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Abstract

In this work we present new results on the convergence of diagonal sequences of certain

mixed type Hermite-Padé approximants of a Nikishin system. The study is motivated by

a mixed Hermite-Padé approximation scheme used in the construction of solutions of a

Degasperis-Procesi peakon problem and germane to the analysis of the inverse spectral

problem for the discrete cubic string.
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1 Introduction

This article deals with the convergence of sequences of a mixed type Hermite-Padé approximation.
Hermite-Padé approximation was introduced by Ch. Hermite [18] for proving the trascendence
of the number e and subsequently it has been used in other number theory related problems (for
a survey of such applications see [30]). In recent years, they have received increasing attention
because of their applicability in other areas such as non-intersecting brownian motions theory[9],
the study of multiple orthogonal polynomials ensembles [21], random matrix theory [5, 22], and
in the solution of the Degasperis-Procesi (DP) differential equation (see, for example, [1, 2, 25]).
This paper is motivated in an approximation problem relevant to the solution of the DP equation.
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1.1 The Degasperis-Procesi equation and an approximation problem.

In [25], the authors study the following partial differential equation

ut − uxxt + (b + 1)uux = buxuxx + uuxxx, (x, t) ∈ R
2. (1.1)

It is known that this equation is completely integrable if and only if b = 2 or b = 3. The case
b = 2 is the well-known Camassa-Holm (CH) shallow water equation [7]. The case b = 3 is
the Degasperis-Procesi (DP) equation, found by Degasperis and Procesi [12], and subsequently
shown by Degasperis, Holm, and Hone [10, 11] to be integrable. All equations in the family (1.1)
admit (in a weak sense) a type of non smooth solutions called multipeakons (peakon = peaked
soliton). These take the form of a train of peak-shaped interacting waves,

u(x, t) =
n∑

i=1

mi(t)e
−|x−xi(t)|. (1.2)

This Ansatz is then substituted into (1.1), resulting in a system of ordinary differential equations
on unknown smooth functions xi(t) and mi(t).

To solve this system the authors of [25] consider a certain boundary value problem, called the
discrete cubic string. This problem is the main tool to obtain the explicit formulas, but it is also
an interesting problem in its own right from the point of view of operator theory. By the forward
cubic string problem we mean the following third-order spectral problem: for a given positive
measure g(y), determine the eigenvalues z for which nontrivial continuous eigenfunctions φ(y)
satisfy

φyyy(y) = zg(y)φ(y), for y ∈ (−1, 1), φ(−1) = φy(−1) = 0, φ(1) = 0, (1.3)

in a distributional sense. If the singular support of g(y) contains the endpoints then the values
of φ and its derivatives at −1, 1 are replaced with the left hand, right hand limits respectively.

This spectral problem is proved in [25] to be equivalent under a change of variables to the
one appearing in the DP Lax pair. It can be viewed as a non-self-adjoint generalization of the
well-known (self-adjoint) string equation

φyy = zg(y)φ(y) for y ∈ (−1, 1), φ(−1) = 0, φ(1) = 0, (1.4)

studied by M.G. Krein in the 50’s [19].

The discrete case arises when g(y) is a discrete measure; in other words g =
∑N

i=1 giδyi
. Since

the point masses gi are placed at positions yi and there are no masses between the points the
eigenfunctions are piecewise linear in y for the ordinary string, and piecewise quadratic for the
cubic string.

The discrete (ordinary) string plays a crucial role in finding the general n-peakon solution for
the CH equation [1, 2]. The inverse spectral problem consists in determining the positions yi and
masses gi given the eigenfrequencies and suitable additional information about the eigenfunctions
(encoded in the spectral measure of the string or, equivalently, in its Cauchy transform). The
solution presented in [1] relies on the work of T. Stieltjes [29], as well as its interpretation by
M.G. Krein [19] as a special case of the inverse string problem; it involves Stieltjes continued
fractions, the classical moment problem, Padé approximation, and orthogonal polynomials.
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The remarkable fact is that in both cases (CH and DP) the associated spectral problems
have a finite positive spectrum; this is not so surprising in the case of the ordinary string which
is a self-adjoint problem, but it is quite unexpected for the cubic string, since the problem is
non-self-adjoint and there is no a priori reason for the spectrum to even be real, much less
positive.

Though the inverse cubic string problem is not the main concern of this paper, in Appendix A
we will show how its solution is connected with an approximation problem which we will present
shortly using a terminology and notation more convenient for our purpose.

Given two measures σ1, σ2 whose supports are contained on the real line and have at most
one point in common, suppose that the following functions are well defined in the complement
of the support of σ1

ŝ1,1(z) =

∫
dσ1(x)

z − x
, ŝ1,2(z) =

∫
dσ1(x)

z − x

∫
dσ2(x)

x− y

The pair (ŝ1,1, ŝ1,2) constitutes what is known as a Nikishin system of functions (of order 2).
Interchanging the roles of σ1, σ2 we can define in the same manner the Nikishin system (ŝ2,2, ŝ2,1).

Hermite-Padé approximation problem 1. Consider the systems (ŝ1,1, ŝ1,2) and (ŝ2,2, ŝ2,1).
Then for each n ∈ N, we seek polynomials (an,0, an,1, an,2), not all identically equal to zero, with
deg an,0 ≤ n− 1, deg an,1 ≤ n− 1, and deg an,2 ≤ n, that satisfy:

(an,0 − an,1ŝ1,1 + an,2ŝ1,2) (z) = O(1/zn+1), (1.5)

(an,1 − an,2ŝ2,2) (z) = O(1/z). (1.6)

In the inverse cubic string problem, the measures σ1, σ2 are connected with the Weyl functions
of the spectral problem (1.3). In the situation considered in [1, 2] the measures are discrete. With
the degree of generalization presented here this problem was proposed in [4].

In the present paper, in Theorem 1.4 we study the existence and uniqueness of the solution
of an analogous approximation problem as well as the location of the zeros of the Nikishin
polynomials for systems of order m ≥ 2, biorthogonality properties satisfied by the polynomials
an,m are given in Theorem 1.5, and the limit behavior of the Nikishin polynomials is described
in Theorem 1.6.

1.2 Nikishin systems.

In Hermite-Padé approximation the object of approximation is a system of analytic functions.
We restrict our attention to so called Nikishin systems which contain, in particular, the functions
appearing in equations (1.5) and (1.6). Nikishin systems were first introduced in [27]. We will
use a more general definition given in [15] which is more appropriate for our purpose.

In the sequel ∆ denotes an interval contained in the real axis. By M(∆) we denote the class
of all Borel measures s with constant sign whose support consists on infinitely many points and
is contained in ∆ such that xν ∈ L1(s) for all ν ∈ Z+. We denote the Cauchy transform of s by

ŝ(z) =

∫
ds(x)

z − x
.
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We have

ŝ(z) ∼
∞∑

j=0

cj
zj+1

, cj =

∫
xjds(x). (1.7)

If the support of s, supp(s), is bounded the series is convergent in a neighborhood of∞; otherwise,
the expansion is asymptotic at ∞. That is, for each k ≥ 0

lim
z→∞

zk+1


ŝ(z)−

k−1∑

j=0

cj
zj+1


 = ck,

where the limit is taken along any curve which is non tangential to supp(s) at ∞.

Now, let ∆α,∆β be two intervals contained in the real line with at most one common point.
Take σα ∈ M(∆α) and σβ ∈ M(∆β) such that σ̂β ∈ L1(σα). Then, using the differential
notation, we define a third measure 〈σα, σβ〉 as follows

d〈σα, σβ〉(x) := σ̂β(x)dσα(x).

In consecutive products of measures such as 〈σγ , σα, σβ〉 := 〈σγ , 〈σα, σβ〉〉, we assume not only

that σ̂β ∈ L1(σα) but also 〈σα, σβ 〉̂ ∈ L1(σγ), where 〈σα, σβ 〉̂ denotes the Cauchy transform of
〈σα, σβ〉.

Consider a collection ∆j , j = 1, . . . ,m, of intervals such that

∆j ∩∆j+1 = ∅, or ∆j ∩∆j+1 = {xj,j+1}, j = 1, . . . ,m− 1,

where xj,j+1 is a single point. Let (σ1, . . . , σm) be a system of measures such that Co(supp(σj)) =
∆j , σj ∈ M(∆j), j = 1, . . . ,m, where Co(E) denotes the convex hull of the set E. Denote

〈σj , . . . , σk〉 := 〈σj , 〈σj+1, . . . , σk〉〉 ∈ M(∆j), 1 ≤ j < k ≤ m.

If ∆j ∩∆j+1 = {xj,j+1} we also assume that xj,j+1 is not a mass point of either σj or σj+1.

Definition 1.1. With the notation above, we say that s = (s1,1, . . . , s1,m) = N (σ1, . . . , σm),
where

s1,1 = σ1, s1,2 = 〈σ1, σ2〉, . . . , s1,m = 〈σ1, σ2, . . . , σm〉. (1.8)

is the Nikishin system of measures generated by (σ1, . . . , σm). The corresponding Nikishin system
of functions will be denoted by ŝ = (ŝ1,1, . . . , ŝ1,m), where ŝ1,j is the Cauchy transform of s1,j.

This definition extends the one given in [27] by allowing the generating measures to have
unbounded support and/or have consecutive ∆j with a common endpoint. That the generating
measures have infinite support is not required for the definition of Nikishin systems; however,
this condition is frequently used in the proof of the main results. If a measure has discrete
support its Cauchy transform reduces to a rational function and the arguments used in the proof
of some results must be modified. Sometimes the statement of the results themselves become
obvious. For example, if that is the case in equations (1.5) and (1.6), the left hand sides of those
relations become identically equal to zero, for all n larger than the number of mass points, and
the question about convergence of the approximants is trivial.

In what follows, for 1 ≤ j ≤ k ≤ m, we denote

sj,k := 〈σj , σj+1, . . . , σk〉, sk,j := 〈σk, σk−1, . . . , σj〉. (1.9)

In particular, with the collection of measures (σ1, . . . , σm), we can also define the reversed Nik-
ishin system (sm,m, . . . , sm,1) = N (σm, . . . , σ1).
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1.3 Statement of main results.

Equations (1.5) and (1.6) suggests the following extensions to the case of Nikishin systems with
m ≥ 2 measures.

Definition 1.2. [Direct/reversed Hermite-Padé approximation]

Consider the Nikishin systems N (σ1, σ2, . . . , σm) and N (σm, σm−1, . . . , σ1). Then, for each
n ∈ N, there exist polynomials an,0, an,1, . . . , an,m, with deg an,j ≤ n − 1, j = 0, 1 . . . ,m − 1,
and deg an,m ≤ n, not all identically equal to zero, called direct/reversed (DR) Hermite-Padé
polynomials that satisfy:

(an,0 − an,1ŝ1,1 + an,2ŝ1,2 · · ·+ (−1)man,mŝ1,m) (z) = O(1/zn+1) (1.10)

(−1) (an,1 − an,mŝm,2) (z) = O(1/z) (1.11)

..........................................................

(−1)m−2 (an,m−2 − an,mŝm,m−1) (z) = O(1/z) (1.12)

(−1)m−1 (an,m−1 − an,mŝm,m) (z) = O(1/z). (1.13)

Alternatively, we could extend the approximation problem as follows.

Definition 1.3. [Multi-level Hermite-Padé approximation]

Consider the Nikishin system N (σ1, σ2, . . . , σm). Then, for each n ∈ N, there exist polynomials
an,0, an,1, . . . , an,m with deg an,j ≤ n− 1, j = 0, 1 . . . ,m− 1, and deg an,m ≤ n, not all identically
equal to zero, called multi-level (ML) Hermite-Padé polynomials that verify:

An,0(z) := (an,0 − an,1ŝ1,1 + an,2ŝ1,2 · · ·+ (−1)man,mŝ1,m) (z) = O(1/zn+1) (1.14)

An,1(z) := (−an,1 + an,2ŝ2,2 − an,3ŝ2,3 · · ·+ (−1)man,mŝ2,m) (z) = O(1/z) (1.15)

........................................................................................

An,m−1(z) :=
(
(−1)m−1an,m−1 + (−1)man,mŝm,m

)
(z) = O(1/z). (1.16)

Notice that in this formulation the reversed Nikishin system N (σm, σm−1, . . . , σ1) does not
appear explicitly. On the other hand, the interpolation conditions involve all Nikishin systems at
the “inner” levels; that is, N (σ1, σ2, . . . , σm), N (σ2, σ3, . . . , σm), . . ., (sm,m) = N (σm). However,
in Section 3 we prove

Theorem 1.4. For each fixed n, the DR Hermite-Padé polynomials and the ML Hermite-Padé
polynomials coincide and the vector polynomial (an,0, an,1, . . . , an,m) is uniquely determined ex-
cept for constant multiples. Additionally, deg an,j = n− 1, j = 0, . . . ,m− 1, and deg an,m = n.

Moreover, the zeros of an,m−1 and an,m are all simple and lie in
◦

∆m (the interior of ∆m with
the Euclidean topology of R).

In both cases, finding the polynomials (an,0, an,1, . . . , an,m) reduces to solving a homogeneous
linear system of n(m + 1) equations (the interpolations conditions) on n(m + 1) + 1 unknowns
(the coefficients of the polynomials); therefore, the corresponding system of equations has a
non-trivial solution.

For a fixed n ∈ N, consider the vector (bn,0, . . . , bn,m) of ML Hermite-Padé polynomials
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associated with the reversed Nikishin system N (σm, . . . , σ1). That is, the vector is non null and

(bn,0 − bn,1ŝm,m + bn,2ŝm,m−1 · · ·+ (−1)mbn,mŝm,1) (z) = O(1/zn+1) (1.17)

(−bn,1 + bn,2ŝm−1,m−1 · · ·+ (−1)mbn,mŝm−1,1) (z) = O(1/z) (1.18)

........................................................................................
(
(−1)m−1bn,m−1 + (−1)mbn,mŝ1,1

)
(z) = O(1/z). (1.19)

Let

K(x1, x2) =
1

x1 − x2

denote the usual Cauchy kernel. For m > 2 we define the Cauchy convolution kernel in the
following manner

K(x1, xm) =

∫

∆2

∫

∆3

· · ·

∫

∆m−1

dσm−1(xm−1) · · · dσ3(x3)dσ2(x2)

(xm−1 − xm)(xm−2 − xm−1) · · · (x2 − x3)(x1 − x2)
.

Theorem 1.5. The sequences of polynomials (an,m(z))n∈N
and (bk,m(z))k∈N

are biorthogonal
with respect to the Cauchy convolution kernel and the measures (σ1, σ2, . . . , σm); that is,

∫

∆1

∫

∆m

bk,m(x1)K(x1, xm)an,m(xm)dσm(xm)dσ1(x1) = hnδn,k, hn 6= 0. (1.20)

where δk,n = 0, k 6= n, and δn,n = 1.

This type of biorthogonality has been discussed previously, among others, in [3, 4].

We are mainly concerned with the convergence properties of the sequence of vector rational
functions (

an,0
an,m

, . . . ,
an,m−1

an,m

)
, n ∈ N.

Taking into consideration the interpolation conditions and the relation

0 ≡ ŝm,1 +

m−1∑

j=1

(−1)j ŝm,j+1ŝ1,j + (−1)mŝ1,m, z ∈ C \ (∆1 ∪∆m), (1.21)

whose proof may be found in [15, Lemma 2.9] (and is not difficult to verify), one can expect that
under appropriate assumptions the limit should be the system of functions (ŝm,1, . . . , ŝm,m).
This prediction is consistent with the convergence properties of type II and type I Hermite-
Padé approximants studied in [6, Theorem 1] (see also [13], [17], [28]) and [24, Theorem 1.4],
respectively. For the definition of type I and type II Hermite-Padé approximation see Subsection
2.1.

Let ∆ ⊂ R and σ ∈ M(∆). We say that σ satisfies Carleman’s condition [8] if

∑

ν≥0

|cν |
−1/2ν = ∞, (1.22)

where cν =
∫
xνdσ(x) denotes the ν-th moment of σ.

For a measure σ supported on an interval of the form [a,+∞) or (−∞, a], a ∈ R, Carleman’s
condition guarantees that the corresponding moment problem is determinate. Stieltjes’ theorem
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[29] states that if the moment problem for σ is determinate then the diagonal sequence of Padé
approximants of σ̂ converges. If supp(σ) is bounded the moment problem is determinate and
Markov’s theorem follows (see [26]).

Theorem 1.6. For each n ∈ N, let an,0, an,1, . . . , an,m be the collection of ML (or DR) Hermite-
Padé polynomials associated with the Nikishin system N (σ1, σ2, . . . , σm). Suppose that either
the sequence of moments of σm satisfies Carleman’s condition or ∆m−1 is a bounded interval
contained in C \∆m. Then, for j = 0, . . .m− 1

lim
n→∞

an,j
an,m

= ŝm,j+1, (1.23)

uniformly on each compact subset K ⊂ C \∆m. Moreover

lim
n→∞

(−1)j
an,j(z)

an,m(z)
+

m−1∑

k=j+1

(−1)k
an,k(z)

an,m(z)
ŝj+1,k(z) + (−1)mŝj+1,m(z) = 0 (1.24)

uniformly on each compact subset K ⊂ C \ (∆j+1 ∪∆m).

The limit of the sequence (an,0/an,m, . . . , an,m−1/an,m), n ∈ N, is the same as for type I
Hermite-Padé approximation of N (σ1, σ2, . . . , σm) and type II Hermite-Padé approximation of
N (σm, σm−1, . . . , σ1). For details, see [24, Theorem 1.4] and [6, Theorem 1].

In [25], the authors study the case where the solutions (1.2) are formed by a finite linear
combination of single peakon terms mie

−|x−xi|. In that case, the Cauchy transform of the
spectral measures (s1,1, s1,2, s2,2, s2,1) are rational fractions and for n sufficiently large we have
exact equalities in (1.5) and (1.6). If we are interested in the case of peakon solutions (1.2)
formed by an infinite number of peakons, or if we study the cubic string problem for which the
weight g(y) is not a discrete measure we need to deal with the convergence of the corresponding
mixed type Hermite-Padé approximants. Thus Theorem 1.6 opens a new direction of research
aimed at the construction of general solutions to the DP equation using peakon approximations.

2 Proof of the main results.

2.1 Type I and type II Hermite-Padé polynomials.

We are considering a combination of type I and type II Hermite-Padé polynomials which have
received considerable attention for its many applications. Our construction falls in the category
of mixed type Hermite-Padé approximation.

Consider a Nikishin system (s1,1, . . . , s1,m) = N (σ1, . . . , σm). Fix n = (n1, . . . , nm) ∈ Zm
+ \

{0}, Z+ = {0, 1, 2, . . .}. Their exist polynomials Qn, Pn,1, . . . Pn,m, called type II Hermite-Padé
polynomials of ŝ = (ŝ1,1, . . . , ŝ1,m) with respect to n that satisfy:

i) degQn ≤ n1 + · · ·+ nm, Qn 6≡ 0,

ii) (Qnŝ1,j − Pn,j)(z) = O(1/znj+1), j = 1, . . . ,m.

On the other hand, the collection of polynomials an,0, . . . , an,m is called a type I Hermite-Padé
polynomial of ŝ with respect to n if:
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iii) deg an,j ≤ nj − 1, j = 1, . . . ,m, not all identically equal to zero,

iv) (an,0 +
∑m

j=1(−1)jan,j ŝ1,j)(z) = O(1/zn1+···+nm).

Whenm = 1 both definitions coincide with classical diagonal Padé approximation. In contrast
with Padé approximation, when m ≥ 2 the uniqueness (up to constant multiples) of these
polynomials is not a trivial matter and was solved positively in [14, 15] for Nikishin systems.
However, for arbitrary systems of functions uniqueness is not true in general.

Notice that the ML or DR Hermite Padé polynomials combine interpolation conditions of the
form (ii) and (iv) and are therefore called of mixed type.

2.2 Some auxiliary results and concepts.

The following lemma will be used in the proof of Theorems 1.4 and 1.6. Let us define the linear
forms with polynomial coefficients

Lj := ℓj +

m∑

k=j+1

ℓkŝj+1,k, j = 0, . . . ,m− 1, Lm = ℓm, (2.1)

where the ℓj are arbitrary polynomials.

Lemma 2.1. Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) be given. Then, for each j = 0, . . . ,m − 2
and r = j + 1, . . . ,m− 1

Lj +
r∑

k=j+1

(−1)k−j ŝk,j+1Lk = ℓj + (−1)r−j
m∑

k=r+1

ℓk〈sr+1,k, sr,j+1 〉̂. (2.2)

Proof. Fix j, 0 ≤ j ≤ m− 2, and let r = j + 1. Then the left hand side of (2.2) equals

Lj − ŝj+1,j+1Lj+1 = ℓj +

m∑

k=j+2

ℓk (ŝj+1,k − ŝj+1,j+1 ŝj+2,k) .

Formula (1.21) applied to the Nikishin system of two measures N (sj+1,j+1 , sj+2,k) gives

〈sj+1,j+1, sj+2,k 〉̂ − ŝj+1,j+1 ŝj+2,k + 〈sj+2,k, sj+1,j+1 〉̂ ≡ 0.

However, sj+1,k = 〈sj+1,j+1, sj+2,k〉, hence

Lj − ŝj+1,j+1Lj+1 = ℓj −
m∑

k=j+2

ℓk〈sj+2,k, sj+1,j+1 〉̂

as needed. For j = m− 2 the proof is complete.

Now, fix j < m− 2 and suppose that (2.2) is true for some r, j + 1 ≤ r ≤ m− 2, and let us
prove that it also holds for r + 1. Using the induction hypothesis, we obtain

Lj +

r+1∑

k=j+1

(−1)k−j ŝk,j+1Lk = Lj +

r∑

k=j+1

(−1)k−j ŝk,j+1Lk + (−1)r+1−j ŝr+1,j+1Lr+1 =

8



ℓj + (−1)r−j
m∑

k=r+1

ℓk〈sr+1,k, sr,j+1 〉̂+ (−1)r+1−j ŝr+1,j+1Lr+1 =

ℓj + (−1)r−jℓr+1ŝr+1,j+1 + (−1)r−j
m∑

k=r+2

ℓk〈sr+1,k, sr,j+1〉̂+ (−1)r+1−j ŝr+1,j+1Lr+1 =

ℓj + (−1)r−j
m∑

k=r+2

ℓk

(
〈sr+1,j+1, sr+2,k〉̂ − ŝr+1,j+1ŝr+2,k

)
=

ℓj + (−1)r+1−j
m∑

k=r+2

ℓk〈sr+2,j+1, sr+1,j+1〉̂,

as claimed. In the second last step, we use the identity

〈sr+1,k, sr,j+1〉 = 〈〈sr+1,r+1, sr+2,k〉, sr,j+1〉 = 〈〈sr+1,r+1, sr,j+1〉, sr+2,k〉 = 〈sr+1,j+1, sr+2,k〉,

while in the last one we use

〈sr+1,j+1, sr+2,j+1 〉̂ − ŝr+1,j+1ŝr+2,k + 〈sr+2,j+1, sr+1,j+1〉̂ ≡ 0,

which is formula (1.21) applied to the Nikishin system of two measures N (sr+1,j+1, sr+2,k).

We will make frequent use of [24, Theorem 1.3]. For convenience of the reader, we state it
here as a lemma.

Lemma 2.2. Let (s1,1, . . . , s1,m) = N (σ1, . . . , σm) be given. Assume that there exist polynomials
with real coefficients ℓ0, . . . , ℓm and a polynomial w with real coefficients whose zeros lie in C\∆1

such that
L0(z)

w(z)
∈ H(C \∆1) and

L0(z)

w(z)
= O

(
1

zN

)
, z → ∞,

where L0 := ℓ0 +
∑m

k=1 ℓkŝ1,k and N ≥ 1. Let L1 := ℓ1 +
∑m

k=2 ℓkŝ2,k. Then

L0(z)

w(z)
=

∫
L1(x)

(z − x)

dσ1(x)

w(x)
. (2.3)

If N ≥ 2, we also have

∫
xνL1(x)

dσ1(x)

w(x)
= 0, ν = 0, . . . , N − 2. (2.4)

In particular, L1 has at least N − 1 sign changes in
◦

∆1.

Let us advance the following partial result.

Lemma 2.3. For each fixed n ∈ N, the ML Hermite-Padé polynomial an,m has degree n or it is
identically equal to zero.

Proof. Fix n ∈ N and let (an,0, . . . , an,m) be the corresponding ML Hermite-Padé polynomials.
Everywhere below An,j , j = 0, . . . ,m− 1 are the forms in Definition 1.3 and An,m = an,m. Let
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us show that for each j = 0, . . . ,m−1, there exists a polynomial wn,j with real coefficients whose
zeros lie in C \∆j+1 such that

An,j(z)

wn,j(z)
= O(1/zn+1),

An,j(z)

wn,j(z)
∈ H(C \∆j+1). (2.5)

Due to (1.14), if j = 0 one can take wn,0 ≡ 1. Let us assume that the statement is true for
some j ∈ {0, . . . ,m− 2} and let us show that it also holds for j + 1.

Using (2.4) in Lemma 2.2 (on N (σj+1, . . . , σm)) and (2.5), we obtain that

0 =

∫
xνAn,j+1(x)

dσj+1(x)

wn,j(x)
, ν = 0, . . . , n− 1.

These orthogonality relations imply that An,j+1 has at least n sign changes on the interval ∆j+1.
Let wn,j+1 be a polynomial of degree n with simple zeros at points of ∆j+1 where An,j+1 changes
sign; therefore, its zeros belong to C \∆j+2. By the way in which wn,j+1 was defined, we have

An,j+1(z)

wn,j+1(z)
∈ H(C \∆j+2).

Taking into account that degwn,j+1 = n and since An,j+1(z) = O(1/z) according to Definition
1.3, we also have An,j+1(z)/wn,j+1(z) = O(1/zn+1) as claimed.

For j = m− 1 equation (2.5) takes the form

(an,m−1 − an,mŝm,m) (z)

wn,m−1(z)
= O(1/zn+1) ∈ H(C \∆m). (2.6)

Using (2.4), we obtain

∫
xνan,m(x)

dsm,m(x)

wn,m−1(x)
= 0, ν = 0, . . . , n− 1. (2.7)

If deg an,m < n, (2.7) implies that an,m ≡ 0 since it would be orthogonal to itself (and the
measure has constant sign); otherwise, (2.7) implies that an,m has at least n sign changes on ∆m

and since deg an,m ≤ n it must have exactly n simple zeros inside ∆m. With this we conclude
the proof of the lemma.

This lemma shows that an,m is uniquely determined except for a constant factor (or it is iden-
tically equal to zero) because otherwise by linearity we could construct an an,m, not identically
equal to zero, of degree smaller than n.

We need some formulas verified by the Cauchy transforms of products of measures in a
Nikishin system. It is known that for each σ ∈ M(∆), where ∆ is an infinite subinterval of the
real line different from R, there exists a measure τ ∈ M(∆) and ℓ(z) = az + b, a = 1/|σ|, b ∈ R,
such that

1/σ̂(z) = ℓ(z) + τ̂ (z), (2.8)

where |σ| is the total variation of the measure σ. See [20, Appendix] for bounded ∆, and [15,
Lemma 2.3] when ∆ is unbounded. In particular,

1/ŝ1,1(z) = ℓ1,1(z) + τ̂1,1(z).

10



Sometimes we write 〈σα, σβ 〉̂ in place of ŝα,β . In [15, Lemma 2.10], several formulas involving
ratios of Cauchy transforms were proved. The most useful ones in this paper establish that

ŝ1,k
ŝ1,1

=
|s1,k|

|s1,1|
− 〈τ1,1, 〈s2,k, s1,1〉̂〉, 1 = j < k ≤ m. (2.9)

Another important ingredient in the proof of Theorem 1.6 is the notion of convergence in
Hausdorff content. Let B be a subset of the complex plane C. By U(B) we denote the class of
all coverings of B by at most a numerable set of disks. Set

h(B) = inf

{
∞∑

i=1

|Ui| : {Ui} ∈ U(B)

}
,

where |Ui| stands for the radius of the disk Ui. The quantity h(B) is called the 1-dimensional
Hausdorff content of the set B.

Let (ϕn)n∈N be a sequence of complex functions defined on a domain D ⊂ C and ϕ another
function defined on D (the value ∞ is permitted). We say that (ϕn)n∈N converges in Hausdorff
content to the function ϕ inside D if for each compact subset K of D and for each ε > 0, we have

lim
n→∞

h{z ∈ K : |ϕn(z)− ϕ(z)| > ε} = 0 (2.10)

(by convention ∞±∞ = ∞). We denote this writing h-limn→∞ ϕn = ϕ inside D.

If the functions ϕn are holomorphic in D and (2.10) takes place, then the convergence is
uniform on each compact subset of D. This result is proved in [16, Lemma 1]. Therefore, in
order to prove (1.23)-(1.24) it is sufficient to show that the convergence takes place in Hausdorff
content in the corresponding region. This is what we will do.

2.3 Proof of Theorem 1.4.

Proof. Fix n ∈ N. Notice that relations (1.10) and (1.13) are the same as relations (1.14) and
(1.16), respectively. First, let us show that Definition 1.3 implies Definition 1.2. Using (2.2) with
Lj = An,j , j ∈ {0, 1, . . . ,m− 2}, and r = m− 1, we obtain

An,j +

m−1∑

k=j+1

(−1)k−j ŝk,j+1An,k = (−1)j (an,j − an,mŝm,j+1) .

However, (1.14)-(1.16) imply that the left hand side of this equation is O(1/z) and, therefore,
so is the right hand side which is exactly the expression that appears in Definition 1.2. We also
obtain the additional relation

(an,0 − an,mŝm.1)(z) = O(1/z). (2.11)

which is redundant with respect to the equations in Definition 1.2, but (2.11) will be needed
below.

To prove the converse, we observe that according to formula (1.21) applied to the Nikishin
system N (σj+1 , σj+2, . . . , σm), for j = 0, . . . ,m− 2, we have

0 ≡ (−1)j ŝm,j+1 +

m−1∑

k=j+1

(−1)kŝm,k+1ŝj+1,k + (−1)mŝj+1,m, z ∈ C \ (∆j+1 ∪∆m). (2.12)
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From Definition 1.2 let us consider the following equations

(−1)j (an,j − an,mŝm,j+1) (z) = O(1/z), (2.13)

..........................................................

(−1)m−2 (an,m−2 − an,mŝm,m−1) (z) = O(1/z), (2.14)

(−1)m−1 (an,m−1 − an,mŝm,m) (z) = O(1/z). (2.15)

Let us multiply equation (2.15) by ŝj+1,m−1, (2.14) by ŝj+1,m−2, and so on until we arrive to
(2.13) multiplied by 1. Adding up all the relations so obtained, we arrive at

(−1)jan,j + (−1)j+1an,j+1ŝj+1,j+1 + . . .+ (−1)m−1an,m−1ŝj+1,m−1

−an,m


(−1)j ŝm,j+1 +

m−1∑

k=j+1

(−1)kŝm,k+1ŝj+1,k


 = O(1/z). (2.16)

Using relation (2.12) to replace what is inside the big parenthesis, the j-th equation in Defi-
nition 1.3 follows immediately; that is An,j = O(1/z). Therefore, DR and ML Hermite-Padé
polynomials coincide.

Observe that (2.11) and (1.11)-(1.13) imply that once an,m is found then an,j, j = 0, . . . ,m−1,
is uniquely determined as the polynomial part of the asymptotic expansion at ∞ of an,mŝm,j+1.
In particular, this means that if an−1

n,j , is the coefficient corresponding to the power zn−1 of an,j
and ann,m the coefficient corresponding to the power zn of an,m then

an−1
n,j = ann,m|sm,j+1|, j = 1, . . . ,m− 1.

From Lemma 2.3 we know that deg an,m = n, therefore, deg an,j = n − 1, j = 0, . . . ,m− 1 and
the polynomials an,j, j = 0, . . . ,m − 1 are uniquely defined up to a constant factor (the same
constant as for an,m). Moreover, (2.6) implies that

an,m−1

an,m
is an n-th diagonal multipoint Padé

approximation of ŝm,m with n + 1 interpolation conditions at ∞ and another n located at the
zeros of wn,m−1 and an,m−1 is the n-th polynomial of the second lind with respect to the measure
dσm/wn,m−1 whose n− 1 zeros are known to interlace the n simple zeros of an,m. With this we
conclude the proof.

The property of the degrees of the polynomials an,j, j = 0, . . . ,m, indicates that the multi-
indices (n, . . . , n, n+ 1) ∈ Zm

+ \ {0} are normal (for the definition of normality see, for example,
the introduction in [14]). This is emphasized in the next result.

Corollary 2.4. For each fixed n ∈ N we have

(a) An,0 has no zero in C \∆1. The coefficient accompanying 1/zn+1 in the asymptotic expan-
sion (1.14) is different from zero.

(b) An,j , j = 1, . . . ,m has exactly n zeros in C \ ∆j+1 (∆m+1 = ∅), they are all simple and

lie in
◦

∆j. The coefficient accompanying 1/z in the asymptotic expansions (1.15)-(1.16) is
different from zero.

Proof. The forms An,j are symmetric with respect to the real line (that is An,j(z) = An,j(z));
therefore, its non real zeros come in conjugate pairs. For j = m,An,m = an,m and the property
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stated in (b) about the zeros was proved in Theorem 1.4. Suppose that for some  ∈ {0, . . . ,m−1}
any one of the properties stated in (a) or (b) fails. From the proof of Lemma 2.3, we know that
An,,  = 1, . . . ,m − 1, has at least n sign changes on ∆, so it can have more but not less than
n zeros in C \ ∆. Thus, there exists a polynomial wn, of degree ≥ n or 0 if  = 0, with real
coefficients, such that

An,/wn, = O(1/zn+2) ∈ H(C \∆). (2.17)

Arguing as in the proof of Lemma 2.3 it readily follows that for j = , . . . ,m − 1 one also has
(2.17). This entails that for some polynomial wn,m−1, with real coefficients,

∫
xνan,m(x)

dsm,m(x)

wn,m−1(x)
= 0, ν = 0, . . . , n.

This implies that an,m ≡ 0. This is impossible because according to Theorem 1.4 we would also
have an,j ≡ 0, j = 0, . . . ,m− 1. Thus, all properties stated in this corollary must hold.

2.4 Proof of Theorem 1.5.

Proof. For k = 0, . . . ,m− 1, set

Bk,j(z) = (−1)jbk,j + (−1)j+1bk,j+1ŝm−j,m−j · · · (−1)mbk,mŝm−j,1

First, let us analyze the case n < k. From equation (1.17) and (2.4) it follows that for ν =
0, 1, . . . k − 1

0 =

∫

∆m

xν
m Bk,1(xm)dσm(xm). (2.18)

Using consecutively (1.18)-(1.19) and (2.3), we have

Bk,1(xm) =

∫

∆m−1

Bk,2(xm−1)
dσm−1(xm−1)

(xm − xm−1)
= · · · = (2.19)

∫

∆m−1

. . .

∫

∆2

Bk,m−1(x2)
dσ2(x2)

(x3 − x2)
· · ·

dσm−1(xm−1)

(xm − xm−1)
=

∫

∆m−1

· · ·

∫

∆1

(−1)mbk,m(x1)
dσ1(x1)

(x2 − x1)
· · ·

dσm−1(xm−1)

(xm − xm−1)
= −

∫

∆1

bk,m(x1)K(x1, xm)dσ1(x1).

In the last equality, we use Fubini’s theorem and the definition of the kernel K(x1, xm). Com-
bining (2.18), (2.19) and using the fact that n < k, we get

∫

∆m

∫

∆1

an,m(xm)K(x1, xm)bk,m(x1)dσ1(x1)dσm(xm) = 0, n < k.

For k < n, the proof is the same as above applied to the forms An,j instead of the forms Bk,j.

Now, suppose that
∫

∆m

∫

∆1

an,m(xm)K(x1, xm)bn,m(x1)dσ1(x1)dσm(xm) = 0. (2.20)

Obviously, deg bk,m = k, k ≥ 0. This, together with the orthogonality relations and (2.20) give
∫

∆1

xn
1

∫

∆m

an,m(xm)K(x1, xm)dσm(xm)dσ1(x1) = 0. (2.21)
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On the other hand, just as in the proof of (2.19) we have

An,1(x1) =

∫

∆m

an,m(xm)K(x1, xm)dσm(xm). (2.22)

Now, from (2.21) and (2.22) we obtain
∫

∆1

xn
1An,1(x1)dσ1(x1) =

∫

∆1

xn
1

∫

∆m

an,m(xm)K(x1, xm)dσm(xm) = 0.

We also know that
∫

∆1

xν
1An,1(x1)dσ1(x1) = 0, ν = 0, . . . , n− 1.

However, these orthogonality relations imply that the form An,1 has at least n+ 1 sign changes
on ∆1 but this is impossible since in Corollary 2.4 we showed that it has exactly n zeros in C\∆2.
Therefore, ∫

∆m

∫

∆1

an,m(xm)K(x1, xm)bn,m(x1)dσ1(x1)dσm(xm) 6= 0

and we conclude the proof.

2.5 Proof of Theorem 1.6.

Proof. In the proof of Theorem 1.4 it was indicated that an,m−1/an,m is an n-th diagonal mul-
tipoint Padé approximation of ŝm,m. Since either the sequence of moments of σm satisfies
Carleman’s condition or ∆m−1 is a finite interval contained in C \∆m, using [23, Theorem 1] we
have

lim
n→∞

an,m−1

an,m
= ŝm,m, (2.23)

uniformly on each compact subset K ⊂ C \∆m.

Now, consider the case j ∈ {0, . . . ,m − 2}. Having in mind (1.23), we need to reduce An,j

so as to eliminate all an,k, k = j + 1, . . . ,m − 1. We start out eliminating an,j+1. Consider the
ratio An,j/ŝj+1,j+1. Using (2.8) and (2.9) we obtain that

An,j

ŝj+1,j+1
=


(−1)jpj+1,j+1an,j +

m∑

k=j+1

(−1)k|sj+1,k|

|sj+1,j+1|
an,k


+ (−1)jan,j τ̂j+1,j+1−

m∑

k=j+2

(−1)kan,k〈τj+1,j+1, 〈sj+2,k, sj+1,j+1 〉̂〉,

has the form of L0 in Lemma 2.2 (with respect to N (τj+1,j+1, sj+2,j+1, σj+3, . . . , σm), when
j + 3 ≤ m, or N (τj+1,j+1, sj+2,j+1) if j = m− 2). Notice that An,j/(σ̂j+1wn,j) ∈ H(C \∆j+1),
and

An,j

ŝj+1,j+1wn,j
∈ O

(
1

zn

)
, z → ∞.

From (2.4) of Lemma 2.2, we obtain that for ν = 0, . . . , n− 2

0 =

∫
xν


(−1)jan,j(x)−

m∑

k=j+2

(−1)kan,k〈sj+2,k, sj+1,j+1 〉̂(x)


 dτj+1,j+1(x)

wn,j(x)

14



which implies that the function in parenthesis under the integral sign has at least n − 1 sign

changes in
◦

∆j+1. In turn, it follows that there exists a polynomial w̃n,j , deg w̃n,j = n− 1, whose

zeros are simple and lie in
◦

∆j+1 such that

(−1)jan,j −
∑m

k=j+2(−1)kan,k〈sj+2,k, sj+1,j+1 〉̂

w̃n,j
∈ H(C \∆j+2). (2.24)

On the other hand, using (2.2) with r = j + 1 and Definition 1.3, we obtain

(An,j − ŝj+1,j+1An,j+1)(z) = O

(
1

z

)

=


(−1)jan,j −

m∑

k=j+2

(−1)kan,k〈sj+2,k, sj+1,j+1 〉̂


 (z).

Consequently,

(−1)jan,j −
∑m

k=j+2(−1)kan,k〈sj+2,k, sj+1,j+1 〉̂

w̃n,j
= O

(
1

zn

)
, z → ∞. (2.25)

Notice that 〈sj+2,k, sj+1,j+1〉 = sj+2,j+1 when k = j+2 and 〈sj+2,k, sj+1,j+1〉 = 〈sj+2,j+1, sj+3,k〉
when j + 3 ≤ k ≤ m (if any).

Suppose that j = m− 2. In this case, (2.24)-(2.25) reduce to

an,m−2 − an,mŝm,m−1

w̃n,m−2
= O

(
1

zn

)
∈ H(C \∆m).

In comparison with the case when j = m− 1 we lose one interpolation condition at infinity and
we say that an,m−2/an,m is an incomplete diagonal Padé approximation of sm,m−1. However,
using [6, Lemma 2] we can assert that

h− lim
n→∞

an,m−2

an,m
= ŝm,m−1

inside C\∆m. Since the poles of an,m−2/an,m lie in ∆m, from [16, Lemma 1] uniform convergence
on compact subsets of C \∆m readily follows.

Incidentally, if m = 2 and j = 0, on the right hand side of (2.25) we have O(1/zn+1) because
An,0−ŝ1,1An,1 = O(1/z2). So, in this case an,0/an,2 is a complete multipoint Padé approximation
of ŝ2,1. Then an,2 is (also) an n-th orthogonal polynomial with respect to the varying measure
ds2,1/w̃n,0 and an,0 is the associated polynomial of second kind which implies that an,0 has n−1

simple zeros which lie in
◦

∆m (and interlace the zeros of an,2). For other values of m, we discuss
later the degree and location of the zeros of an,j , j = 0, . . . ,m− 2.

Let us assume thatm ≥ 3 and 0 ≤ j ≤ m−3. Then, 〈sj+2,k, sj+1,j+1〉 = 〈sj+2,j+1, sj+3,k〉, k =
j + 3, . . . ,m, and we use this equality to modify the corresponding terms in the numerators of
the left hand sides of (2.24) and (2.25) which becomes

(−1)jan,j − (−1)j+2an,j+2ŝj+2,j+1 −
m∑

k=j+3

(−1)kan,k〈sj+2,j+1, sj+3,k 〉̂.
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Now, we must do away with an,j+2. Using (2.8) and (2.9), we obtain

(−1)jan,j − (−1)j+2an,j+2ŝj+2,j+1 −
∑m

k=j+3(−1)kan,k〈sj+2,j+1, sj+3,k 〉̂

ŝj+2,j+1
=


(−1)jpj+2,j+1an,j − (−1)j+2an,j+2 −

m∑

k=j+3

(−1)k|〈sj+2,j+1, sj+3,k〉|

|sj+2,j+1|
an,k




+(−1)jan,j τ̂j+2,j+1 + (−1)2
m∑

k=j+3

(−1)kan,k〈τj+2,j+1 , 〈sj+3,k, sj+2,j+1 〉̂〉.

This expression has the form of L0 in Lemma 2.2. Additionally,

(−1)jan,j − (−1)j+2an,j+2ŝj+2,j+1 −
∑m

k=j+3(−1)kan,k〈sj+2,j+1, sj+3,k 〉̂

ŝj+2,j+1w̃n,j
∈ H(C \∆j+2)

and because of (2.25), as z → ∞,

(−1)jan,j − (−1)j+2an,j+2ŝj+2,j+1 −
∑m

k=j+3(−1)kan,k〈sj+2,j+1, sj+3,k 〉̂

ŝj+2,j+1w̃n,j
= O

(
1

zn−1

)
.

From (2.4) in Lemma 2.2, we obtain that for ν = 0, . . . , n− 3

0 =

∫
xν


(−1)jan,j + (−1)2

m∑

k=j+3

(−1)kan,k(x)〈sj+3,k , sj+2,j+1 〉̂(x)


 dτj+2,j+1(x)

w̃n,j(x)

which implies that the function in parenthesis under the integral sign has at least n − 2 sign

changes in
◦

∆j+2. In turn, it follows that there exists a polynomial w̃n,j+1, deg w̃n,j+1 = n − 2,

whose zeros are simple and lie in
◦

∆j+1 such that

(−1)jan,j + (−1)2
∑m

k=j+3(−1)kan,k〈sj+3,k, sj+2,j+1 〉̂〉

w̃n,j+1
∈ H(C \∆j+3)

On the other hand, according to Definition 1.3 and Lemma 2.1 with r = j + 2

(An,j − ŝj+1,j+1An,j+1 + ŝj+2,j+1An,j+2)(z) = O

(
1

z

)

=


(−1)jan,j + (−1)2

m∑

k=j+3

(−1)kan,k〈sj+3,k, sj+2,j+1 〉̂


 (z)

Consequently,

(−1)jan,j + (−1)2
∑m

k=j+3(−1)kan,k〈sj+3,k, sj+2,j+1 〉̂〉

w̃n,j+1
= O

(
1

zn−1

)
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Notice that an,j+2 has been eliminated. If j = m− 3 combining [6, Lemma 2] and [16, Lemma
1] we obtain that

lim
n→∞

an,m−3

an,m
= ŝm,m−2

uniformly on each compact subset of C \∆m. Otherwise, we have

(−1)jan,j + (−1)2an,j+3ŝj+3,j+1 + (−1)2
∑m

k=j+4(−1)kan,k〈sj+3,j+1, sj+1,k 〉̂〉

w̃n,j+1
= O

(
1

zn−1

)
,

and we are ready to eliminate an,j+3 dividing by ŝj+3,j+1.

In general, for fixed j, after m− j − 1 reductions obtained applying Lemmas 2.2 and 2.1, we
find that there exists a polynomial denoted w∗

n,j , degw
∗
n,j = n −m+ j, whose zeros are simple

and lie in
◦

∆m−1 such that

an,j − an,mŝm,j+1

w∗
n,j

= O

(
1

zn−m+j+2

)
∈ H(C \∆m), z → ∞. (2.26)

Then, [6, Lemma 2] and [16, Lemma 1], imply (1.23). Now, (1.24) is an immediate consequence
of (2.12) and (1.23).

Assuming that j ∈ {0, . . . ,m− 1}, (2.26) implies that

an,j − an,mŝm,j+1

ŝm,j+1w∗
n,j

= O

(
1

zn−m+j+1

)
∈ H(C \∆m), z → ∞.

Since
an,j − an,mŝm,j+1

ŝm,j+1
= an,j τ̂m,j+1 − (an,m − ℓm,j+1an,j) ,

and using (2.4)
∫

xνan,j(x)
dτm,j+1(x)

w∗
n,j(x)

= 0, ν = 0, . . . , n−m+ j − 1.

Consequently, an,j has at least n−m+ j sign changes in
◦

∆m; therefore, deg an,j ≥ n−m + j.
For j ∈ {0, . . . ,m− 2} it could occur that m− j − 1 zeros of an,j lie in C \∆m.

Although, there may be a certain amount (independent of n) of zeros of the polynomials
an,0, . . . , an,m−2 that abandon ∆m, the next corollary shows that in that case they approach ∆m

as n → ∞.

Corollary 2.5. Under the assumptions of Theorem 1.6 we have that the accumulation points of
the zeros of an,j, j = 0, 1, · · · ,m− 2 are in ∆m.

Proof. Let Γ be an arbitrary simple closed Jordan curve contained in C \ ∆m. Since ŝm,j+1 is
never equals zero on this domain, the argument principle implies that

lim
n→∞

1

2πi

∫

Γ

(an,j(z)/an,m(z))′

(an,j(z)/an,m(z))
dz =

1

2πi

∫

Γ

ŝ′m,j+1(z)

ŝm,j+1(z)
= 0.

But the poles of an,j/an,m all lie in ∆m; consequently, for all sufficiently large n the zeros of
these rational function must lie in the unbounded connected component of the complement of Γ.
This means that as n → ∞ the zeros of an,j that may lie in C\∆m must accumulate on ∆m.
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A The inverse cubic string and Hermite-Padé approxima-

tion problems.

The goal of this Appendix is to show the connection between the inverse cubic string problem
(1.3) and the Hermite-Padé approximation problem 1. Let us consider two solutions φ1(y), φ2(y)
to the initial value problem associated to the boundary value problem (1.3) for the values of the
spectral parameter z and w, respectively. Then, by elementary integration by parts,

∫ 1

−1

(φ1,yyyφ2 + φ1φ2,yyy)(y)dy = B(φ1, φ2)(y)
∣∣1
−1

,

where B(h1, h2)(y) = (h1,yyh2 − h1,yh2,y + h1h2,yy) (y) is the bilinear concomitant associated to

the formally skew-adjoint operator d3

dy3 . For the cubic string, and the specified initial conditions
at y = −1, this identity simplifies further to

(z + w)

∫ 1

−1

(φ1φ2g)(y)dy = B(φ1, φ2)(y)
∣∣1
−1

, (A.1)

implying that the bilinear concomitant vanishes for w = −z. Denoting φ(y; z) = φ1(y; z) and
φ(y;−z) = φ2(y;−z) we are led to an important identity

φyy(1; z)φ(1;−z)− φy(1; z)φy(1;−z) + φ(1; z)φyy(1;−z) = 0. (A.2)

Let us interpret this identity with the help of the Weyl (sometimes also called the Weyl-
Titchmarsh) functions

W (z) =
φy(1; z)

φ(1; z)
, Z(z) =

φyy(1; z)

φ(1; z)
,

which are matrix elements of the resolvent of the operator defined by (1.3). In terms of W (z)
and Z(z), (A.2) can be written as

Z(z)−W (z)W (−z) + Z(−z) = 0, (A.3)

indicating a relation between these two Weyl functions. In [25] it was proven that W (z), Z(z)
admit the following spectral representations

W (z)

z
=

∫
dµ(x)

z − x
,

Z(z)

z
=

∫
dν(x)

z − x
, (A.4)

where dν(x) = (x
∫ dµ(y)

x+y ) dµ(x). The proof in [25] is carried out when g(y) is a finite, discrete

measure, and in this special case dµ(x) =
∑N

j=0 bjδzj , bj > 0 where z0 = 0, and zj > 0 are the
eigenvalues of the cubic string boundary value problem (1.3).

The approximation problem used in [25] to solve the inverse problem for the cubic string

consists in finding, for each n ∈ N = {1, 2, . . .}, polynomials (P̂n, Pn, Qn) with deg P̂n ≤ n,
degPn ≤ n, and degQn ≤ n, not all identically equal to zero and normalized by the conditions
P̂n(0) = 0, Pn(0) = 1, which satisfy:

P̂n(z)− Pn(z)W (−z) +Qn(z)Z(−z) = O(1/zn+1), (A.5)

Pn(z)−Qn(z)W (z) = O(1), (A.6)

P̂n(z)−Qn(z)Z(z) = O(1). (A.7)
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Due to (A.3), equation (A.7) is redundant and it suffices to consider equations (A.5) and
(A.6).

From (A.4) it is clear that there are two natural measures in the problem, dα(x) = dµ(x) and
dβ(x) = xdµ(x). However, it is also convenient to observe that in addition there are two reflected

with respect to the origin measures dα∗, dβ∗. For example dα∗ =
∑N

j=0 bjδ−zj . The advantage
of using reflected measures is that the final formulas have only one type of kernel, namely the
Cauchy kernel 1

x−y , rather than both the Cauchy and Stieltjes 1
x+y kernels. In addition, having

in mind a connection to Nikishin systems, we point out that the supports of dβ and dα∗ are
disjoint.

The spectral representations of W and Z imply

W (z)

z
=

∫
dα(x)

z − x
,

Z(z)

z
=

∫
dβ(x)

z − x

∫
dα∗(y)

x− y
,

W (−z)

z
=

∫
dα∗(y)

z − x
,

−Z(−z)

z
=

∫
dβ∗(y)

z − y

∫
dα(x)

y − x
,

which allows one to rewrite the approximation problem using a notation more convenient for our
purpose.

To this end we set

dλ1(x) := dα∗(x), dλ2(x) := dβ(x)

and

λ̂1,1(z) :=

∫
dλ1(x)

z − x
, λ̂1,2(z) :=

∫
dλ1(x)

z − x

∫
dλ2(y)

x− y
,

λ̂2,2(z) :=

∫
dλ2(x)

z − x
, λ̂2,1(z) :=

∫
dλ2(x)

z − x

∫
dλ1(y)

x− y
.

Therefore, we have the two Nikishin systems, namely, (λ1,1, λ1,2) = N (λ1, λ2) and its reverse
(λ2,2, λ2,1) = N (λ2, λ1).

Now, W (z) =
∫ zdα(x)

z−x and from equation (A.6) Pn
n = Qn

n|α|, where Pn
n (respectively Qn

n) is
the coefficient in Pn at the power zn and |α| is the zeroth moment of dα. Then

W (z) =

∫
dα(x) +

∫
xdα(x)

z − x
= |α|+

∫
dλ2(x)

z − x
= |α|+ λ̂2,2(z),

implying that equation (A.6) takes now the form

P̃n(z)−Qn(z)λ̂2,2(z) = O(1) (A.8)

where P̃n = Pn − |α|Qn. Notice that deg P̃n ≤ n− 1.

In the next step we will rephrase equation (A.5). First, after some elementary computations,
we obtain

W (−z) = zλ̂1,1(z), Z(−z) = zλ̂1,1(z)|α|+ zλ̂1,2(z).
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Morever, since P̂n(0) = 0, we can write P̂n(z) = zP ∗
n(z), where degP ∗

n ≤ n− 1, and (A.5) reads

z
(
P ∗
n(z)− P̃n(z)λ̂1,1(z) +Qn(z)λ̂1,2(z)

)
= O(1/zn+1). (A.9)

From (A.8) and (A.9) one sees that equations (A.5), (A.6) and (A.7) are equivalent to

P ∗
n(z)− P̃n(z)λ̂1,1(z) +Qn(z)λ̂1,2(z) = O(1/zn+2), (A.10)

P̃n(z)−Qn(z)λ̂2,2(z) = O(1), (A.11)

P ∗
n(z)−Qn(z)λ̂2,1(z) = O(1/z), (A.12)

where degQn ≤ n, deg P̃n ≤ n − 1, P ∗
n ≤ n− 1. As well, with this new notation in place, (A.3)

takes the form
λ̂2,1(z)− λ̂2,2(z)λ̂1,1(z) + λ̂1,2(z) = 0. (A.13)

As before, (A.12) follows from (A.13), (A.10), and (A.11). We note that (A.10) is a type I
Hermite-Padé approximation to the direct Nikishin system N (λ1, λ2), while (A.11) and (A.12)
is a type II Hermite-Padé approximation to the reverse Nikishin system N (λ2, λ1).

In the present paper, we considered a slightly more symmetric version of the approximation
problem (A.10), (A.11). After dividing equation (A.10) by λ̂1,1 we get

(
P ∗
n

λ̂1,1

− P̃n +Qn
λ̂1,2

λ̂1,1

)
(z) = O(1/zn+1). (A.14)

Using formulas (2.8) and (2.9), it follows that

(
zP ∗

n +Qn|λ1,2|

|λ1,1|
+ bP ∗

n − P̃n + P ∗
n τ̂1,1 − 〈τ1,1, λ2,1〉̂Qn

)
(z) = O(1/zn+1), (A.15)

where b ∈ R.

Set σ1 := τ1,1 and σ2 := λ2,1. Take

an,2 := −Qn, an,1 = −P ∗
n , an,0 =

zP ∗
n +Qn|λ1,2|

|λ1,1|
+ bP ∗

n − P̃n.

From (A.12) and (A.13) it is easy to check that deg(zP ∗
n + Qn|λ1,2|) ≤ n − 1; consequently

deg an,0 ≤ n− 1. Finally, we can write (A.10) and (A.12) as

(an,0 − an,1ŝ1,1 + an,2ŝ1,2) (z) = O(1/zn+1),

(an,1 − an,2ŝ2,2) (z) = O(1/z),

with deg an,0 ≤ n − 1, deg an,1 ≤ n − 1, and deg an,2 ≤ n, which are the same interpolation
conditions of the Hermite-Padé approximation problem (1.5)-(1.6).
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[14] U. Fidalgo and G. López Lagomasino. Nikishin systems are perfect. Constructive Approx.
34 (2011), 297-356.
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