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Abstract

This paper deals with the “function-on-function” or “fully functional” linear
regression problem. We address the problem by proposing a novel penalized Function-
on-Function Partial Least-Squares (pFFPLS) approach that imposes smoothness
on the PLS weights. Our proposal introduces an appropriate finite-dimensional
functional space with an associated set of bases on which to represent the data
and controls smoothness with a roughness penalty operator. Penalizing the PLS
weights imposes smoothness on the resulting coefficient function, improving its
interpretability. In a simulation study, we demonstrate the advantages of pFFPLS
compared to non-penalized FFPLS. Our comparisons indicate a higher accuracy of
pFFPLS when predicting the response and estimating the true coefficient function
from which the data were generated. We also illustrate the advantages of our proposal
with two case studies involving two well-known datasets from the functional data
analysis literature. In the first one, we predict log precipitation curves from the
yearly temperature profiles recorded in 35 weather stations in Canada. In the second
case study, we predict the hip angle profiles during a gait cycle of children from their
corresponding knee angle profiles.
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1 Introduction

Functional Data Analysis (FDA) covers the study of curves, surfaces, and objects nat-
urally appearing as functions. The rise of FDA is closely tied to the advancement of
computational methods and the increasing capacity to collect large amounts of data.
These data can be high-dimensional and have very complex structures for which classical
multivariate techniques are inappropriate. That could be the case with environmental
data, biomedical images like functional magnetic resonance images (fMRI) and electroen-
cephalographs (EEG), time series, and spectroscopy curves, among many others. The
books by [Ramsay and Silverman, 2005, Ferraty and Vieu, 2006, Ramsay et al., 2009,
Horváth and Kokoszka, 2012, Kokoszka and Reimherr, 2017] provide a very thorough
overview of FDA techniques with plenty of examples and case studies, usually involving
R [R Core Team, 2023]. Wang et al. [Wang et al., 2016] provide a more compact review
of the most common FDA methods in the literature.

This paper deals with the “function-on-function” or “fully functional” linear model:

Y (q) =

∫︂
DX

X(p)β(q, p)dp+ ε(q), q ∈ DY , (1)

where the response Y (q), q ∈ DY , and the predictor X(p), p ∈ DX , are mean-centered
functional random variables observed over potentially different domains DY ⊂ R and
DX ⊂ R, respectively. According to this formulation, at any point q ∈ DY , the value of
Y (q) depends on the entire trajectory of X. Model (1) can be seen as the direct extension
of the multivariate linear regression in Euclidean space to linear regression in the space L2

of square-integrable functions. The goal is to estimate the parameter/coefficient function
β, a surface with a domain in DX ×DY .

We introduce a novel approach called penalized Function-on-Function Partial Least
Squares (pFFPLS) that builds upon the basis representation of the data and the partial
least-squares weights, and incorporates a penalty term to control the smoothness of the
weight functions used in the algorithm. By doing so, the smoothness of the estimated
coefficient function is influenced. The pFFPLS method can be viewed as an extension of
the scalar-on-function model proposed in [Aguilera et al., 2016]. The main motivation
behind this approach is that the existing literature on FFPLS primarily focuses on
enhancing the model’s predictive accuracy while often neglecting the interpretability of
β̂. In contrast, our strategy involves fixing the number of bases to a sufficiently large
value and imposing smoothness by using penalties.

The fully functional linear model (1) was first studied in [Ramsay and Dalzell, 1991].
The books [Ramsay and Silverman, 2005, Ramsay et al., 2009] provide case studies on
fitting this model via penalized least squares when the data are observed over a dense
set of nodes. The idea is to reduce the infinite dimension of the coefficient function by
translating the problem to a lower-dimensional space spanned by a fixed set of basis
functions, such as B-splines. An alternative data-driven strategy is considering Principal
Components Analysis (PCA), as demonstrated in [Yao et al., 2005]. In this approach,
the lower-dimensional space is constructed from the eigenfunctions of the associated
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autocovariance operator. Ivanescu et al. [Ivanescu et al., 2015] propose a penalized
solution that exploits the connection to mixed models, allowing for realistic situations
involving multiple predictors or sparsely-sampled functions.

The first FFPLS approach is due to [Preda and Schiltz, 2011]. Their proposal
establishes a connection between FFPLS and its multivariate PLS counterpart
[Wold et al., 1983], assuming that the functional data can be represented using
a set of basis functions. The FFPLS approach follows a similar concept to the
scalar-on-function setting proposed by [Preda and Saporta, 2005, Aguilera et al., 2010].
Since the publication of Preda and Jang’s paper in 2011, only a few studies have
tackled the function-on-function problem from a PLS perspective. For instance,
Beyaztas and Shang [Beyaztas and Shang, 2020] demonstrate the advantages of FFPLS
compared to several of the aforementioned approaches, such as those presented by
[Ivanescu et al., 2015, Ramsay and Silverman, 2005]. They also extend FFPLS to the
case of multiple functional predictors. In a subsequent paper [Beyaztas and Shang, 2021],
the authors introduce the possibility of considering interaction terms within the
FFPLS framework. An alternative to the basis expansion approach is presented in
[Zhou, 2021], where the author proposes a fast implementation for FFPLS regression,
similar to the “alternative PLS” method for scalar-on-function regression introduced by
[Delaigle and Hall, 2012].

The rest of the paper is organized as follows. Section 2 introduces the theoretical
framework supporting the FFPLS algorithm, focusing on the basis representation approach
proposed by [Preda and Schiltz, 2011]. Section 3 presents our proposed pFFPLS method.
In particular, Proposition 3.1 summarizes the main contribution of this paper. Section 4
presents a simulation study comparing pFFPLS with FFPLS. The performance and
effectiveness of pFFPLS are evaluated regarding predictive accuracy and interpretability
of the resulting coefficient function. Section 5 showcases two real-data applications. First,
in Subsection 5.1, we predict log precipitation based on temperature profiles from 35
weather stations in Canada. Second, in Subsection 5.2, we focus on predicting hip angle
profiles from knee angle profiles using data on 39 children undergoing a gait cycle. These
case studies are representative examples in the function-on-function literature, and the
necessary data can be accessed through the R package fda [Ramsay, 2023]. Finally,
Section 6 presents our conclusions and discusses potential future research directions.

2 Function-on-function PLS regression

The FFPLS regression consists of building PLS components as linear functionals of X:

t =

∫︂
DX

X(p)ω(p)dp,

obtained by maximizing the squared covariance between Y (q) and X(p), also known as
Tucker’s criterion:

max
∥ω∥L2(DX )=∥ν∥L2(DY )=1

cov2
(︃∫︂

DX

X (p)ω (p) dp,

∫︂
DY

Y (q) ν (q) dq

)︃
. (2)
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The PLS algorithm is an iterative procedure. Define the Escoufier operators associated
with X and Y :

WXZ =

∫︂
DX

E(X(p)Z)X(p)dp,

WY Z =

∫︂
DY

E(Y (q)Z)Y (q)dq,

for any random variable Z ∈ L2(Ω) with finite second moment. Then, following
[Preda and Schiltz, 2011], the first PLS component t1 is given by the eigenvector as-
sociated with the largest eigenvalue of the operator WXWY :

WXWY t1 = λmaxt1.

The first PLS weight ω1 associated with t1 is estimated by:

ω1(p) =

∫︁
DY

E (X(p)Y (q)) dq√︃∫︁
DX

[︂∫︁
DY

E (X(p)Y (q)) dq
]︂2
dp

, p ∈ DX ,

such that t1 =
∫︁
DX

X(p)ω1(p)dp.
The first step is completed with the ordinary linear regression of X(p) and Y (q) on

t1, resulting in the coefficients:

ϱ1(p) = E(X(p)t1)/E(t21),
δ1(q) = E(Y (q)t1)/E(t21),

with residuals X1(p) and Y1(q):

X1(p) = X(p)− ϱ1(p)t1, p ∈ DX ,

Y1(q) = Y (q)− δ1(q)t1, q ∈ DY .

Letting X0(p) = X(p) and Y0(q) = Y (q), the h-th PLS component (h ≥ 1) is given
by the eigenvector associated with the largest eigenvalue of the operator WXh−1WYh−1 :

WXh−1WYh−1th = λmaxth,

with weight ωh:

ωh(p) =

∫︁
DY

E (Xh−1(p)Yh−1(q)) dq√︃∫︁
DX

[︂∫︁
DY

E (Xh−1(p)Yh−1(q)) dq
]︂2
dp

, p ∈ DX ,

such that th =
∫︁
DX

Xh−1(p)ωh(p)dp. The h-th PLS step is completed with the linear
regression of Xh−1(p) and Yh−1(q) on th:

Xh(p) = Xh−1(p)− ϱh(p)th, p ∈ DX ,

Yh(q) = Yh−1(q)− δh(q)th, q ∈ DY ,
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where ϱh(p) =
(︁
E(Xh−1(p)th)/E(t2h)

)︁
and δh(q) =

(︁
E(Yh−1(q)th)/E(t2h)

)︁
. This procedure

is known as deflation and is intended to remove variability already explained from Xh−1

and Yh−1 by subtracting the best predictions we can make of them using the estimated
PLS components.

This approach is asymmetric because the same component th relative to the weight
ωh is used to deflate both the predictor and response variables. This is a widespread
technique, sometimes called “PLS2” or “regression mode” in multivariate settings (see, for
example, [Lê Cao et al., 2008] and references therein). The alternative is the symmetric
PLS, also called “Mode A” in multivariate settings, that uses uh relative to the weight
νh to deflate the response variable Yh−1. In this case, uh is the eigenvector associated
with the largest eigenvalue of the operator WYh−1WXh−1 :

WYh−1WXh−1uh = ρmaxuh.

The corresponding weight νh is computed as:

νh(q) =

∫︁
DX

E (Xh−1(p)Yh−1(q)) dp√︃∫︁
DY

[︂∫︁
DX

E (Xh−1(p)Yh−1(q)) dp
]︂2
dq

, q ∈ DY ,

such that the corresponding PLS component is uh =
∫︁
DY

Yh−1(q)νh(q)dq.
The properties of this function-on-function PLS approach are summarized in the

following proposition by [Preda and Schiltz, 2011]:

Proposition 2.1. For any h ≥ 1:

1. {th}h≥1 forms an orthogonal system in L2 (DX) ,

2. Y (q) = δ1(q)t1 + δ2(q)t2 + . . .+ δh(q)th + Yh(q), q ∈ DY ,

3. X(p) = ϱ1(p)t1 + ϱ2(p)t2 + . . .+ ϱh(p)th +Xh(p), p ∈ DX ,

4. E[Yh(q)tj ] = 0, ∀q ∈ DY , ∀j = 1, . . . , h,

5. E[Xh(p)tj ] = 0, ∀p ∈ DX , ∀j = 1, . . . , h.

Note that every component can be written in terms of the original X as th = ⟨X,ω∗
h⟩,

where ω∗
h ∈ span{ω1, . . . , ωh}, h = 1, . . . ,H. Considering the decomposition of Y (q)

established in Proposition 2.1, we can approximate the response using H components:

Ŷ H(q) = δ1(q)

∫︂
DX

X(p)ω∗
1(p)dp+ . . .+ δH(q)

∫︂
DX

X(p)ω∗
H(p)dp,

=

∫︂
DX

X(p) {δ1(q)ω∗
1(p) + . . .+ δH(q)ω∗

H(p)} dp,

=

∫︂
DX

X(p)β̂H(q, p)dp,
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where β̂H(q, p) is the approximation to the parameter function β(q, p) at points (q, p) ∈
DY ×DX using H components. The coefficient function β can also be represented using
the series:

β =
∑︂
h

δhϕh,

where the functions ϕh are defined recursively:

ϕ1 = ω1,

ϕh = ωh − ⟨ϱ1, ωh⟩ϕ1 − . . .− ⟨ϱh−1, ωh⟩ϕh−1, ∀h ≥ 2.

2.1 The basis representation approach

Let ϕ(p) = (ϕ1(p), . . . , ϕK(p))T , be a K-dimensional vector of basis functions in L2 (DX).
Analogously, let ψ = (ψ1(q), . . . , ψL(q))

T , be an L-dimensional vector of basis functions
in L2 (DY ). We define the K ×K matrix Rϕ =

∫︁
DX
ϕ(p)ϕT (p)dp and the L× L matrix

Rψ =
∫︁
DY
ψ(q)ψT (q)dq of inner products between the basis functions. Let R

1/2
ϕ and

R
1/2
ψ be the square roots of Rϕ and Rψ, respectively. The square roots are taken in the

sense that Rϕ = R
1/2
ϕ (R

1/2
ϕ )T and Rψ = R

1/2
ψ (R

1/2
ψ )T .

Assume that the functional predictor and response can be represented using a basis
expansion of the form:

X(p) =

K∑︂
k=1

αkϕk(p) = α
Tϕ(p) p ∈ DX , (3)

Y (q) =
L∑︂
l=1

γlψl(q) = γ
Tψ(q), q ∈ DY , (4)

with α = (α1, . . . , αK)T and γ = (γ1, . . . , γL)
T , the random vectors of coefficients for

X and Y respectively. As a consequence, the weight functions can also be expressed in
terms of the same bases:

ω(p) =
K∑︂
k=1

wkϕk(p) = wTϕ(p), p ∈ DX , (5)

ν(q) =

L∑︂
l=1

vlψl(q) = vTψ(q), q ∈ DY , (6)

with w = (w1, . . . , wK)T and v = (v1, . . . , vL)
T the corresponding vectors of basis

coefficients.
The following proposition by [Preda and Schiltz, 2011] provides an equivalence be-

tween the FFPLS and its multivariate counterpart.

Proposition 2.2. Assume X(p) and Y (q) allow a basis representation as in (3)-(4) and
define:

Λ = R
1/2
ϕ α and Π = R

1/2
ψ γ. (7)
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i) The PLS regression of Y (q), q ∈ DY , on X(p), p ∈ DX , is equivalent to the
PLS regression of Π on Λ in the sense that at each step h of the PLS algorithm,
1 ≤ h ≤ K, we have the same PLS component th for both regressions.

ii) If Θ is the L ×K matrix of regression coefficients of Π on Λ obtained with the
PLS regression at step h, 1 ≤ h ≤ K. i.e.:

Π = ΘΛ+ ε,

then the FFPLS approximation of the regression coefficient function β(q, p) from
(1) is:

β̂(q, p) =
L∑︂
i=1

K∑︂
j=1

ψi(q)Bi,jϕj(p), (q, p) ∈ DY ×DX ,

where B = R
−1/2
ψ ΘR

−1/2
ϕ .

The proposition can be verified through an induction on h, using the approximations

WX ≈ WR
1/2
ϕ α and WY ≈ WR

1/2
ψ γ . The procedure is similar to the one presented

in [Aguilera et al., 2010] for the scalar-on-function setting. Additionally, the paper
[Beyaztas and Shang, 2021] provides proof of this proposition in the context of function-
on-multiple-functions regression.

At each step h ≥ 1 of the FFPLS algorithm, the vector of basis coefficients of the

weight function associated with the h-th component th is given by wh = [R
−1/2
ϕ ]T w̃h,

with w̃h being the eigenvector associated with the largest eigenvalue of the eigenproblem:

[R
1/2
ϕ ]TΣh−1R

1/2
ψ

ṽhṽ
T
h

ṽT
h ṽh

[R
1/2
ψ ]TΣT

h−1R
1/2
ϕ w̃h = µw̃h, w̃h ∈ RK , ⟨w̃h, w̃h⟩RK = 1,

where Σh−1 is the K ×L covariance matrix between the vectors of basis coefficients αh−1

and γh−1 of Xh−1 and Yh−1, respectively. Analogously, the vector of coefficients for the

weight νh is vh = [R
−1/2
ψ ]T ṽh, where ṽh is the eigenvector associated with the largest

eigenvalue of the problem:

[R
1/2
ψ ]TΣT

h−1R
1/2
ϕ

w̃w̃T

w̃T
h w̃h

[R
1/2
ϕ ]TΣh−1R

1/2
ψ ṽh = µṽh, ṽh ∈ RL, ⟨ṽh, ṽh⟩RL = 1.

Notice that [R
1/2
ϕ ]TΣh−1R

1/2
ψ = R

1/2
ϕ Σh−1R

1/2
ψ is the cross-covariance matrix of

Πh−1 = R
1/2
ψ γh−1 and ∆h−1 = R

1/2
ϕ αh−1.

3 Penalized approach

In FFPLS, the smoothness of the estimated β is influenced by the level of noise present
in the observed functional data and the number of basis functions employed in the
representation. Generally, a small number of basis functions tends to yield smooth
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estimates, whereas a large number can result in rough estimates. The estimation of a
smooth β is crucial for the accurate interpretation of the model.

In this section, we propose incorporating a penalty term into the FFPLS algorithm.
Our emphasis is on controlling the roughness of the weights ω and ν, which directly
influence the smoothness of the estimated β. The present approach can be viewed as
an extension of the penalized solution for the scalar-on-function model introduced in
[Aguilera et al., 2016].

Consider the norm ∥ · ∥λ associated with the inner product ⟨·, ·⟩λ:

⟨f, g⟩λ =

∫︂
D
f(p)g(p)dp+ λP(f, g), ∀p ∈ D,

where P is a bilinear form that acts as a global roughness penalty on f, g ∈ L2(D), with
penalty parameter λ > 0. Then, the optimization problem in (2) can be rewritten as:

max
ω∈L2(DX), ν∈L2(DY )

cov2
(︂∫︁

DX
X (p)ω (p) dp,

∫︁
DY

Y (q) ν (q) dq
)︂

∥ω∥2λX
∥ν∥2λY

. (8)

For any function f ∈ L2(D), D ⊂ R, we can quantify its roughness by considering its
d-order derivative Ddf(t), d ≥ 1. In this line, O’Sullivan considers the penalties of the
form [O’Sullivan, 1986]:

Pd(f, f) =

∫︂
D
[Ddf(p)][Ddf(p)]dp, p ∈ D, d ≥ 1.

A common discretization of Pd is P
d = (∆d)T∆d, with ∆d the matrix of d-order differences

between adjacent basis coefficients. For example, the second differences (d = 2) for the
coefficients of ω can be calculated as:

∆2wj = ∆(∆wj) = ∆(wj − wj−1) = wj − 2wj−1 + wj−2, j = 3, . . . ,K.

This discretization is quite popular, mainly when using B-splines
[Eilers and Marx, 1996, Eilers et al., 2015]. Other penalties can be useful
depending on the nature of the data and the type of basis functions used to represent
them. For example, in [Ramsay and Silverman, 2005], the authors usually rely on the
“harmonic acceleration operator” for the case of periodic data:

P(f, f) =

∫︂
D
[Lf(p)][Lf(p)]dp, p ∈ D,

where

Lf =

(︃
2π

T

)︃2

Df +D3f, D = [0, T ] ⊂ R.

Assume that ω and ν allow a meaningful basis representation as in equations (5)-(6),
then:

⟨ω, ω⟩λX
= wTRϕw + λXwTPXw

⟨ν, ν⟩λY
= vTRψv + λY v

TPY v,
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where PX (PY ) is a K × K (L × L) positive semi-definite matrix representing the
discretization of the penalty operator P applied to ω (ν). Then, we can summarize the
main contribution of this paper, the pFFPLS, in the following proposition.

Proposition 3.1. Assume Y and X admit the expansion given in equations (3)-(4).
Then, for any λX > 0 and λY > 0:

i) The pFFPLS regression of Y on X is equivalent to the PLS regression of the finite
random vector γ on the random vector α using the metrics:

M1 = (L−1
λY

Rψ)
T (L−1

λY
Rψ) andM2 = (L−1

λX
Rϕ)

T (L−1
λX

Rϕ),

respectively, in the space of γ and α. The matrices LλX
and LλY

are such that
LλX

LT
λX

= Rϕ + λXPX and LλY
LT
λY

= Rψ + λY PY .

The equivalence is in the sense that at each step h of the functional and multivariate
algorithms, 1 ≤ h ≤ K, we obtain the same component th.

ii) If Θ2 is the L ×K matrix of regression coefficients of Π2 = L−1
λY

Rψγ on Λ2 =

L−1
λX

Rϕα, obtained via multivariate PLS regression at step h, 1 ≤ h ≤ K, i.e.:

Π2 = Θ2Λ2 + ε,

then, the pFFPLS approximation at step h of the coefficient function β(q, p) from
(1) is given by:

β̂(q, p) =
L∑︂
i=1

K∑︂
j=1

Bi,jψi(q)ϕj(p), (q, p) ∈ DY ×DX ,

where B = L−1
λX

ΘT
2 LλY

R−1
ψ .

Proof 3.1.

Let us consider the basis representation of Y and X as in equations (3)-(4). Conse-
quently, let us also consider the basis expansion of ω and ν as in equations (5)-(6). Then,
problem (8) can be rewritten as follows:

max
wTRϕΣRψvv

TRψΣ
TRϕw

(wTRϕw + λXwTPXw)(vTRψv + λY vTPY v)
,

w ∈ RK

v ∈ RL

(9)

where PX and PY are penalty matrices; Σ is a K × L matrix with entries Σk,l =
cov(αk, γl), for k = 1, . . . ,K, l = 1, . . . , L; and w = (w1, . . . , wK)T , v = (v1, . . . , vL)

T

are the vectors of basis coefficients of ω and ν, respectively.
Let us assume the decomposition:

LλX
LT
λX

= Rϕ + λXPX ,

LλY
LT
λY

= Rψ + λY PY ,
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where LλX
and LλY

are the K ×K and L× L square root matrices of Rϕ + λXPX and
Rψ + λY PY , respectively. Then, problem (9) can be rewritten as:

max
wTRϕΣRψvv

TRψΣ
TRϕw

[wT (LλX
LT
λX

)w][vT (LλY
LT
λY

)v]
.

w ∈ RK

v ∈ RL

(10)

Defining w̃ = LT
λX

w (i.e. w = (L−1
λX

)T w̃) and ṽ = LT
λY

v (i.e. v = (L−1
λY

)T ṽ), problem
(10) can be rewritten as:

max
w̃TL−1

λX
RϕΣRψ(L

−1
λY

)T ṽṽTL−1
λY

RψΣ
TRϕ(L

−1
λX

)T w̃

(w̃T w̃)(ṽT ṽ)
.

w̃ ∈ RK

ṽ ∈ RL

For a fixed ṽ, the solution w̃ is the eigenvector associated with the largest eigenvalue of
the eigenproblem:

L−1
λX

RϕΣRψ(L
−1
λY

)T ṽṽT

ṽT ṽ
L−1
λY

RψΣ
TRϕ(L

−1
λX

)T w̃ = µw̃,

w̃ ∈ RK , ⟨w̃, w̃⟩RK = 1.

Analogously, for a fixed w̃, the solution ṽ is the eigenvector associated with the largest
eigenvalue of the problem:

(L−1
λY

)TRψΣ
TRϕL

−1
λX

w̃w̃T

w̃T w̃
(L−1

λX
)TRT

ϕΣRT
ψL

−1
λY

ṽ = µṽ,

ṽ ∈ RL, ⟨ṽ, ṽ⟩RK = 1.

The first pFFPLS step is completed by computing the residuals X1 and Y1 of the
ordinary linear regression of X0 = X and Y0 = Y on t1 = wTRϕα = w̃T (L−1

λX
)TRϕα.

In general, the coefficients of the weight function that defines the h-th component
(h > 1) is the solution to the eigenproblem:

L−1
λX

RϕΣh−1Rψ(L
−1
λY

)TL−1
λY

vh̃ṽ
T
h

ṽT
h ṽh

RψΣ
T
h−1Rϕ(L

−1
λX

)w̃h = λw̃h,

w̃h ∈ RK , ⟨w̃h, w̃h⟩RK = 1,

where Σh−1 is the K ×L covariance matrix between the vectors of basis coefficients αh−1

and γh−1 of Xh−1 and Yh−1, respectively. Analogously, the vector of coefficients for the
weight νh is vh = (L−1

λY
)T ṽh, where ṽh is the eigenvector associated with the largest

eigenvalue solving:

(L−1
λY

)TRψΣ
T
h−1RϕL

−1
λX

w̃hw̃
T
h

w̃T
h w̃h

(L−1
λX

)TRT
ϕΣh−1R

T
ψL

−1
λY

ṽh = µṽh,

ṽh ∈ RL, ⟨ṽh, ṽh⟩RK = 1.
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Notice that L−1
λX

RϕΣh−1Rψ(L
−1
λY

)T is the cross-covariance matrix of

Πh−1 = L−1
λY

Rψγh−1 and ∆h−1 = L−1
λX

Rϕαh−1. Also, the h-th component is computed
through:

th = wT
hRϕαh−1 = w̃T

h (L
−1
λX

)TRϕαh−1.

By analogy to the FFPLS by [Preda and Schiltz, 2011], our penalized approach is
reduced to a multivariate PLS regression of Π2 = L−1

λY
Rψγ on ∆2 = L−1

λX
Rϕα. In other

words, we can say that pFFPLS is reduced to a multivariate PLS of γ on α with the
metrics M1 = (L−1

λY
Rψ)

T (L−1
λY

Rψ) and M2 = (L−1
λX

Rϕ)
T (L−1

λX
Rϕ) in the space of γ and

α, respectively.
The approximation of the coefficient function β in terms of the multivariate PLS

coefficient Θ2 comes from the following reasoning:

Π2 = Θ2Λ2 + ε

L−1
λY

Rψγ = Θ2L
−1
λX

Rϕα+ ε

γ =
(︂
R−1
ψ LλY

Θ2L
−1
λX

)︂
Rϕα+ ε

γ = BT Rϕ α+ ε

γ = BT

(︃∫︂
DX

ϕ(p)ϕT (p)dp

)︃
α+ ε

γ =

∫︂
DX

BT ϕ(p) ϕT (p) α dp+ ε

ψT (q)γ =

∫︂
DX

ψT (q) BT ϕ(p) ϕT (p) α dp+ ε

Y (q) =

∫︂
DX

β(q, p) X(p) dp+ ε

3.1 Sample estimation

Consider a sample of n centered functional data xi from X, and yi from Y , i = 1, . . . , n.
The functional predictors xi are observed at a common set of mx discrete observation
points pj ∈ DX , where j = 1, . . . ,mx. The functional responses yi are observed at a
common set of my discrete observation points qk ∈ DY , where k = 1, . . . ,my. The data
for all samples are then organized into an n ×mx matrix X with entries xij = xi(pj),
and an n×my matrix Y with entries yik = yi(qk), for i = 1, . . . , n; j = 1, . . . ,mx; and
k = 1, . . . ,my.

Let ϕ1, . . . , ϕK be a collection of basis functions defined on DX , and let Φ be the
mx ×K matrix with entries (ϕk(pj)):

Φ =

⎡⎢⎣ ϕ1(p1) · · · ϕK(p1)
...

. . .
...

ϕ1(pmx) · · · ϕK(pmx)

⎤⎥⎦ .
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Also, let ψ1, . . . , ψL be a collection of basis functions defined on DY , and let Ψ be the
my × L matrix with entries (ψl(qk)):

Ψ =

⎡⎢⎣ ψ1(q1) · · · ψL(q1)
...

. . .
...

ψ1(qmy) · · · ψL(qmy)

⎤⎥⎦ .
The pFFPLS algorithm consists of the following steps:

1. Use the least square criterion to estimate the vectors of coefficients for each sample
path using sets of K and L basis functions for X and Y , respectively:

α̂i =
(︁
ΦTΦ

)︁−1
ΦTxi

γ̂i =
(︁
ΨTΨ

)︁−1
ΨTyi,

for each sample i = 1, . . . , n, and xi ∈ Rmx , yi ∈ Rmy the transposes of the first
rows of X and Y, respectively.

2. Let A be the n×K matrix of basis coefficients for X and G be the n× L matrix
for Y . In both cases, rows correspond to samples, and columns correspond to the
number of basis functions. Then, pFFPLS is reduced to the multivariate PLS of:

G Rψ L−1
λY

on A Rϕ L−1
λX
. (11)

3. The K ×L coefficient matrix ΘT
2 relates the multivariate response and predictor in

equation (11) through:

G Rψ L−1
λY

= A Rϕ L−1
λX

ΘT
2 +E, (12)

where E is an n×Lmatrix of residuals. If we define ϕ and ψ to be the vectors of basis
functions for X and Y , respectively, and let the K×L matrix B = L−1

λX
ΘT

2 LλY
R−1
ψ ,

then equation (12) can be rewritten as:

G = A Rϕ

(︂
L−1
λX

ΘT
2 LλY

R−1
ψ

)︂
+E,

G = A Rϕ B+E,

G ψ(q) =

∫︂
DX

A ϕ(p) ϕT (p) B ψ(q) dp+E, q ∈ DY .

From this equation, we obtain our estimation of the coefficient function:

β(q, p) = ϕT (p) B ψ(q), (q, p) ∈ DY ×DX .
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3.2 Parameters selection

The performance of the pFFPLS approach is determined by three key features: the number
of bases employed for data representation (K,L), the values of the penalty parameters
λX and λY , and the number of components used to summarize the data (H ≥ 1).
When using a small number of bases, the estimates tend to be smoother compared to
using a larger number. Selecting appropriate values for the penalty parameters is a
common consideration in all penalized problems, and it is typically addressed through
cross-validation (CV) procedures. Determining the optimal number of components is a
typical step in PLS and Principal Components techniques and can be approached using
empirical methods such as the “elbow rule.”

In this paper, we employ κ-fold CV to select the optimal values for the smoothing
parameters. We construct a two-dimensional grid with various potential values for the
pair (λX , λY ). The data is then divided into 2 ≤ κ ≤ n subsets (folds), where one fold
is used for testing while the remaining κ − 1 folds are utilized for model fitting. Let
Sk, k = 1, . . . , κ, denote the k-th fold. For each (λX , λY ) in the grid and for every
1 ≤ h ≤ H, we can estimate the test Integrated Mean Square Error (IMSE) for the fitted
model:

IMSEk(λX , λY , h) =
1

length(DY )

∫︂
DY

1

|Sk|
∑︂
i∈Sk

(︂
ŷ
[−k]
i (q)− yi(q)

)︂2
dq.

In the formula, |Sk| represents the number of statistical units in the fold. The term

ŷ
[−k]
i (q) denotes the predicted response function for observation i ∈ Sk using a model

fitted with all other observations i /∈ Sk. The estimated κ-fold cross-validated error
(CVE) for a specific (λX , λY , h) triplet is computed as the average:

CVE(λX , λY , h) =
1

κ

κ∑︂
k=1

IMSEk(λX , λY , h).

Then, for each h, the optimal pair (λ∗X , λ
∗
Y ) is determined by minimizing the CVE:

(λ∗X , λ
∗
Y ) = arg min

λX ,λY

CVE(λX , λY , h).

By plotting h against the CVE(λ∗X , λ
∗
Y , h), we can identify the best number of

components H based on the curve’s shape. The ideal choice for H is where the curve
exhibits an “elbow” shape, transitioning from a steep slope to a flatter region. In general,
the goal is to achieve a low CVE with a minimal number of components.

4 Simulation study

This section considers a simulation scenario similar to the one presented in
[Preda and Schiltz, 2011]. We generate a sample of n = 100 observations of a functional
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predictor:

xi(p) =

K∑︂
k=1

αi,kϕk(p) = α
T
i ϕ(p), p ∈ [0, 1], i = 1, . . . , 100, (13)

where {αi,k}i,k are independent and identically distributed (iid) uniform random variables
in the interval [−1, 1], and {ϕk}Kk=1 is a collection of K cubic B-splines basis functions
defined on [0, 1].

If we let µX(p) be the mean of the generated predictor curves and βtrue a fixed
coefficient function (a surface in this case), then we compute the response values yϵi by
numerical approximation of the integral:

yϵi (q) =

∫︂ 1

0
(xi(p)− µX(p))βtrue(q, p)dp+ ϵi,q,

= yi(q) + ϵi,q, q ∈ [0, 1], i = 1, . . . , 100,

where yi(q) is the “clean” response and yϵi (q) adds iid error terms ϵi,q ∼ N(0, σ2q ), for any
q ∈ [0, 1]. The variance of the errors σ2q is chosen such that the true model’s squared
correlation function R2(q) is approximately 0.9 for any q ∈ [0, 1]. We use the definition
of R2(q) provided in [Ramsay and Silverman, 2005]:

R2(q) = 1−
∑︁

i{yϵi (q)− yi(q)}2∑︁
i{yi(q)− y(q)}2

.

The numerical approximation of yϵi (q) is obtained by assuming the response curves can
be represented using a set {ψl}Ll=1 of L cubic B-spline basis functions defined on [0, 1].

We consider two different coefficient functions βtrue. The first function is a smooth
and symmetric surface:

β1(q, p) = (q − p)2, (q, p) ∈ [0, 1]2,

as in [Preda and Schiltz, 2011]. The second function is a smooth “monkey saddle”:

β2(q, p) = (4p− 2)3 − 3(4p− 2)(4q − 2)2, (q, p) ∈ [0, 1]2.

In our simulation, we consider two different settings based on the number of basis
functions used to represent the predictor and response functions. In the first setting, we
use a small number of basis functions, specifically K = 7 for the predictor and L = 5
for the response, following the setup used in [Preda and Schiltz, 2011]. We use more
basis functions in the second setting, K = L = 40, for both the predictor and response
functions. Figure 1 shows a sample of 100 simulated data using β2 and K = L = 40.
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Figure 1: A sample of 100 simulated data pairs (X,Y ) using β2 and K = L = 40.

In our comparison between pFFPLS and FFPLS, we use a 5-fold CVE relative to the
response variable Y and an IMSE relative to the coefficient function βtrue, i.e.:

IMSE(β) =
1

area(DY ×DX)

∫︂
DY

∫︂
DX

(︂
β̂(q, p)− βtrue(q, p)

)︂2
dp dq,

where DY and DX represent the domains of the response and predictor functions,
respectively. The IMSE is computed using all the available samples. The CVE and IMSE
are calculated using the best pair of penalties (λ∗X , λ

∗
Y ) chosen from a 10 × 10 grid of

possible values. The grid spans a range from 10−6 to 1012, with the values generated in
logarithmic scale (10a) where a is a sequence of 10 equally spaced integers in the range
[−6, 12]. To ensure robustness and variability estimation, the simulations are repeated
100 times.

Figure 2 displays the resulting CVEs and IMSEs for β1 on a logarithmic scale. The
boxplots clearly illustrate the superior performance of pFFPLS compared to FFPLS. For
K = 7, L = 5, Figure 2a shows that both methods exhibit a similar distribution of CVEs,
particularly when more than three components are used. However, pFFPLS consistently
achieves smaller IMSEs. The differences become more pronounced when a larger number
of bases is employed (K = L = 40), as depicted in Figure 2b. Applying the elbow rule
with the CVEs, three components appear sufficient for pFFPLS to perform well. On the
other hand, FFPLS requires more than three components when K = L = 40.
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Figure 2: Comparison of the CVE and IMSE(β1) when predicting the response variable
Y and the true coefficient function β1, respectively. Plot (a) corresponds to the first
setting K = 7, L = 5, while plot (b) corresponds to the second setting K = L = 40.

Figures 3 and 4 showcase the means of the estimated β̂1 for both methods compared
to the true β1. The estimates provided by pFFPLS closely resemble the shape of β1, but
FFPLS fails to reproduce its shape. For example, under the first setting, K = 7, L = 5
in Figure 3, FFPLS over smooth β̂1 when (q, p) → (0, 1) and (q, p) → (1, 0). Under the
second setting, K = L = 40 in Figure 4, the estimates for FFPLS are not smooth along
the q-axis.
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(a) FFPLS (b) pFFPLS (c) True β1

Figure 3: Mean of the estimated coefficient functions β̂1 for FFPLS (a) versus pFFPLS
(b) using three components under the first setting K = 7, L = 5. The estimates are
compared with the true β1 in panel (c).

(a) FFPLS (b) pFFPLS (c) True β1

Figure 4: Mean of the estimated coefficient functions β̂1 for FFPLS (a) versus pFFPLS
(b) using three components under the second setting K = L = 40. The estimates are
compared with the true β1 in panel (c).

Figure 5 compares the CVEs and IMSEs for β2 on a logarithmic scale. We observe a
similar pattern to the comparisons against the true β1. pFFPLS consistently exhibits the
lowest errors, particularly for a larger number of bases K = L = 40. When considering
the CVEs, three components appear sufficient for pFFPLS to achieve good performance.
On the other hand, FFPLS requires more than three components under the second
setting.
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Figure 5: Comparison of the CVE and IMSE(β2) when predicting the response variable
Y and the true coefficient function β2, respectively. Plot (a) corresponds to the first
setting K = 7, L = 5, while plot (b) corresponds to the second setting K = L = 40.

Figure 6 shows no substantial differences in the estimated β̂2 for both methods when
K = 7, L = 5. However, when K = L = 40, the estimates for FFPLS are rough,
particularly along the q-axis, as depicted in Figure 7. On the other hand, pFFPLS
provides very good estimates, no matter the number of bases.
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(a) FFPLS (b) pFFPLS (c) True β1

Figure 6: Mean of the estimated coefficient functions β̂2 for FFPLS (a) versus pFFPLS
(b) using three components under the first setting K = 7, L = 5. The estimates are
compared with the true β2 in panel (c).

(a) FFPLS (b) pFFPLS (c) True β1

Figure 7: Mean of the estimated coefficient functions β̂2 for FFPLS (a) versus pFFPLS
(b) using three components under the second setting K = L = 40. The estimates are
compared with the true β2 in panel (c).

5 Case studies

5.1 Predicting log precipitation from temperature in Canada

In this subsection, we examine the performance of our pFFPLS approach using the
Canadian weather dataset, described in [Ramsay and Silverman, 2005]. The dataset
is accessible in the R package fda [Ramsay, 2023] and contains information on daily
temperature and precipitation at 35 locations in Canada, averaged over the years 1960 to
1994. Our objective is to predict the complete log daily precipitation profile yi(q), where
q ranges from 1 to 365, for each weather station i = 1, . . . , 35, using its corresponding
yearly temperature profile xi(p), with p ranging from 1 to 365.
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The Canadian weather dataset is preprocessed according to the methodology outlined
in Chapter 16 of [Ramsay and Silverman, 2005]. Specifically, we use 65 Fourier basis
functions and a roughness penalty smoother to remove localized variations. The penalty
parameters for the Fourier series expansion are determined through generalized cross-
validation, resulting in values of approximately 106 for X (temperature) and 101.5 for Y
(log precipitation). Chapter 5 of [Ramsay et al., 2009] shows the implementation details
for this procedure in R. Figure 8 displays the preprocessed temperature (X) and log
precipitation (Y ) profiles for the 35 weather stations in Canada.

Figure 8: Preprocessed temperature (X) and log precipitation (Y ) profiles for the 35
Canadian weather stations.

The function-on-function model described in Ramsay and Silverman’s book explores
the effect of the number of bases used to represent the data. In summary, they show that
using K = L = 65 Fourier basis to fit the model (using the preprocessed data) produces
rougher estimates of the coefficient function, compared to the resulting β̂ when the
number of bases is truncated to K = L = 7. Using pFFPLS, one can skip the tuning of
K and L by fixing them to be “large” enough and enforcing smoothness through applying
a roughness penalty, as described in Section 3. In this illustration, we fix K = L = 65
and let P be the penalty matrix associated with the harmonic acceleration operator.

Figure 9 presents the root of the CVEs obtained by repeating 30 times a 5-fold
cross-validation. We observe that just three components are needed. No differences
are observed between FFPLS and pFFPLS because the CV procedure selects small
penalty values of λX and λY , making both methods equivalent. We also consider a
second scenario for pFFPLS in which we fix the penalties to be large. pFFPLS (with
λX = λY = 1012) yields a higher CVE, but this loss in predictive performance is offset
by the gain in interpretability of the estimated coefficient function.
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Figure 9: Repeated 5-fold cross-validated errors (showing roots) when predicting the
yearly log precipitation Y of each station from its temperature profile X.

Figure 10 illustrates the estimated coefficient functions β̂ for FFPLS (Figure 10a) and
pFFPLS with the fixed penalties λX = λY = 1012 (Figure 10b) using three components.
The penalized model, implemented in pFFPLS (λX = λY = 1012), provides smooth
estimates of the coefficient function even when many bases are used. Furthermore,
Figure 11 presents a contour plot of the 3D β̂ for the penalized model in pFFPLS
(λX = λY = 1012). The β̂(q, p) values have been multiplied by 104 for easier interpretation.
From the plot, several important associations can be observed. Firstly, temperatures
from February to June show a negative association with log precipitation throughout the
year. This negative association is particularly strong in the period of March to April.
Conversely, a strong positive association exists between temperatures in September to
November and log precipitation throughout the year. The highest peak for this positive
association is also observed from March to April.
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(a) FFPLS (b) pFFPLS (λX = λY = 1012)

Figure 10: Estimated β̂ surfaces for the log precipitation versus temperature model using
the Canada weather stations. Both PLS models use three components.
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Figure 11: Estimated β̂ using pFFPLS (λX = λY = 1012) with three components. The
values over the contour lines were multiplied by 104 to facilitate the interpretation. The
horizontal p-axis represents the argument of the temperature profiles (X). The vertical
q-axis represents the argument of the log precipitations profiles (Y ).

24



5.2 Hip and knee angles in gait cycle

We now focus on a dataset from the Motion Analysis Laboratory at Children’s Hospital,
San Diego, originally studied in [Olshen et al., 1989]. The dataset is freely available
under the command gait in the R package fda [Ramsay, 2023] and has been widely
analyzed in [Ramsay and Silverman, 2005]. It consists of the angles formed by the hip
and knee of each of 39 children over each child’s gait cycle, as depicted in Figure 12. For
each subject, 20 records for each curve are observed on the same time interval [0; 20]. We
aim to predict the hip angle profiles from the knee angle profiles.
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Figure 12: Knee angles (X) and hip angles (Y ) over a time period that covers the gait
cycle of 39 children.

The response and predictor curves correspond to periodic curves. The cycles begin
and end at the point where the heel of the limb under observation strikes the ground.
Therefore, it makes sense to consider Fourier bases to model this data. For this illustration,
we set many bases, K = L = 41, considering that the curves are recorded in just 20
instants of time. Again, the harmonic accelerator operator is a feasible choice for
penalizing the PLS weights.

Figure 13 shows the 30-times-repeated 5-fold CVEs (in square roots) of FFPLS
versus pFFPLS. Our penalized approach provides smaller errors, particularly when more
components are added. Following the elbow rule, three components are enough for both
PLS approaches to obtain good predictions.
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Figure 13: Repeated 5-fold cross-validated errors (showing roots) when predicting the
hip angle profile Y of each subject from its knee angle profile X.

Figures 14a and 14b depict the estimated β̂ for FFPLS and pFFPLS, respectively.
Although both surfaces present a similar shape, it is clear that pFFPLS smooths out the
peaks and the rough areas provided by FFPLS. A closer look at the contour plot of the
smooth β̂(q, p) in Figure 15 indicates that it is approximately symmetrical with respect
to the q = p diagonal. The strongest positive association between hip angle and knee
angle is observed over the diagonal q = p, particularly at the beginning and end of the
gait cycle, i.e., (q, p) ∈ [0; 5]× [0; 5] and (q, p) ∈ [12.5; 20]× [12.5; 20]. On the other hand,
the strongest negative association between hip angle and knee angle is observed below
the q = p diagonal, mainly around (q, p) ∈ [0; 10]× [10; 18].
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(a) FFPLS (b) pFFPLS

Figure 14: Estimated β̂ surfaces for the hip angle versus knee angle model using the gait
cycle data. The coefficient functions correspond to models with three components.
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Figure 15: Estimated β̂ using the pFFPLS with three components. The horizontal p-axis
represents the argument of the knee angle profiles (X). The vertical q-axis represents
the argument of the hip angle profiles (Y ).

6 Conclusion and discussion

This paper introduced pFFPLS, a penalized partial least squares approach to address the
function-on-function regression problem. pFFPLS is an iterative algorithm that primarily
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operates on the coefficients obtained from a basis representation of the data and the
PLS weights. The main contribution of our approach to the current state-of-the-art
FFPLS methods is the incorporation of smoothness by penalizing the norm of the PLS
weights, even when using a large number of basis functions. We showed that the selection
of the number of basis functions is not a relevant issue in pFFPLS since the degree of
smoothness in the estimated coefficient function is controlled by means of the penalty
term introduced in the estimation of the PLS weights.

Our simulation study demonstrated that pFFPLS outperformed the non-penalized
FFPLS method. pFFPLS consistently provided more accurate estimations of the func-
tional response variable Y and the coefficient function β. More precisely, we observed
that FFPLS over smoothed the estimated β̂ when the number of bases was small and
that it provided rough estimates when this number was larger. Given the importance
of smoothness in interpreting the resulting model, we considered pFFPLS the superior
alternative.

Environmental data has been a common application domain in the function-on-
function regression literature. Our first case study illustrated our proposed method by
predicting log precipitation based on temperature profiles throughout the year from 35
Canadian weather stations, as in [Ramsay and Silverman, 2005]. In terms of predictive
accuracy, both FFPLS and pFFPLS proved equivalent because the cross-validated
procedure selects very small values of the penalties. However, with close-to-zero or zero
penalties, interpretability was compromised. To overcome this, we fixed a large value for
the penalties that slightly increased the CVE but introduced a remarkable improvement
in the smoothness and interpretability of the coefficient function.

In a second case study, we illustrated the advantages of pFFPLS compared to FFPLS
in predicting hip angle profiles from knee angle profiles using data on the gait cycle of
39 children. Our penalized approach proved superior in predictive accuracy when the
penalties were selected by cross-validation. Also, the resulting coefficient function for
pFFPLS was smoother, facilitating its interpretation.

It is important to note that both FFPLS and pFFPLS, as presented in this paper, are
asymmetric PLS algorithms. This asymmetry arises from the fact that only the component
t =

∫︁
DX

X(p)ω(p)dp is used to deflate both X and Y . As a result, our emphasis in
pFFPLS is primarily on penalizing the weights ω associated with X rather than the
weights ν associated with Y . This approach aligns with the standard procedure followed in
many scalar-on-function PLS studies [Aguilera et al., 2010, Aguilera et al., 2016], where
the aim is to avoid restricting the deflation to the rank of the scalar response. However, in
the function-on-function regression setting, the concern of rank limitation is less relevant,
as both X(p) and Y (q) are typically observed at a comparable number of nodes in DX

and DY , respectively. It is worth mentioning that developing a symmetric version of
pFFPLS is an open area of research that we intend to explore in the near future, as it
might enhance the interpretability of the resulting coefficient function.

In the simulation and case studies, FFPLS and pFFPLS were implemented using a
least-squares basis representation of the data without incorporating any penalties for
estimating the representation coefficients. This approach was chosen to avoid adding
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unnecessary complexity and computational burden to the algorithms. However, it is
indeed an interesting avenue for future research to explore the impact of incorporating
prior smoothing through penalties in estimating the curves in FFPLS compared to our
smoothing inside the pFFPLS algorithm.

Extending pFFPLS to handle multiple predictors is another intriguing possibility, as
demonstrated in [Beyaztas and Shang, 2020, Beyaztas and Shang, 2021]. Since pFFPLS
and the multivariate versions proposed by Beyaztas and Shang are all based on the FFPLS
framework originally introduced in [Preda and Schiltz, 2011], the extension should be
relatively straightforward. This extension would allow for modeling complex relationships
involving multiple predictors and interaction terms. It would be a valuable direction
for future research to explore the performance and interpretability of pFFPLS in a
multiple-predictors setting.
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[Horváth and Kokoszka, 2012] Horváth, L. and Kokoszka, P. (2012). Inference for Func-
tional Data with Applications. Springer Science+Business Media, Inc., New York,
NY.

[Ivanescu et al., 2015] Ivanescu, A. E., Staicu, A.-M., Scheipl, F., and Greven, S. (2015).
Penalized function-on-function regression. Computational Statistics, 30(2):539–568.

[Kokoszka and Reimherr, 2017] Kokoszka, P. and Reimherr, M. (2017). Introduction to
Functional Data Analysis. CRC Press Taylor & Francis Group.
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