hybrid composite
with 45% vol fibers loading compared to the single

fiber-reinforced composites
TS: 136 MPa

FS: 93 KN

[212]

Unsaturated polyester Sugar palm yarn/glass
Sheet molding process and hot press

Resin/fiber ratio = 70:40 wt %
Sugar palm yarn:glass ratio = 50:50 wt %

TS, TM, FS, FM, and IS of the hybrid composites
increased with increasing glass fiber loadings [213]

polypropylene PALF/banana

Compression molding
Chemically treatment with 5% NaOH

Fiber loading: 2, 5, 10 and 15 wt %
PALF/banana ratio = 3:1, 1:1 and 1:3

The hybrid biocomposite with 5 wt % fibers loading
and PALF/banana ratio of 3:1 exhibited the best set

of mechanical properties
[214]
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Table 6. Cont.

Matrix Fibers Manufacturing Process and Conditions Mechanical Properties Ref.

polyurethane Sugar Palm/glass

Melt compounding and hot pressing
molding process

Chemical treatment: 6 wt % alkaline + 2 wt %
silane solution

The TS, FS, and IS of a hybrid composite improved
by 16%, 39%, and 18%, respectively, after the

chemical treatment
[215]

Phenol formaldehyde Areca fine (AF)/calotropis
gigantea (CG) Hand lay-up

Composite with 17.5 wt % CG and 17.5 wt % AF
fiber had maximum tensile, flexural, and impact

properties
[216]

Linear low-density
polyethylene (LLDPE)

Sugarcane bagasse (SB)/eggshell
(Es)

Compression molding
Fibers treated with titanium (IV)

isopropoxide and silane coupling agent

TM and FM of the composites with treated fibers
were higher than untreated fibers

Improvement of TM and FM with increasing of filler
content up to 20/20 wt %

The TS, FS, and IS tended to decrease with
increasing SB/Es content

[217]

Phenol formaldehyde resin
Areca/sisal
Areca/glass

Areca/roselle

Hand lay-up
Divinylbenzene cross-linking agent

Areca/sisal hybrid biocomposites presented the
highest TS and TM than others

FS and FM increased by hybridization of sisal,
roselle, and glass fibers with areca

[218]

Thermoplastic SPS/agar (TPSA) Sugar palm starch (SPS) Hot press The TS and FS slightly improved, but the IS reduced [219]

Polyurethane foam
Roselle fiber (RF) with spherical
silica (silica-A) and amorphous

silica (silica-B)
Liquid molding

FM increased with increasing wt % of silica-A and
silica-B

TS increased with the increasing of silica-B and RF
Adding silica-A up to 0.75 wt % also increased TS

[220]

Epoxy
Glass/Flax/Basalt (GFB)
Flax/Hemp/Basalt (FHB)

Glass/Hemp/Basalt (GHB)

Vacuum infusion process
Stacking sequence:

GFB: GFBBFG
FHB: FHBBHF

GHB: GHBBHG

Reinforcement volume: 21–23%
Flexural performance: GFB > FHB > GHB [221]

Polypropylene Banana/Coir
Twin-screw extruder and injection moulding
Fiber loadings (CF/BF/PP): 15/5/80, 10/10/80,

and 5/15/80 wt %

Max strengths at Banana/Coir: 15/5 wt %
TS: 31.3316 MPa
TM: 760.29 MPa
FS: 31.336 MPa

FM: 762.326 MPa
IS: 51.6 J/m

[222]
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Table 6. Cont.

Matrix Fibers Manufacturing Process and Conditions Mechanical Properties Ref.

Epoxy Banana/Jute Hand lay-up
Banana/jute ratio = 7:3

Better mechanical properties of the hybrid
composite compared to mono composites

TS: 85.91 MPa
FS: 151.3 MPa
FM: 1.23 GPa
IS: 484.54 J/m

[223]

Epoxy Banana/Kenaf
Hand lay-up

Banana/kenaf ratio = 40:60, 45:55, 50:50,
55:45 and 60:40

Better mechanical properties with the highest kenaf
%:

TS: 58 MPa
TM: 0.28 GPa

FS: 24 MPa
IS: 15.81 J

[224]

Epoxy Sisal/Jute Hand lay-up
Jute/sisal ratio = 1:0, 1:3, 1:1 and 0:1

Fiber loading of 30 wt %
Better mechanical properties of 1:1 hybrid composite

TS: 102.08 MPa
TM: 2.03 GPa
FS: 361.9 MPa
FM: 17.5 GPa
IS: 30.1 KJ/m2

[225]

Polypropylene Sisal/Glass (SG)
Sisal/Carbon (SC)

Single extrusion machine and press
consolidation

SG and SC ratio = 25/75, 50/50, 75/25 wt %

Hybrid composite of 25/75 wt % for both SC and SG
showed better mechanical properties:

TS: 22.4 MPa
TM: 3.65 GPa
FS: 52.6 MPa
FM: 4.51 GPa

The addition of sisal fiber to pure carbon composite
decreases mechanical properties

[226]

Polypropylene Coir/Coconut shell Twin screw extruder and injection moulding
Fiber/filler ratio = 1:0, 3:1, 1:1, 1:3 and 0:1

Reinforcement loading: 20 wt %
With a hybrid ration of 1:1, TS and TM increased 8%

and 50% compared to the references, respectively
[227]

Epoxy Kenaf/Kevlar Hand lay-up
Three types of kenaf fiber: woven, UD, mat

Woven kenaf hybrid composite showed better
mechanical properties compared to UD 6 and mat

TS: 145 MPa
TM: 3.37 GPa
FS: 100.3 MPa
IS: 51.41 KJ/m2

[228]
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Table 6. Cont.

Matrix Fibers Manufacturing Process and Conditions Mechanical Properties Ref.

Epoxy Hemp/Sisal Hot press
Different layering sequence of fibers

The non-hybrid composites showed superior tensile
and flexural properties than the hybrid composite
due to the low compatibility of sisal/hemp fibers

[177]

Epoxy Kenaf/Kevlar

Hand lay-up followed by compression
Treated woven kenaf with NaOH

Layering sequence: 4-layer and 3-layer with
a different skin layer

Reinforcement loading: 30 wt %
Mechanical properties of hybrid composite with

4-layer improved:
TS: 64.7 MPa
TM: 5.29 GPa
FS: 51.28 MPa
FM: 2.74 GPa
IS: 50.1 KJ/m2

Kevlar as a skin layer improved tensile and flexural
properties, but kenaf as a skin improved IS

[178]

Epoxy modified with LENR 7 Kenaf/Glass Glass/kenaf ratio = 1:1
Treatment of kenaf with NaOH

Fiber treatment and adding of LENR to the matrix
improved the mechanical properties:

FS: 68.1 MPa
IS: 13.1 KJ/m2

[229]

Polyester Kenaf/Glass

Hand lay-up and hydraulic cold press
Kenaf/glass ratio = 3:7

Sandwich configuration with glass shell and
kenaf core

Three types of kenaf: non-woven random
mat, UD twisted yarn, plain-woven

Reinforcement loading: 35 wt %
UD and woven fibers had higher tensile and flexural

properties, respectively:
TS: 194.6 MPa
FM: 291.6 MPa

[230]

Epoxy Jute/Glass Epoxy/jute/glass weight ratio = 69/31/0,
68/25/7 and 64/18/19

The addition of glass and jute fibers with a ratio of
64/18/19 showed the highest mechanical properties:

TS: 56.68MPa
FS: 28.81 MPa
FM: 1.83 GPa

IS: 5.49 J

[231]

Polyethylene Oil palm fiber (OPF) and clay
particles

Extrusion and injection molding
Alkali treatment of OPF

Reinforcement loading: 25 wt %
The 12.5:12.5 hybrid composite showed 11% and

49% improvement of tensile strength and modulus,
respectively

[232]
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Table 6. Cont.

Matrix Fibers Manufacturing Process and Conditions Mechanical Properties Ref.

Epoxy Sugar palm fiber (SPF)/Glass
Hand lay-up

Benzoylation treatment on SPF
Glass fiber ratio: 30%, 50%, and 70wt %

Glass fiber ration of 70 wt % exhibited the best
tensile properties: 55.7% and 50.5% improvement of

TS and TM, respectively
Benzoylation treatment improved adhesion of

fibers/matrix

[233]

Polypropylene Sisal fiber (SiF)/Cellulose
nanocrystals (CNC)

Melt-blending followed by injection molding
SiF/CNC loading (29:1, 27:3, 25:5, and 23:7 wt

%)

Enhancement of matrix with MAPP 8 compatibilizer
Hybrid composite with SiF/CNC (27:3 wt %) showed

highest TS (47.02 MPa), TM (2.82 GPa) and IS
(38.62J/m) with 30.87% and 14.81% increment of FS

and FM respectively

[234]

Epoxy Hemp/polyethylene
terephthalate (PET) Vacuum-infusion

The TS and FS of interwoven hemp/PET hybrid
composites were 4% and 22% greater than woven

hemp composites
[235]

Epoxy Flax/Glass
Compression-molding machine

Sandwich structure: outer layers of
glass/epoxy and the core from Flax/Epoxy

UD hybrid composite [0G/0F] has a higher TS (408.25
MPa), TM (31.97 GPa), FS (591.25 MPa), and FM
(39.84 GPa) compared to angle ply [0G/ ± 45F]

hybrid composite and also flax/epoxy composite

[180]

Epoxy Arenga pinnata fiber
(APF)/polyester yarn (PET)

Lay-up
Mg(OH)2 as a flame retardant (5 wt %)

APF:PET ratio = 0:5, 20:5, 35:5 and 50:5 wt %

Mg(OH)2 as a flame retardant
Hybrid composite with 20 wt % and 35 wt % APF

had the highest TM (165.2 MPa) and TS (9.69
N/mm2), respectively

Increasing the fiber loading to the 50 wt % decreased
the tensile properties

[236]

Ethylene propylene diene
monomer (EPDM) rubber

Kevlar fiber (KF)/Nano-silica
(NS)

Roll milling followed by compression
molding

TS, elongation-at-break, and TM values of EPDM
significantly increased by hybridization with KF and

NS:
TS: 4.94 MPa

TM:51.09 MPa

[237]

PLA Coir fiber (CF)/PALF
With alkaline treatment

Internal mixer followed by compression
molding

CF:PALF ratios = 3:7, 1:1 and 7:3
Fibers loading: 30 wt %

Hybrid composite with higher PALF, C3P7 (CF:PALF
= 3:7) exhibited the highest tensile properties:

TS: 30.29 MPa
TM: 5.16 GPa

However, the C1P1 hybrid composite presented the
highest IS

[238]

1 Tensile strength; 2 Flexural strength; 3 Impact strength; 4 Tensile modulus; 5 Flexural modulus; 6 Unidirectional; 7 Liquid epoxidized natural rubber; 8 Maleic anhydride grafted PP.
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4.2. Water Absorption

All green composites may absorb water in a humid atmosphere or when immersed in water.
Natural fibers with a hydrophilic nature due to hydroxyl (–OH) and other polar groups in their different
constituents such as cellulose and hemicellulose are interested in absorbing water. This phenomenon
leads to swelling of the fiber, degradation of a fiber-matrix interface, plasticizing effect, expansion of
the gap between fiber bundles that reduces the load-transfer efficiency, and results in depletion of
biocomposite performance and reduction of mechanical properties [239–241]. Accordingly, an inevitable
step before using biocomposites in each application is analyzing the water absorption of the developed
biocomposite. Water absorption in composites can be affected by fiber volume fraction, a viscosity of
matrix, voids, humidity, and temperature [242]. Three various mechanisms govern water diffusion in
green composites. The first one is the diffusion of water molecules inside the micro gaps of polymer
chains. The next one is the capillary movement of water into the flaws and holes at the fiber-matrix
interfaces. The last one is the initiation of microcracks in the matrix resulting from swelling of fibers or
laminates [243–245]. Fibers’ surface treatments as a solution approach to reduce the water uptake have
attracted several researchers. Treatment techniques of reinforcement fibers can be generally classified
into chemical and physical methods. The fiber’s structural and surface properties are modified by
employing physical modification methods, resulting in changing the mechanical bonding between the
fiber matrix. Stretching, calendaring, and electric discharge with corona and cold plasma are some
examples of physical modification methods [246–251]. Thermal treatment is another physical approach
to modify water absorption property in biocomposites. It causes the fibers’ moisture loss, increasing
interfacial adhesion, and fiber stiffness due to the increased crystallinity [252,253]. It is noteworthy
that the increase of fiber-matrix adhesion is a prerequisite for high strength and leads to lower water
uptake [253]. Aging that is wet/dry cycling treatment and induces shrinkage and reduces the water
retention values is an effective thermal treatment in this matter [16,254]. On the other hand, chemical
modification techniques adjust the hydrophilic hydroxyl groups from the fiber surface based on reagent
functional groups, reacting with functional groups in the fibers, and altering their compositions [44].
Various chemical treatments such as alkali, benzoylation, mercerization, silane, acetylation, isocyanate,
acrylation, permanganate, peroxide treatment with multiple coupling agents, and bio-based coatings
have been applied on fiber-reinforced biocomposites to reduce water absorption, improve fiber-matrix
adhesion, and consequently enhance mechanical performance [57,241,253,255–259].

Another reported approach to increase the water-resistance of hybrid biocomposites is the
integration of nanofillers. Three types of nanofillers have been used in researches to enhance the
performance of composites (i) nanotubes, (ii) nanoparticles, and (iii) nanolayers. Nanofillers with a high
aspect ratio can be made of metals, metal oxides, polymers, and carbon [260]. Ramesh et al. [261,262]
worked on the hybridization of PLA/treated kenaf and PLA/treated aloevera biocomposite with
montmorillonite (MMT) nanoclay. In both cases, adding the MMT nanoclay successfully increased
the hybrid biocomposites performance, especially water resistance. This phenomenon is referred
to as the barrier function of nanoclays, limiting the flow of water into biocomposite and reducing
water absorption. Nanoclay particles, which are classified under silicate nanomaterials, are one of the
most commonly utilized nanofillers. They can be added in composites with various forms, such as
nanoclay platelets, calcinated nanoclay, and montmorillonite. Anbukarasi et al. [263] investigated
the effect of SiO2 nanospheres fillers on the water absorption behavior of luffa-coir/epoxy hybrid
composites. They concluded that the water absorption of the hybrid composite was significantly
reduced by adding SiO2 nanospheres. These nanospheres fillers compensate for the fibers’ hydrophilic
effect by reducing the number of free hydroxyl groups of luffa and coir fibers. SiO2 nanoparticles have
high strength and high specific surface area, which improves the mechanical properties of composites
and enhance the interfacial adhesion between fibers and matrix [264]. Hasan et al. [265] evaluated the
effects of halloysite nanotube (HNT) on epoxy/basalt hybrid biocomposites’ durability. They reported
adding two wt % HNTs provides better interfacial bonding between fibers/matrix and decreases water
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absorption. Better water resistance is mostly due to the 1D morphology of the HNTs and their high
aspect ratio, which restricts the diffusion of water molecules by means of a tortuous path.

Water adsorption would also be a desired property in applications in which high water
intake is more favorable than mechanical properties such as tissue engineering, biomedical,
and biotechnology. Superabsorbent polymer composites (SAPCs) or hydrogels are among the most
well-known materials that require high water absorption capacity more than their dry mass [266].
Many researchers have recently reported novel synthetized biobased SAPCs [267–271] and hybrid
hydrogel composites [267–270]. Only a few studies have been recently reported hybridization of
hydrogels with fibers [271–273], and Table 7 is excluded from them because adding fibers in those
cases is to modify other properties of hydrogel rather than water absorption. Table 7 lists the recent
findings on the water absorption behavior of hybrid biocomposites.
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Table 7. Water absorption behavior of recently developed hybrid biocomposites.

Matrix Fibers Manufacturing Process Treatment Water Absorption Ref.

PLA Kenaf fiber and MMT clay Extrude, roll mill compression
molding NaOH treatment Adding one wt %, MMT decreased WA 1 due to

the barrier effects
[261]

Green epoxy Sisal/hemp Hand lay-up and hot press - Higher WA of hybrid composite (12%) than the
pure or non-hybrid composites (7%) [177]

PLA Aloevera fiber and MMT clay filler
Twin-screw extruder, two-roll

mill, and compression molding
method

NaOH treatment
Hybridization increased WA Increasing MMT

content (3 wt %) maximized water-resistance of
hybrid biocomposite

[262]

Epoxy Luffa/coir/SiO2 nanospheres Conventional molding
Fiber loading: 40 vol % NaOH treatment Decrease of WA to 0.14% by adding 3 vol % of

SiO2
[263]

polyester
Jute/glass
Sisal/glass

Sisal/jute/glass
Hand lay-up

Treatment with succinic
anhydride and phthalic

anhydride

Hybridization of JF and SF with glass fiber
reduced the WA content significantly [274]

Epoxy resin araldite Sisal/coir (1:1) Cold pressing - WA of hybrid composites increased with an
increase of fiber wt % and soaking duration [275]

Epoxy Resin pineapple/coir (1:1) Hand lay-up - Coir/pineapple/coir (CPC) pattern showed the
highest water resistance to PCP and P/C patterns [276]

Isothalic polyester Jute/glass Hand lay-up UV radiation treatment Improvement in water/moisture absorption
resistance [29]

Liquid diglycidyl ether of
Bisphenol-A blended with

neem oil
Kenaf fiber and sea-urchin spike filler Casting Amino silane surface

treatment

Surface-modified kenaf fiber improved water
resistance

The addition of neem oil into epoxy did not
change WA

[277]

Polypropylene Sisal/glass Injection molding NaOH treatment The addition of 10 and 20 wt % glass fibers
showed improvement in water resistance [278]

Epoxy resin

Hemp/jute
Hemp/flax
Hemp/jute

/flax

Hand lay-up compression
technique -

Hemp/jute/epoxy, hemp/jute/flax/epoxy and
hemp/flax/epoxy absorbed 4.5%, 3% and 2.8%

water respectively
[240]

Low-density polyethylene Jute/bamboo (1:1) cellulose
Untreated jute/bamboo Hot press

Dewaxing, alkaline
treatment, and
mercerization

Lower WA of treated cellulose hybrid
composites (0.7%) with ten wt % fibers loading

respect to untreated fiber
[279]

Starch-glycerol Jute with and without epoxy resin coating
(Araldite CY-230)

Wet hand lay-up and
compression molding

Treatment by alkaline
sodium hydroxide

A thin coating of epoxy reduced the WA
significantly [280]

Novolac type Phenolic
formaldehyde PALF/kenaf Hot press Triethoxy (ethyl) silane

treatment

Treated hybrid composites revealed a reduction
in WA

70P:30K ratio showed the lowest WA
[281]

Unsaturated polyester
(UP) blended epoxy E-glass fiber and iron (III) oxide particles Hand lay-up Amino-silane (APTMS)

treatment
Low WA was observed for composites consist of

5 and 10 vol % of UP into epoxy [282]
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Table 7. Cont.

Matrix Fibers Manufacturing Process Treatment Water Absorption Ref.

Epoxy Coir fiber with Al2O3 filler

Hand-lay-up
Fiber loading: 5, 10, 15, and 20 wt

%
Filler loading: 10 wt %

- Amount of WA increased along with increasing
fiber loading and decreasing epoxy loading [283]

Thermoplastic SPS/agar
(TPSA) Sugar palm starch (SPS) Hot press - Minimal improvement of water resistance

properties [219]

Epoxy LY 556 Date Palm Leaf (DPL)/glass Hand lay-up Alkaline treatment
The rate of WA of the composites increased by

adding more DPL fiber
Maximum water uptake in 30 wt % of DPL

[284]

Polypropylene Banana/Coir

Twin-screw extruder and
injection moulding

Fiber loadings (CF/BF/PP):
15/5/80, 10/10/80, and 5/15/80 wt %

- Increase of WA with an increase of soaking time
and coil wt % [222]

Epoxy Sisal/Jute
Hand lay-up

Jute/sisal ratio = 1:0, 1:3, 1:1 and
0:1

Alkaline treatment
Fiber loading: 30 wt %

Lower WA of 1:1 hybrid composite due to the
better interfacial bonding of matrix/fibers

[225]

Epoxy Kenaf/Kevlar
Hand lay-up

Three types of kenaf fiber: woven,
UD, mat

- Woven and UD kenaf absorbed less water [228]

Epoxy Jute/Glass
Epoxy/jute/glass weight ratio =
69/31/0, 68/25/7, and 64/18/19 wt

%
-

THE lowest WA was for hybrid composite with
a 64/18/19 ratio (11.7% after 1172 h immersion in

water)
[231]

Epoxy Hemp/polyethylene terephthalate (PET) Vacuum-infusion - WA of the hemp/PET hybrid composite was half
of the woven hemp composites [235]

Epoxy Flax/Glass

Compression-molding machine
Sandwich structure: outer layers
of glass/epoxy and the core from

Flax/Epoxy

-
Hybrid composite of UD flax/glass/epoxy had a

lower WA (4.6%) after 40 days to the
carbon/epoxy and carbon/flax/epoxy composites

[180]

Vinyl ester Flax/Basalt Vacuum-infusion
Fiber stacking sequence: BFFFFB - Hybrid composite exhibited lower WA

compared to the flax/vinyl ester composite [285]

Epoxy Sugar palm fiber (SPF)/Glass
Hand lay-up

Glass fiber ratio: 30%, 50%, and
70 wt %

Benzoylation treatment on
SPF

Treated hybrid composite with 50wt % glass
fiber exhibited min WA after 2h (0.16%) [233]

PLA Coir fiber (CF)/PALF
Internal mixer followed by

compression molding
CF:PALF ratios = 3:7, 1:1 and 7:3

Alkaline treatment
Fibers loading: 30 wt %

C7P3 (CF:PALF = 7:3) showed the lowest WA
(5.24%) after 7 days

[238]

PLA-g-GMA Agave fibers/nanoclay particles Extrusion Compatibilizer: glycidyl
methacrylate (GMA)

Compatibilizing compensated the hydrophilic
character of agave fibers and decreased the WA [206]

Unsaturated polyester Sugar palm yarn/glass Sheet molding process and hot
press - Increasing the glass fiber content from 30% to 50

wt % improved WA properties [213]

1 Water absorption.
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4.3. Flame Retardancy

One of the major drawbacks of biocomposites is their relatively poor resistance to burning.
Most of the natural reinforcements and biopolymer (hemicellulose and lignin) are susceptible to fire
and combustion. They undergo thermal decomposition at low temperatures (200–300 ◦C) [286,287].
Since natural reinforcements’ flammability could limit their application in the automotive, aerospace,
and construction industries, it is vital to adjust materials with more flame-resistant without
compromising their good mechanical properties [27]. Recently, there has been more research on
hybrid materials based on synthetic-natural fibers to manufacture more environmentally friendly
composites. Many researchers reported that by incorporating synthetic fibers into the natural ones,
it might be possible to increase the thermal stability and flame resistance of biocomposites. Some of
these recent studies on the flammability performance of hybrid biocomposites are summarized
in Table 8. Furthermore, another attractive approach to reducing the flammability issue is
the hybridization of flame-retardants (FRs) and natural fibers in the development process of
biocomposites [288–290]. Many studies are currently attempting carbon-based materials as FRs
because of their outstanding thermal, chemical, and mechanical properties accompanied by inherent
resistance against combustion [291]. In this regard, different types of carbon-based nanofillers such
as graphene [292,293], graphite [294–296], fullerene [297,298], graphene nanosheets (GNSs) [299,300],
carbon nanotubes (CNTs) [301,302], multi-walled carbon nanotubes (MWCNTs) [294,303], graphene
quantum dots (GQDs) [304,305], etc. have been reported to improve the flame retardancy of composites.
Biochar is another carbon-rich material as FRs obtained by heating any biomass and renewable
sources [306]. Biochar is a renewable alternative for inorganic carbon-based fillers (CNT, fullerene,
etc.) [307]. The main function of carbon-based fillers is to form the protective char layer during the
pyrolysis of polymeric substances to restrict the transfer of combustible gases and heat and therefore
prevent further degradation of materials [291].

Generally, there are various techniques to achieve flame retarding polymeric composites [290]:

• Impregnation of fibers with a solution of the fire retardant
• Addition of microparticles or nanoparticles in matrix or reinforcement phase
• Direct incorporation of fire retardants
• Use of bio-based polymers that can potentially possess inherent fire retardancy
• Incorporation of the fire retardant into the adhesive system
• Mixing of fibers and fire retardant before adding an adhesive
• Chemical modification of matrix
• Surface treatment of fibers

FR materials which cause deceleration of combustion have some functions in composites, such as
the reduction of produced heat to the stable level, the formation of a barrier between ambient oxygen
(O2) and flammable polymers, release of bromine and chlorine atoms by the introduction of materials
to polymers, and operation of pyrolysis process to limit the growing of flammable volatiles [308].

To determine the fire behavior of biocomposites, a variety of tests can be performed. For instance,
in the limiting oxygen index (LOI) test, the minimum required amount of O2 to support flaming
combustion of material can be measured [309]. Cone calorimetry is another attractive technique to
evaluate the fire properties of materials. This test can give useful information in different stages
regarding the time to ignition (TTI) (ignition stage), heat release rate (HRR) (fire developing stage), and
total heat release (THR) (fully developed fire stage) [310]. Vertical burning test (UL-94) and micro-scale
combustion calorimetry (MCC) are examples of other techniques to study the flame behavior of
materials [291]. Table 8 lists the recent results on the flammability of hybrid biocomposites.
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Table 8. Flammability behavior of recently developed hybrid biocomposites.

Matrix Fibers Manufacturing Process Flammability Ref.

Novolac type Phenolic
formaldehyde

PALF/kenaf
Triethoxy (ethyl) silane treatment Hot press

Phenolic resin formed a protective layer of char on the
surface of composites.

Combustion rates of the untreated hybrid composite were
higher than the treated one.

[281]

Epoxy Sisal/coir Cold pressing
Increasing the fibers wt % increased flammability.

This hybrid biocomposite was not suitable where the fire
response is a serious consideration.

[275]

PLA Banana fiber and nanoclay fillers (3 wt %)
Melt blending technique

followed by injection molding
Silane treatment

Improvement of thermal stability and fire retardancy by
nanoclays that produced char as a thermal barrier to reduce

combustion rate.
[311]

Cardanol Kenaf fibers with recycled carbon filler
Alkali treatment with 2% NaOH Compression molding Hybridization of kenaf fibers with recycled carbon filler

improved the thermal stability and flammability property. [312]

Epoxy Banana short fiber and Al (OH)3 filler Hand lay-up Incorporation of Al (OH)3 particles reduced the rate of
propagation of flame. [313]

Polypropylene Bamboo/glass Compression molding 19% reduction of heat release rate and increase in the
thermal stability. [314]

Polypropylene Biochar/wool fibers Melt blending followed by
injection molding

Improving fire resistance properties: 5 wt % wool fiber
caused a delay in the onset of ignition and the time to reach

peak heat release rate.
[287]

Polypropylene Kenaf fibers with exfoliated graphite
nanoplatelets Melt extrusion

Graphene nanoplatelets improved the flame retardancy of
composites: the

fire performance index enhanced, the time to ignition
prolonged, and the fire growth index reduced.

[315]

Epoxy Resin pineapple/coir (1:1) Hand lay-up Layering pattern of coir/pineapple/coir (CPC) had higher
resistance to burning. [276]

High crystalline block
copolymer polypropylene

Kenaf/wool with ammonium polyphosphate as
a flame retardant and with ultraviolet ray
stabilizer and colorant combination (UVC)

Thermal blending followed by
injection molding

Reduction of sustained and forced combustion of the
composite.

Improvement of material response to the fire hazard.
[316]

Epoxy

Bamboo/kenaf/nanoclay
Nanoclay types: halloysite nanotube (HNT),

montmorillonite (MMT), and organically
modified MMT (OMMT)

Hand lay-up

Flame retardancy improved with the loading of all types of
nanoclay (OMMT was the best one).

Improvement in flame properties in terms of peak heat
release rate, total heat release, fire growth rate index, and
the maximum average rate of heat emission and smoke

growth rate.

[317]
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Table 8. Cont.

Matrix Fibers Manufacturing Process Flammability Ref.

Polyester

Banana peduncle fiber (BPF) with aluminum
hydroxide (AH) particles

Fiber treatment with vinyltriethoxysilane (VTS)
and 3-aminoproply triethoxysilane (APTES)

solutions

Hand lay-up

The addition of 10 wt % AH:10 wt % BPF to polyester
composite retarded its burning.

The ignition time and end of burning time delayed by
22.94% and 13.15%, respectively.

The total heat release rate decreased by 29.68%.

[318]

Epoxy Kenaf with nano oil palm empty fruit bunch
(OPEFB) filler (3 wt %) Hand lay-up

Hybrid nanocomposites presented better (and satisfactory)
flame retardancy properties in comparison to kenaf/epoxy

composites.
[319]

Epoxy Arenga pinnata fiber (APF)/polyester yarn
(PET)

Lay-up
APF:PET ratio = 0:5, 20:5, 35:5

and 50:5 wt %

Mg(OH)2 as flame retardant.
Hybrid composite of APF35/PET5/E55 with 5 wt %

Mg(OH)2 exhibited a lower burning rate.
[236]

Ethylene propylene diene
monomer (EPDM) rubber Kevlar fiber (KF)/Nano-silica (NS) Roll milling followed by

compression molding

By increasing the KF loading, he flame retardant properties
enhanced.

Hybridization of KF and NS increased the TTI 1 noticeably.
[237]

PLA Coir fiber (CF)/PALF
Alkaline treatment of fibers

Internal mixer followed by
compression molding

CF:PALF ratios = 3:7, 1:1 and 7:3

Fibers loading: 30 wt %.
C1P1 and C7P3 (CF:PALF = 7:3) exhibited higher thermal

stability and char content.
[238]

1 Time to ignition.
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5. Conclusions

In this report, hybrid biocomposites have been reviewed, especially in mechanical properties,
including tensile, flexural, and impact strength, water absorption, and flammability. In this regard,
hybrid composites comprising natural-synthetic fibers, natural-natural fibers, and natural fiber hybrid
with nanoparticles or fillers were investigated. Using multiple fibers and developing hybrid composites
have received popularity due to the enhanced performance of manufactured products and the possibility
of overwhelming the drawbacks of purely natural or synthetic fibers reinforced composites. The focus
of this concept is to develop multifunctional materials and structures for advanced applications with
improved properties. Researchers have applied various strategies in order to improve the mechanical
properties of hybrid biocomposites. Adding a second filler in either micro or nano-size, change
the weight percentage of natural and synthetic fibers, addition of fire retardants, change in layering
stacking sequence, chemical or physical modification, and changing production techniques are some
of the critical strategies. Despite significant challenges with compatibility and processing of hybrid
materials, the aforementioned applied techniques showed remarkable improvements in strength, water
absorption resistance, and flame retardancy.

To sum up, in the investigated studies in this review, hybridizations of natural and synthetic
fibers with polymeric matrices as well as employing the optimized amount of substances, such as
nanoclays, CNTs, silica, cement, and iron oxide particles, alumina, aluminum hydroxide, and graphite
nanoplatelets effectively enhanced mechanical properties (e.g., flexural, tensile, and impact strength,
flame, and water absorption resistance). High-performance glass and carbon fibers are still the most
applicable synthetic fibers for hybridizing the natural fiber composites in recent years. Moreover,
chemical treatments or modifications of fibers generally resulted in better mechanical properties,
fire, and water resistance than untreated composites due to the improved fiber-matrix bonding after
treatments. Among the processing methods, compression molding and hand lay-up are the most often
used techniques for the hybrid composites with polymeric matrix materials.

Undoubtedly, due to the rising environmental, economic, and application concerns, hybrid
biocomposites are gaining significant attention in the future and provide a competitive market for
numerous industrial applications. Consequently, this concept is still open, and further research on the
possible ways to improve hybrid biocomposites’ properties has to be done. Modeling and simulation
would be desirable facilitators for optimizing these materials properties and addressing the key
required changes in production processes.
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