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cat.dt: An R package for fast construction
of accurate Computerized Adaptive Tests
using Decision Trees
by Javier Rodríguez-Cuadrado, Juan C. Laria and David Delgado-Gómez

Abstract This article introduces the cat.dt package for the creation of Computerized Adaptive Tests
(CATs). Unlike existing packages, the cat.dt package represents the CAT in a Decision Tree (DT)
structure. This allows building the test before its administration, ensuring that the creation time of the
test is independent of the number of participants. Moreover, to accelerate the construction of the tree,
the package controls its growth by joining nodes with similar estimations or distributions of the ability
level and uses techniques such as message passing and pre-calculations. The constructed tree, as well
as the estimation procedure, can be visualized using the graphical tools included in the package. An
experiment designed to evaluate its performance shows that the cat.dt package drastically reduces
computational time in the creation of CATs without compromising accuracy.

Introduction

Nowadays, there is an increasing interest in the development and application of Computerized
Adaptive Tests (CATs). For instance, they are applied in several areas such as psychology (Ma et al.,
2017; Mizumoto et al., 2019), education (He and Min, 2017; Wu et al., 2017), or medicine (Michel et al.,
2018; Fox et al., 2019). The reason behind their popularity is that CATs can estimate the ability level of
a psychological variable of interest in an examinee with greater accuracy than the classical tests by
administering a smaller number of items (Weiss, 2004). Besides, the existence of certain mechanisms,
such as item exposure control (Georgiadou et al., 2007) limits the leaking of items between participants.

Concisely, CATs are tailored tests. Every item administered to the examinee is chosen from an item
bank by employing a selection criterion that considers: i) the answers given by the participant to the
items previously administered; ii) the characteristics of such items, and iii) the probabilities provided
by a model that relates the responses to each item with its characteristics. The most commonly used
criterion is Maximum Fisher Information (MFI) (Zhou and Reckase, 2014; Li et al., 2020), which selects
the item that provides the highest information for the current estimate of the ability level. However,
this criterion presents several drawbacks. These include item selection bias, large estimation errors
at the beginning of the test, high item exposure rates, and content imbalance problems (Ueno, 2013;
ZhuoKang and Liu, 2012). Various alternatives have been proposed as attempts for addressing these
problems. Among them stand out Minimum Expected Posterior Variance (MEPV) (Van der Linden
and Pashley, 2009), Kullback-Leibler Information (Chang and Ying, 1996), and Maximum Likelihood
Weighted Information (Veerkamp and Berger, 1997). Although these selection techniques largely solve
the aforementioned problems, their high computational cost complicates their practical use.

Decision Trees (DTs) have been proposed to reduce the computational cost in the creation of CATs.
Yan et al. (2004) used regression trees to predict the participants' total score. A remarkable feature
of this work is the merge of nodes to maintain a sufficient sample size to perform the partitions.
Afterward, Ueno and Songmuang (2010) developed an item selection criterion based on mutual
information in regression trees. However, unlike CATs based on Item Response Theory (IRT), these
works predict the total score of the participant rather than estimate their ability level, which makes it
difficult to compare the performance of a participant in two different tests aimed at measuring the same
construct. Recently, Delgado-Gómez et al. (2019) mathematically proved the equivalence between
IRT-based CATs and DTs when the MEPV item selection criterion is used, proposing the Tree-CAT
method, which integrates both methodologies. In their method, each node of the tree contains an item,
emerging from it as many branches as the number of the item’s possible responses. The examinees
progress through the tree according to the responses they provide until reaching the last node, where
their final estimate corresponds to the found ability level. The disadvantage of this method is that it
requires a high-performance cluster to create the tree. In this regard, the Merged Tree-CAT method
(Rodríguez-Cuadrado et al., 2020) extends and improves Tree-CAT, accelerating tree construction by
joining nodes with similar estimates or ability level distributions.

Currently, there are several packages oriented to the creation of CATs in R. Among them, we can
find catR (Magis et al., 2012; Magis and Barrada, 2017), mirtCAT (Chalmers, 2016), and catIrt (Nydick,
2014). The drawback of these packages is that they create a separate CAT for each examinee, reducing
their efficiency. For example, if two individuals provided the same response to the first item, the
computations for estimation and selection of the next item would be performed twice, even though the
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result would be the same. Therefore, the shortage of memory in these packages considerably increases
computational time, which makes the practical application of CATs difficult, or even impossible, when
the item selection criterion is one of the most computationally demanding.

This article describes the cat.dt package in which the Merged Tree-CAT method (Rodríguez-
Cuadrado et al., 2020) is implemented. Unlike the existing packages, cat.dt creates the CAT before
it is administered to the examinees and stores it in a DT structure. This allows that each time the
participant responds to an item, the estimation of their ability level and the selection of the next item
to be administered is immediate since it is pre-computed. This differs from the existing packages,
in which both calculations are performed during the test administration, making it difficult or even
impossible to use computationally expensive item selection criteria such as the MEPV. In this way, the
cat.dt package manages to quickly create CATs on a standard personal computer as well as provides
accurate estimates of the ability level of each examinee.

The rest of the article is structured as follows. Firstly, it introduces the elements of IRT and CATs
used by the Merged Tree-CAT. Next, the functions contained in the package are detailed, and an
example of its use is provided. Then, the performance of the cat.dt package is compared to that of the
catR package. Finally, the article discusses the benefits of the package.

IRT and CATs

The IRT, on which CATs are based, assumes that a participant’s response to an item depends on the
ability level of the individual and the characteristics of that item (Richardson, 1936; Lawley, 1943;
Tucker, 1946). This relationship is obtained through probabilistic models in which the probability
Pik(θ, πi) that an examinee gives the response k = 1, . . . , Ki to an item i depends on their ability level θ
and the parameters of the item πi.

For polytomous items, the most widespread model for ordered responses is the Graded Response
Model (GRM) developed by Samejima (1969):

P∗
ik(θ, πi) =

eαi(θ−βik)

1 + eαi(θ−βik)
, (1)

where αi is the discrimination parameter, βik are the difficulty (or location) parameters of each
response k, and P∗

ik(θ, πi) the probability of giving the response k or greater. Therefore Pik(θ, πi) =
P∗

ik(θ, πi)− P∗
ik+1(θ, πi), being P∗

i1(θ, πi) = 1, . . . , P∗
iKi+1(θ, πi) = 0.

When there is not a particular order in the responses, the most generic model is the Nominal
Response Model (NRM), defined by Bock (1972):

Pik(θ, πi) =
eρikθ+γik

∑Ki
r=1 eρirθ+γir

, (2)

being ρik and γik the slope and intercept parameters, respectively, for item i and response k.

These probabilistic models are used in the CATs to obtain the estimate of the ability level of the
examinee based on their responses. Of all the existing estimation methods, the Expected a Posteriori
(EAP) technique is widely used given the simplicity of its calculation and the minimum Mean Squared
Error (MSE) of its estimations (Bock and Mislevy, 1982). When the responses Ri1 , . . . , RiM of the
examinee to the items ii, . . . , iM are the possible responses k1, . . . , kM of those items, the estimate θ̂ of
the ability level is given by:

θ̂ =
∫ ∞

−∞
θ f (θ | Ri1 = k1, . . . , RiM = kM)dθ, (3)

being f (θ | Ri1 = k1, . . . , RiM = kM) the posterior density function given the responses according to
Bayes’ theorem:

f (θ | Ri1 = k1, . . . , RiM = kM) =
Pi1k1

(θ, πi1 ) · · · PiMkM (θ, πiM ) f (θ)∫ ∞
−∞ Pi1k1

(θ, πi1 ) · · · PiMkM (θ, πiM ) f (θ)dθ
, (4)

where f (θ) is the prior density function of the examinee’s ability level.

Each time an examinee responds to an item, this ability level estimation is used by the CAT to
choose the next item. Among the existing item selection methods, MFI is the most popular. This
criterion consists of choosing the item i∗ that maximizes the Fisher information function Fi(θ) evaluated
at the current estimate θ̂ of the ability level. This function is given by (Magis, 2015):
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Fi(θ) =
Ki

∑
k=1

P′
ik(θ, πi)

2

Pik(θ, πi)
− P′′

ik(θ, πi) (5)

Another criterion to highlight is the MEPV because it has been shown to be equivalent to mini-
mizing the MSE of the estimates of the ability level (Delgado-Gómez et al., 2019). In this case, given
the posterior density function f (θ | Xi1 = k1, . . . , XiM = kM) obtained from the responses to the items
i1, . . . , iM, the MEPV criterion chooses the item i∗ that minimizes the function:

Ei =
∫ ∞

−∞

(
Ki

∑
k=1

(
θ − θ̂i

M+1,k

)2
Pik(θ, πi)

)
f (θ | Ri1 = k1, . . . , RiM = kM)dθ, (6)

being θ̂i
M+1,k the ability level estimation if the examinee’s response RM+1 is the possible response k of

item i.
In summary, CATs are constructed as follows. Starting from a prior density f (θ) and a prior

estimate θ0, the first item to be administered to the examinee is selected according to an established
criterion. Once a response is given, their ability level is estimated, from which the next item to
administer is selected. This process is repeated until a stopping criterion is reached (for example, a
predetermined number of items to be administered per participant), being the final estimation of the
examinee the one obtained after their last response.

The aforementioned process is structured by the Merged Tree-CAT method in a DT as follows
(Rodríguez-Cuadrado et al., 2020). As in the Tree-CAT method, each tree node has an assigned item
and an associated estimate based on the responses given to the items assigned to the parent nodes. The
novelty of the Merged Tree-CAT method consists of limiting the growth of the tree by joining nodes
with similar estimates, accelerating its construction with the least loss of precision in the estimates.
Once constructed, the examinee progresses through the tree according to their answers until reaching
the last node, where the final estimate of their ability level is found. In addition, the Merged Tree-CAT
method incorporates item exposure control by establishing an exposure rate that limits the percentage
of participants that are administered with each item, which increases the safety of the test.

The cat.dt package implements the Merged Tree-CAT method. As it will be explained in the
following section, each of the items that form the test is chosen using the MFI or MEPV criterion,
employing the estimate obtained by the EAP method according to the GRM or NRM model.

The cat.dt package

This section starts by describing the cat.dt package architecture and its main function CAT_DT. This
is followed by a practical example on how to use this package to create CATs structured in DTs, to
visualize them, and to obtain estimates of the ability level of participants. Finally, we detail some of
the computational features taken into account in the building of the package to increase its efficiency.

The cat.dt package can be installed from CRAN (install.packages(“cat.dt”)) or from the devel-
opment version’s GitHub repository https://github.com/jlaria/cat.dt. 1

cat.dt structure

The cat.dt package consists of the functions shown in Figure 1, which also displays the dependency
relationships between them.

The most relevant functions are the following:

• CAT_DT: Creates the CAT structured in a DT.

• create_level_1: Creates the nodes that conform to the first level of the DT.

• create_levels: Creates the nodes that conform to the levels of the DT (except for the first level).

• join_node: Joins nodes from the same tree level with similar estimations or distributions of the
ability level.

• CAT_ability_est : Estimates the ability level of a participant after each response and computes
a Bayesian credible interval of the final estimation.

1This package imports the dependencies Matrix, Rglpk, and ggplot2 for matrix treatment, linear programming,
and visualization, respectively.
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Figure 1: Function dependencies.

The CAT_DT function

The input parameters of the main function CAT_DT are introduced in Table 1.

The tree growth is controlled by the parameters limit, inters, and p. The limit parameter is the
maximum number N of nodes per level. When this number is exceeded in the construction of the tree,
those nodes whose estimates of the ability level are at a distance less than a threshold (λL − λU)/N
are joined, being λL and λU the lower and upper bounds of an interval with probability p according to
the prior density function of the ability level. Finally, inters is the minimum value that must exceed
the intersection between the density functions of two nodes to join when the maximum number N of
nodes per level has not been reached. This intersection is obtained using the methodology defined in
Cha (2007).

Finally, the CAT_DT function returns a list with the input parameters introduced by the user and
the elements described in Table 2.

cat.dt usage example

Firstly, it is shown how to build a CAT using the main function CAT_DT. To do this, the item bank
from the data frame itemBank included in the package is used. Given the nature of these items, the
probabilistic model used is the GRM. Also, the item selection criterion adopted is the MEPV, the
exposure rate is set at 0.3, the length of the test at 10 items, and the prior distribution of the ability
level at an N(0, 1), leaving the rest of the parameters at their default values. The function call is made
as follows:

example_cat <- CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV", C = 0.3,
stop = c(10,0), limit = 200, inters = 0.98, p = 0.9, dens = dnorm, 0, 1)

Among the values returned by this function, the list nodes contains all the nodes that conform the
DT in which the CAT is structured. These nodes are grouped by levels. As an example, if we access
the first node of the third level,

example_cat$nodes[[3]][[1]]

we obtain
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bank

Item bank. It must be a data frame in which each row represents an item and each
column one of its parameters. If the model is GRM, the first column must be the
discrimination parameter and the remaining columns are the difficulty (or location)
parameters (Samejima, 1969). If the model is NRM, the odd columns must be the slope
parameters and the even columns the intercept parameters. (Bock, 1972).

model CAT probabilistic model. Options: “GRM” (default) and “NRM”.

crit
Item selection criterion. Options: “MEPV” for the Minimum Expected Posterior Variance
(default) or “MFI” for the Maximum Fisher Information.

C
Expected fraction C of participants administered with each item (exposure rate). It can
be a vector with as many elements as items in the bank or a positive number if all the
items have the same rate. Default: C = 0.3.

stop

Vector of two components that represent the CAT stopping criteria. The first component
represents the maximum level L of the DT and the second represents the threshold for
the Standard Error (SE) of the ability level (Bock and Mislevy, 1982) (if 0, this second
criterion is not applied). Default: stop = c(6,0).

limit
Maximum number N of nodes per level (max. N = 10000). This is the main parameter
that controls the tree growth. It must be a natural number. Default: limit = 200.

inters
Minimum intersection of the density functions of two nodes to be joined. It must be
a number between 0 and 1. If the user wants to avoid using this criteria, inters = 0
should be specified. Default: inters = 0.98.

p
Prior probability of the interval whose limits determine a threshold for the distance
between estimations of nodes to join. Default: p = 0.9.

dens Prior density function of the ability level. It must be an R function: dnorm, dunif, etc.

... Parameters to dens.

Table 1: Main function parameters.

$`ID`
[1] 30001

$item
[1] 22

$item_prev
[1] 18 11

$est
[1] -1.10257

$SE
[1] 0.8071584

$ID_sons
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nodes

List with a maximum of L + 1 elements (levels). Each level contains a list of the nodes
of the corresponding level. Note that the first level will contain more than one root node
if C < 1. In this case, each examinee would start the test for one of them at random. The
nodes of the additional level L + 1 only include the estimation and distribution of the
ability level given the responses to the items of the final level L. Note that the nodes
list can have less than L + 1 elements if the SE stopping criterion is satisfied for all the
nodes from a previous level.

C_left Residual exposure rate of each item after the CAT construction.

predict

Function that returns the estimated ability level of an examinee after each response and
a Bayesian credible interval of the final estimation given their responses to the items
from the item bank. These responses must be entered by the user as a numeric vector
input. In addition, it returns a vector with the items that have been administered to the
examinee. This is the function CAT_ability_est of the package.

predict_group
Function that returns a list whose elements are the returned values of the
function predict for every examinee from the group. This is the function
CAT_ability_est_group of the package.

Table 2: Main function output.

ID_son Response Probability
1 40001 1 1
2 40002 2 1
3 40003 3 1

$D
[1] 0.03331851

$as_val
[1] 0.5396903

This list contains, among others, information about: i) ID, the node identifier; ii) item, the item
assigned to the node; iii) item_prev, the items previously administered to the examinee that reaches
the node; iv) est, the estimation of the ability level after their responses to these items, v) SE, the SE
associated to that estimation. Finally, the data frame ID_sons contains the ID of each child node, the
response that leads to it, and the probability of, given that response, accessing that child node.

A description of the tree can be obtained using the R function summary. This function provides: i)
The number of levels; ii) The number of nodes per level; iii) The probabilistic model used; iv) The item
selection criterion used; v) The residual exposure rate of every item and vi) The percentage of items
used to build the test. In order to summarize the tree, we enter

summary(example_cat)

to obtain

----------------------------------------------------------------------
Number of tree levels: 10

Number of nodes in level 1 : 4
Number of nodes in level 2 : 14
Number of nodes in level 3 : 39
Number of nodes in level 4 : 99
Number of nodes in level 5 : 101
Number of nodes in level 6 : 124
Number of nodes in level 7 : 141
Number of nodes in level 8 : 158
Number of nodes in level 9 : 165
Number of nodes in level 10 : 177
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----------------------------------------------------------------------
Psychometric probabilistic model: GRM
Item selection criterion: MEPV
----------------------------------------------------------------------
Item exposure:
item 1 : 0.000 item 2 : 0.0768 item 3 : 0.000 item 4 : 0.1704
item 5 : 0.1532 item 6 : 0.000 item 7 : 0.300 item 8 : 0.000
item 9 : 0.000 item 10 : 0.000 item 11 : 0.300 item 12 : 0.000
item 13 : 0.000 item 14 : 0.000 item 15 : 0.2508 item 16 : 0.000
item 17 : 0.000 item 18 : 0.300 item 19 : 0.2113 item 20 : 0.255
item 21 : 0.2314 item 22 : 0.2565 item 23 : 0.000 item 24 : 0.000
item 25 : 0.0532 item 26 : 0.000 item 27 : 0.000 item 28 : 0.000
item 29 : 0.000 item 30 : 0.0855 item 31 : 0.300 item 32 : 0.000
item 33 : 0.0107 item 34 : 0.000 item 35 : 0.000 item 36 : 0.0127
item 37 : 0.000 item 38 : 0.000 item 39 : 0.2467 item 40 : 0.0902
item 41 : 0.000 item 42 : 0.000 item 43 : 0.2611 item 44 : 0.300
item 45 : 0.000 item 46 : 0.000 item 47 : 0.300 item 48 : 0.0885
item 49 : 0.000 item 50 : 0.300 item 51 : 0.1192 item 52 : 0.000
item 53 : 0.0166 item 54 : 0.000 item 55 : 0.300 item 56 : 0.300
item 57 : 0.000 item 58 : 0.000 item 59 : 0.2233 item 60 : 0.000
item 61 : 0.300 item 62 : 0.000 item 63 : 0.2583 item 64 : 0.0839
item 65 : 0.000 item 66 : 0.0367 item 67 : 0.000 item 68 : 0.300
item 69 : 0.300 item 70 : 0.300 item 71 : 0.1213 item 72 : 0.000
item 73 : 0.1803 item 74 : 0.000 item 75 : 0.000 item 76 : 0.000
item 77 : 0.000 item 78 : 0.000 item 79 : 0.0153 item 80 : 0.000
item 81 : 0.000 item 82 : 0.000 item 83 : 0.300 item 84 : 0.000
item 85 : 0.2125 item 86 : 0.1251 item 87 : 0.1741 item 88 : 0.000
item 89 : 0.0253 item 90 : 0.300 item 91 : 0.000 item 92 : 0.300
item 93 : 0.2539 item 94 : 0.300 item 95 : 0.300 item 96 : 0.300
item 97 : 0.000 item 98 : 0.000 item 99 : 0.000 item 100 : 0.000

Percentage of items used: 49 %
----------------------------------------------------------------------

In addition, the tree created can be visualized by means of the function plot_tree. This function
takes as input arguments: i) The tree created; ii) The number of levels to plot, iii) The index of the root
node to start the test. For example, by introducing

plot_tree(example_cat, levels = 3, tree = 3)

we obtain the following plot

Figure 2: Tree visualization.

Once the CAT has been created, the ability level of an examinee is estimated using the predict
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the estimation information is available for every examinee. For instance, to know the items adminis-
tered to the second examinee, the following must be introduced:

est_group[[2]]$items

Obtaining:

[1] 61 92 95 55 50 59 85 63 19 69

Alternatively to the predict function, it can be introduced example_cat$predict_group(itemRes) or
CAT_ability_est_group(example_cat,itemRes).

A similar example can be found in the tutorial vignette included in the package.

Computational features

Before ending this section, we detail the computational features that accelerate the construction of the
tree and reduce memory space.

• Message passing: The calculation of the posterior density function (equation 4) is necessary to
obtain the estimation of the ability level (equation 3), the selection of the next item according to
the MEPV criterion (equation 6), and the Bayesian credible interval of the final estimation. Such
calculation would involve the multiplication of M terms for each node of the corresponding
level. However, since the multiplication of the first M − 1 terms is done to obtain the density
function of the parent node, this information is stored by the cat.dt package and passed to the
child node, in which only the last term is multiplied.

• Joining nodes: the cat.dt package joins those nodes whose estimations and/or posterior density
functions meet the similarity criteria determined by the parameters limit, inters, and p. These
unions control tree growth, which significantly accelerates tree creation and reduces the amount
of memory space without losing precision in the estimations.

• Riemann integration and probability pre-calculation: The integrals required in the equations
3, 4, and 6 are approximated numerically by Riemann integration. To do this, a set of ability
levels {θ0, . . . , θ4000} is considered, where θj = −10 + j/200, covering the interval (−10, 10).
The Riemann integration in equation 6 requires the previous calculation of Pik(θj, πi) for each
item i, possible answer k, and ability level θj. Because of this, these probabilities are calculated
and stored before the creation of the tree and then used in equations 4, 5, and 6. This avoids
repeating unnecessary calculations and accelerates the creation of the CAT.

Performance assessment

In this section, the performance of the cat.dt package is compared to that of the catR package. Ability
level estimates and computational times of both packages have been studied for nine different sim-
ulation scenarios. In each scenario, a CAT is constructed from an item bank (composed of 100, 200,
or 500 items), which is administered to a group of examinees (1000, 2000, or 5000 examinees). The
database for each scenario can be found online 2 in the format [number of items]_items_[number of
examinees]_examinees.RData.

Similar to the example of the previous section, the probabilistic model used is GRM, the criteria
for selecting items is MEPV, the length of the test is ten items per participant (the SE threshold is set
at 0), and the prior distribution of the ability level is N(0, 1). However, unlike the aforementioned
example, there is no item exposure control (C = 1) since the implementation differs in both packages:
the cat.dt package builds the CAT before administration and the catR package during administration.

All the simulations for both packages were run in an HP Z230 Tower Workstation with an Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz, with 32 GB of RAM, running Debian GNU/Linux 10, R 3.5.2.

Figure 4 illustrates the MSE of the ability level estimates after each response of the examinees,
obtained by both packages in each scenario. It is observed that the estimates after each response are
equally accurate, indicating that the performance of both packages is very similar.

On the other hand, Table 3 displays the time employed by each package in the computations for
the creation of the CAT and the evaluation of those examined in each scenario. It can be seen that
the cat.dt package is barely affected by the number of examinees since the CAT is created before it is
administered to the participants. However, the catR package creates a CAT for each examinee, so the
computational time is proportional to the number of participants. This causes catR package to take
several days in total for the creation and administration of the CAT, whereas package cat.dt takes a
few minutes, being this difference larger the higher the number of examinees.

2https://github.com/jlaria/cat.dt-performance-assessment
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Figure 4: MSE of ability trait estimates.

100 items 200 items 500 items

cat.dt catR cat.dt catR cat.dt catR

ex
am

. 1000 93.94 s 40.23 h 263.04 s 81.04 h 608.71 s 206.61 h
2000 160.67 s 78.55 h 314.88 s 162.22 h 635.54 s 413.82 h
5000 160.14 s 196.98 h 264.50 s 406.79 h 675.42 s 1033.65 h

Table 3: CAT creation and evaluation times.

Summary

This article has introduced the cat.dt package oriented to the creation of CATs structured in DTs, their
visualization, and the estimation of the ability levels of the examinees. Unlike the existing packages,
the cat.dt package creates the test before being administered to the examinees, so its performance is
independent of the number of participants. For this reason, it is ideal for application to large groups,
taking a few minutes to create and administer the test. Besides, it has been shown that the cat.dt
package obtains ability level estimates as accurate as those obtained by the catR package, which is
widely used in the field of CATs.
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