
DOI: 10.1111/joes.12522

ARTICLE

Direct versus iterated multiperiod Value-at-Risk
forecasts

Esther Ruiz1 María Rosa Nieto2

1Department of Statistics, Universidad
Carlos III de Madrid, Madrid, Spain
2School of Business and Economics,
Universidad Anahuac, Mexico City,
Mexico

Correspondence
Esther Ruiz, Department of Statistics,
Universidad Carlos III de Madrid,
Madrid, Spain.
Email: ortega@est-econ.uc3m.es

Funding information
Ministerio de Economía y
Competitividad, Grant/Award Number:
PDI2019-108079GB-
C21/AIE/10.13039/501100011033

Abstract
Since the late nineties, the Basel Accords require
financial institutions to measure their financial risk by
reporting daily predictions of Value at Risk (VaR) based
on 10-day returns. However, a vast part of the related lit-
erature deals with VaR predictions based on one-period
returns. Given its relevance for practitioners, in this
paper, we survey the literature on available procedures
to estimate VaR over an ℎ-period. First, to convert 1 day
into 10-day VaR, it is popular to use the square-root-
of-time (SRoT) rule, which is only satisfied under very
restrictive and unrealistic properties of returns. Alter-
natively, direct (based on ℎ-period returns) and iterated
(based on one-period returns) two-step procedures can
be implemented to obtain 10-period VaR. We also illus-
trate and compare the performance of these procedures
in the context of popular conditionally heteroscedastic
models for returns using both simulated and real data.
We show that, under realistic assumptions on the distri-
bution of returns, multiperiod VaR predictions based on
iterating an asymmetric GJRmodelwith normal or boot-
strapped errors are usually preferred.We also show that,
in general, direct methods could be not only biased but
also inefficient.
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Financial risk management has generally focused on short-term risks rather than
long-term risks, and arguably this was an important component of the recent
financial crisis. Engle (2011)

1 INTRODUCTION

Since proposed by the Basel Committee on Banking Supervision (BCBS) in 1996 and, in spite of
its many limitations, Value at Risk (VaR) is still extensively used by financial institutions to mea-
sure the risk of their portfolios; see Basel Committee on Banking Supervision (1996a). Recently, in
response to the subprime mortgage global crisis, the BCBS has overhauled the regulatory frame-
work governing the minimum capital requirements for banks; see Liu and Stentoft (2021) for a
recent and very detailed description of how the regulatory environment of the Basel accords has
changed over time and the requirements and objectives of the current regulation. In 2019, the
BCBS finalized the Fundamental Review of the Trading Book (FRTB), which is popularly known
as Basel 3; see Basel Committee onBanking Supervision (2019). AlthoughBasel 3 requiresmeasur-
ing risk using expected shortfall (ES) instead of VaR, the latter is still of interest for both academics
and risk managers as it is used for regulatory backtesting and for setting the capital multiplier for
capital requirements. Furthermore, VaR is also involved in the calculation of ES. Finally, it is
important to remark that VaR has also been established in 2009 by the Solvency 2 regulation as
the risk measure to be considered by insurance companies operating in the European Union; see
Solvency (2009) and Frankland et al. (2019).
The VaR of a portfolio held over a period of ℎ days is defined by the (negative) 𝛿-quantile of the

conditional distribution of ℎ-day portfolio’s returns given by

𝑉𝑎𝑅
(ℎ)
𝑡 = − sup

[
𝑟 ∣ Pr

(
𝑅
(ℎ)
𝑡 ≤ 𝑟

) ≤ 𝛿
]
, (1)

where 𝑅(ℎ)
𝑡 = 100 × (𝑙𝑛𝑃𝑡+ℎ − 𝑙𝑛𝑃𝑡) are ℎ-period log-returns with 𝑃𝑡 being the price of the portfo-

lio at day 𝑡 = 1, … , 𝑇, and 𝑙𝑛(𝑃𝑡) being its natural logarithm. Note that ℎ-day log-returns can be
written as follows:

𝑅
(ℎ)
𝑡 =

ℎ∑
𝑖=1

𝑟𝑡+𝑖. (2)
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where 𝑟𝑡 ≡ 𝑅
(1)
𝑡−1

= 100 × (𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝑡−1) are 1-day log-returns, assumed to be a strictly stationary
martingale difference. Furthermore, the multiperiod VaR can be defined as follows:

𝑉𝑎𝑅
(ℎ)
𝑡 = −𝜎

(ℎ)
𝑡 𝑞

(ℎ)

𝛿
(3)

where 𝜎(ℎ)
𝑡 is the standard deviation of 𝑅(ℎ)

𝑡 conditional on the information available at time 𝑡 and

𝑞
(ℎ)

𝛿
is the 𝛿 quantile of the distribution of multiperiod standardized returns, 𝑒(ℎ)𝑡 =

𝑅
(ℎ)
𝑡

𝜎
(ℎ)
𝑡

.

With respect to the related literature, we can observe that, on the one hand, there is a prolific
literature devoted to VaR forecasts based on 1-day returns, 𝑟𝑡; see, for example, the early survey by
Duffie and Pan (1997) and the more recent one by Nieto and Ruiz (2016). However, the regulatory
authorities have emphasized the importance of risk horizon; see Basel Committee on Banking
Supervision (2013). Furthermore, Engle (2009) points out that the key failure in forecasting VaR
lies on its deterioration in forecasting multiperiod VaR. Therefore, conclusions about one-period
VaRs cannot be directly extrapolated to multiperiod VaRs.
When looking at the literature onmultiperiod forecasts, there are twomain alternativemethod-

ologies, namely, direct and iterated forecasts with a vast literature comparing them in the context
of univariate linear models. It is well known that iterated forecasts are more efficient under a
correct specification of the one-step-ahead forecast model while direct forecasts are unbiased
and robust against misspecification; see, for example, Pesaran et al. (2011). In general, most
works within this literature favor direct forecasts; see Chevillon and Hendry (2005) and Tsay
(1993), amongmany others. However, the advantages of the direct over iterated approaches under
misspecification are not universal and depend on data characteristics and the degree of misspec-
ification of the one-period models; see, for instance, Kang (2003), McElroy and Wildi (2013),
and Proietti (2011), and the excellent overview of the literature by Chevillon (2007). Among the
authors that conclude that iterated approaches outperform direct ones, Marcellino et al. (2006)
study a large number of macroeconomic time series and find that iterated forecasts typically have
smaller mean square forecast errors (MSFEs) than direct ones, with the relative performance of
the former improvingwith the forecast horizon; see also Baek (2019) andQuaedvlieg (2021) for the
same conclusion.1 They attribute this better performance of iterated forecasts to the fact that the
models for the higher observation frequency usually include more lags. In the context of linear
multivariate VAR models, McCracken and McGillicuddy (2019) only find an empirical marked
improvement of the direct approach during the Great Moderation. In general, the improvements
in terms of MSFE of iterated versus direct forecasts tend to be modest.
However, in spite of the practical importance for risk managers of obtaining accurate 𝑉𝑎𝑅

(ℎ)
𝑡

forecasts, very few authors compare direct and iterated approaches in this context. As far as we
know only Mancini and Trojani (2011), De Nicolo and Lucchetta (2017) and Kole et al. (2017)
have aimed to this comparison. They all advocate the use of iterated forecasts when computing
multiperiod VaR.
In this paper, we survey the literature on the estimation of multiperiod VaR estimation. From

a methodological point of view, it is important to analyze, in the context of multiperiod VaR
estimation, the trade-off between unbiasedness and efficiency of direct and iterated approaches.
Moreover, the interest in a correct estimation of 𝑉𝑎𝑅

(ℎ)
𝑡 is not only academic but it also has

important implications for risk managers and regulators. As mentioned above, capital require-
ments are tightly linked to VaR estimates with Basel 3 penalizing banks by increasing their capital
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requirements when their model generates too many VaR exceedances; see, for example, Jiménez-
Martín et al. (2007) for capital requirements under Basel 2. Therefore, underestimating risk could
lead to excessively high capital requirements with the corresponding associated opportunity costs
thatmay affect the profitability of the institution; see, for example,McAleer (2009), Pérignon et al.
(2008), and Pérignon and Smith (2010). In consequence, banks have incentives to use conserva-
tive models for VaR estimation. Although lower capital requirements may be privately optimal
for banks, higher capital requirements may be socially beneficial in reducing the likelihood of
system risk; see McAleer (2009) for the private and public benefits of risk management and
Birn et al. (2020) for a review on the costs and benefits of bank capital requirements. However,
overestimation of risk also has undesirable consequences. The effect of the exaggeration of the
own level of risk is that financial institutions appear more risky than they actually are, thus
generating reputation concerns about their risk management systems. This affects the percep-
tion of investors and can induce underinvestment in VaR-overstating institutions. Indeed, Jorion
(2002) shows that VaR disclosures are informative about the future variability in trading rev-
enues, thus corroborating the idea that analysts/investors may be using VaR forecasts to support
investment decisions.
We not only survey the most important measures of multiperiod VaR, but also illustrate their

performance by comparing them in the context of simulated data generated by realistic models
for 1-day returns; we complement the simulation results in Mancini and Trojani (2011) by con-
sidering a larger set of designs to generated returns and a larger number of alternative direct and
iterated procedures to estimate 𝑉𝑎𝑅

(ℎ)
𝑡 . In our simulations, we take into account misspecification

of themodel for 1-day returns, which is central to this comparison. In particular, we generate daily
returns by symmetric and asymmetric conditionally heteroscedastic models different to those fit-
ted to estimate the conditional variance used for the iterations. Furthermore, we consider not only
symmetric but also asymmetric distributions for standardized returns as those often encountered
in the analysis of real data. The analysis is carried out by considering different sample sizes so that
we can analyze whether the drawbacks of the direct approach could be attributable to the lack of
enough observations for the estimation of the relevant parameters need to obtain the multiperiod
VaRs. Our conclusions are in concordancewith the related literature.We show that, in the context
of volatilities with leverage effect, it is important to consider this asymmetry when modeling the
one-period returns, with the advantage of iterated over direct approaches being strong. Finally,
the direct and iterated procedures for forecasting 𝑉𝑎𝑅

(ℎ)
𝑡 are compared based on real returns. In

particular, we analyze S&P500, Dollar/Euro exchange rates, and IBM returns. These three vari-
ables have been chosen because of their different properties in terms of the asymmetric response
of volatilities to positive and negative past returns and of the asymmetry properties of the condi-
tional distribution of 1-day returns. We show that multiperiod VaR estimates based on iterating
the asymmetric GJR model for conditional volatilities with the quantile estimated by simula-
tion are unbiased and have smaller RMSFEs than those obtained using the direct approaches.
Our results are in concordance with those by Mancini and Trojani (2011), De Nicolo and Luc-
chetta (2017), and Kole et al. (2017) supporting the use of iterated estimates of 𝑉𝑎𝑅

(ℎ)
𝑡 . Therefore,

for risk managers, it is always safer to obtain multistep VaR forecasts using iterated proce-
dures simulating the asymmetric model for volatilities with either normal or bootstrapped errors.
According to our results, the direct approach should not be used in the presence of asymmetric
volatilities.
The rest of the paper is organized as follows. In Section 2, we briefly describe the popular

square-root-of-time (SRoT) approach and the early solutions proposed to estimate multiperiod
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VaR based on the distribution of multiperiod returns. Two-step methods, either direct or iterated,
are described in Section 3. In Section 4, we survey the literature comparing empirically these
methods. Section 5 compares the finite sample properties of these alternative multiperiod VaR
estimators using simulated data. In Section 6,multiperiod VaRs of S&P500, Dollar/Euro exchange
rates, and IBM 10-day returns are obtained and compared using backtesting procedures. Finally,
Section 7 concludes.

2 SQUARE ROOT OF TIME AND THEMULTIPERIOD
DISTRIBUTION OF RETURNS

The most popular procedure to compute multiperiod VaR is the SRoT, which is based on scaling
the conditional variance as proposed by Basel Committee on Banking Supervision (1996b). The
SRoT is not only popular between academics, who often use it as a benchmark, but it is also the
conventional solution used in industry practice. According to the SRoT,𝑉𝑎𝑅

(ℎ)
𝑡 is based on𝑉𝑎𝑅

(1)
𝑡 ,

the one-period VaR, as follows:

𝑉𝑎𝑅
(ℎ)
𝑡 =

√
ℎ𝑉𝑎𝑅

(1)
𝑡 . (4)

In spite of its popularity, the SRoT has important limitations as it is only satisfied if the con-
ditional distribution of returns is normal and either conditional variances are constant or they
follow the RiskMetrics model; see, among others, Brummelhuis and Kaufmann (2007), Daniels-
son and Zigrand (2006), Diebold et al. (1998), Engle (2004), Tsay (2010), andWang et al. (2011). To
see this point, consider the following model for one-period returns as assumed by Riskmetrics

𝑟𝑡 = 𝜀𝑡𝜎𝑡 (5)

𝜎2
𝑡 = 𝛼𝜎2

𝑡−1
+ (1 − 𝛼𝑟2

𝑡−1
), (6)

where 𝜀𝑡, the standardized one-period return at time 𝑡 = 1, … , 𝑇, is assumed to be an indepen-
dent and identically distributed sequence with zero mean and variance one, and 𝛼 is a parameter
satisfying 0 ≤ 𝛼 ≤ 1. Note that, if 𝛼 = 1, then the conditional variance of one-period returns is
constant over time. In empirical applications with daily returns, 𝛼 is often estimated as being
between 0.9 and 1. Given Equation (5), it is straightforward to see that 𝐸(𝑟𝑡+ℎ|𝑟1, … , 𝑟𝑡) = 0. Fur-
thermore, 𝜎2

𝑡+1
= 𝐸(𝑟2

𝑡+1
|𝑟1, … , 𝑟𝑡). The conditional variance in Equation (6) can be alternatively

written as

𝜎2
𝑡 = 𝜎2

𝑡−1
+ (1 − 𝛼)(𝜀2

𝑡−1
− 1)𝜎2

𝑡−1
, (7)

where, taking into account that 𝜀𝑡 is an independent sequence,𝐸((1 − 𝛼)(𝜀2
𝑡−1

− 1)𝜎2
𝑡−1

|𝑟1, … , 𝑡𝑡) =

0. Furthermore, the following expression of the variance of 𝑟𝑡+ℎ conditional on (𝑟1), … , 𝑟𝑡 can be
obtained from (7)

𝐸(𝑟2
𝑡+ℎ

|𝑟1, … , 𝑟𝑡) = 𝐸(𝜎2
𝑡+ℎ

|𝑟1, … , 𝑟𝑡) = 𝐸(𝜎2
𝑡−ℎ−1

+ (1 − 𝛼)(𝜀2
𝑡−ℎ−1

− 1)𝜎2
𝑡−ℎ−1

|𝑟1, … , 𝑟𝑡)

= 𝐸(𝜎2
𝑡−ℎ−1

|𝑟1, … , 𝑟𝑡) (8)
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Therefore, when the conditional variances of one-period returns are given by the Riskmetrics
model in Equations (5) and (6), then the variance of 𝑟𝑡+ℎ conditional on the information available
at time 𝑡 is 𝜎𝑡+1. Consequently

𝜎
(ℎ)2
𝑡 = 𝑉𝑎𝑟(𝑅

(ℎ)
𝑡 |𝑟1, … , 𝑟𝑡) = 𝑉𝑎𝑟(

ℎ∑
𝑖=1

𝑟𝑡+𝑖|𝑟1, … , 𝑟𝑡) =

ℎ∑
𝑖=1

𝑉𝑎𝑟(𝑟𝑡+𝑖|𝑟1, … , 𝑟𝑡) = ℎ𝜎2
𝑡+1

. (9)

Finally, putting together Equations (3) and (9), the following expression is obtained

𝑉𝑎𝑅
(ℎ)
𝑡 = −𝜎

(ℎ)
𝑡 𝑞

(ℎ)

𝛿
= −ℎ𝜎2

𝑡+1
𝑞
(ℎ)

𝛿
. (10)

Only if 𝑞(ℎ)

𝛿
= 𝑞

(1)

𝛿
, the SRoT in Equation (4) will be satisfied. Note that this last condition

requires assuming conditional normallity of one-period returns.
Obviously, the empirical success of the SRoT depends on both the properties of the returns

and the methodology used to estimate their conditional variances and obtain the correspond-
ing one-period VaRs. As far as we know, very few works support using the SRoT. Among them,
one can find Beltratti and Morana (1999), who analyze Deutsche Mark-US Dollar exchange rates
and fit GARCH and FIGARCH models. They show that the exceptions of 10-day VaR estimates
are approximately correct. Singleton (2006) concludes that scaling volatilities in the context of a
GARCH model leads to errors, which are small relative to the error tolerance of most risk man-
agers. Kole et al. (2017) also conclude empirically that the RiskMetrics approach based on scaling
forecasts of the volatilities constructed from daily returns in combination with the empirical dis-
tribution of standardized returns is not bad. However, there is ample evidence about the use of
SRoT generating𝑉𝑎𝑅

(10)
𝑡 forecasts with large negative biasesmainly for 𝛿 = 0.01; see Colacito and

Engle (2010), Danielsson and Zigrand (2006), Lönnbark (2016),McNeil and Frey (2000), Saadi and
Rahman (2008), Wang et al. (2011), Wang et al. (2018), Wong and So (2003), and Zhou et al. (2016)
for negative biases. On the contrary, few authors have also found positive biases of SRoT gener-
ating over-conservative multiperiod VaR estimates; see, for example, Müller et al. (1990), Jorion
(2001), and Wong (2020). Wang et al. (2011) carries out an analysis to disentangle the sensitiv-
ity of SRoT to different characteristics of financial returns in the context of obtaining one-period
VaR using historical simulation (HS). Recently, Wang et al. (2018) propose a modified SRoT that
reduces bias.
It is important to note that negative biases of VaR estimates have important practical implica-

tions for financial institutions. Basel 3 penalizes banks by increasing their capital requirements
when theirmodels generate toomanyVaR exceedances, incentivating them to usemore conserva-
tive models for VaR estimation. As mentioned above, although higher capital requirements may
be socially beneficial in reducing the likelihood of system risk, lower capital requirements may be
privately optimal for banks. Consequently, using the SRoT does not seems to be a good strategy
for financial institutions to calculate multiperiod VaR and, as a result, Basel 3 explicitly disal-
lows scaling procedures to estimate multiperiod risk measures. Furthermore, given the negative
effects of VaR underestimation, the US Federal Reserve suggested using alternative procedures
to estimate the multiperiod VaR, with several of them been consequently proposed in the related
literature; see Laubsch and Ulmer (1999).
Instead of using the SRoT, one can directly obtain the distribution of multiperiod returns

with the multiperiod VaR defined as the desired quantile of this distribution. Consequently,
some authors propose computing 𝑉𝑎𝑅

(ℎ)
𝑡 by approximating the density of 𝑅(ℎ)

𝑡 using analytical
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methods based on higher moments. Among these analytical approximations, one can use, for
instance, the Gram–Charlier or the Cornish–Fisher expansions; see, for example, Alexander et al.
(2013) and Boudt et al. (2009). However, Lönnbark (2016) shows that the Gram–Charlier approxi-
mation can have large positive biaseswhen forecasting𝑉𝑎𝑅

(10)
𝑡 for 𝛿 = 0.01while Simonato (2011)

argues that, for some skewness and kurtosis combinations, these approaches may generate densi-
ties with negative values or nonmonotone quantile functions and, consequently, they may fail to
generate valid VaR estimates. Furthermore, Simonato (2011) carries out Monte Carlo experiments
to show that the Johnson approximation has better properties estimating the unconditional VaR;
see also Alexander et al. (2013) for the same conclusion in an empirical application.
Finally, instead of obtaining the distribution ofmultiperiod returns, Liu and Stentoft (2021) pro-

pose estimating 𝑉𝑎𝑅
(ℎ)
𝑡 by HS, computing the desired empirical quantile of overlapping returns.

They show that, although estimates of multiperiod VaR’s obtained by HS are rejected using tradi-
tional backtesting measures, they require lower capital requirements than alternative direct and
iterated two-step procedures. The HS estimates, which minimize average capital requirements,
appear to be misspecified and produce inferior forecasts of the regulatory risk measures.

3 TWO-STEP PROCEDURES

Triggered by the good performance of two-step methods in the context of estimating one-period
VaR, many authors propose using these methods for estimating 𝑉𝑎𝑅

(ℎ)
𝑡 . Two-step methods are

based on, first, modeling the conditional variance of returns using a GARCH-type model and,
second, computing the quantile of standardized returns. There are two main approaches to esti-
mate the multiperiod 𝑉𝑎𝑅

(ℎ)
𝑡 defined as in Equation (3). On the one hand, one can use the

direct approach, which specifies directly a model for 𝜎(ℎ)
𝑡 with the information available at time 𝑡

being 𝑅
(ℎ)

𝑡−ℎ
, 𝑅(ℎ)

𝑡−2ℎ
,... On the other hand, 𝑉𝑎𝑅

(ℎ)
𝑡 can be estimated using the more popular iterated

approaches, which are based on estimating 𝜎
(ℎ)
𝑡 by iterating the model specified for one-period

returns, 𝑟𝑡. Iterated approaches are efficient if this latter model is correctly specified while the
direct approach has the advantage of being robust against its misspecification. Furthermore, it is
important to remark that the temporal-aggregation formulae needed for some iterated approaches
are only available for some restrictive classes of models; see Christoffersen and Diebold (2000).
Finally, note that, regardless of whether a direct or iterated approach is used, 𝜎2(ℎ)

𝑡 can be obtained
by modeling the portfolio at the asset level (based on a multivariate conditionally heteroscedastic
model) or by a complete portfolio aggregation (using a univariate model for the portfolio returns).
Santos et al. (2013) suggest that one-period VaR forecasts based on modeling the portfolio returns
using multivariate models have better properties that those based on univariate models while
Kole et al. (2017) support this conclusion in the context of multiperiod VaRs. However, as far as
we are concerned, there are not further studies on cross-sectional aggregation when estimating
multiperiod VaR and, consequently, the rest of this survey deals with univariate models.

3.1 Direct procedures

The direct approach to estimate multiperiod VaR has been advocated by, for example, Diebold
et al. (1998) and Hoga (2019), with the former authors focusing on conditional variances and not
on VaR. A direct approach to forecast multiperiod VaR, defined as in Equation (3), specifies a
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model for returns at the relevant horizon, 𝑅(ℎ)
𝑡 , as follows:

𝑅
(ℎ)
𝑡 = 𝜀

(ℎ)
𝑡 𝜎

(ℎ)
𝑡 , (11)

where 𝜀
(ℎ)
𝑡 is assumed to be an independent and identically distributed sequence with zero mean

and variance one. To avoid mechanical correlations betweenmultiperiod returns, the conditional
variance, 𝜎(ℎ)2

𝑡 , is often specified for nonoverlapping returns given by 𝑅
(ℎ)

ℎ+1
, 𝑅

(ℎ)

2ℎ+1
, 𝑅

(ℎ)

3ℎ+1
, …. Note

that, by using nonoverlapping returns, the sample size available for estimation is reduced to [
𝑇

ℎ
]

observations. Alternatively, using the full sample of overlapping returns,𝑅(ℎ)
2

, 𝑅
(ℎ)
3

, 𝑅
(ℎ)
4

, … is prone
to inference problems; see, for example, the results in Valkanov (2003) in the context of regression
models based on overlapping returns.
Given that conditional variances usually respond asymmetrically to positive and negative past

returns, one popular asymmetric specification of conditional variances in the context of VaR esti-
mation is the GJR specification of Glosten et al. (1993) according to which, for 𝑡 = ℎ + 1, 2ℎ +

1, 3ℎ + 1,…,

𝜎
(ℎ)2
𝑡 = 𝜔ℎ + 𝛼ℎ𝑅

(ℎ)2

𝑡−ℎ
+ 𝛽ℎ𝜎

(ℎ)2

𝑡−ℎ
+ 𝛾ℎ𝑅

(ℎ)2

𝑡−ℎ
𝐼(𝑅

(ℎ)

𝑡−ℎ
< 0), (12)

where 𝐼(⋅) is the indicator function, which takes value one if the argument is true and zero other-
wise, and 𝜎

(ℎ)2
1

=
𝜔ℎ

1−𝛼ℎ−𝐹0𝛾ℎ−𝛽ℎ

, the marginal variance of multiperiod returns, with 𝐹0 being the

distribution function of 𝜀(ℎ)𝑡 evaluated at zero; see, among others, Bams et al. (2017), Colacito and
Engle (2010), Kole et al. (2017), Kuester et al. (2006), and Mancini and Trojani (2011), who advo-
cate fitting GJR models to estimate the one-period VaR and Alexander et al. (2013, 2021) for the
moments of multiperiod returns in the context of GJR models. The parameters of model (12) sat-
isfy the usual positivity and stationarity conditions. Obviously, the symmetric GARCH(1,1) model
proposed by Bollerslev (1986) and Engle (1982) is obtained fromEquation (12) when 𝛾ℎ = 0.2 Drost
and Nijman (1993) derive the relation between the parameters of the GARCHmodel for different
values of ℎ and those for ℎ = 1while Sbrana and Silvestrini (2013) derive this relationship for the
IGARCH model of RiskMetrics and Meddahi and Renault (2004) extend the results to the asym-
metric GJR model. It is important to note that 𝜎(ℎ)2

𝑡 defined as in model (12) is the conditional
variance of 𝑅(ℎ)

𝑡 given 𝑅
(ℎ)

𝑡−ℎ
, 𝑅(ℎ)

𝑡−2ℎ
,... instead of the conditional variance given 𝑅

(ℎ)
𝑡−1

, 𝑅(ℎ)
𝑡−2

,...
In practice, the parameters required to obtain 𝜎

(ℎ)2
𝑡 are unknown and need to be estimated and

substituted in Equation (12). The most popular estimator of these parameters is Gaussian Quasi-
maximum likelihood (G-QML) based on nonoverlapping multiperiod returns, with the number
of returns reduced by a factor of ℎ with respect to the available daily returns; see Hoga (2019). It
is important to point out that Basel 3 allows risk to be calculated with overlapping returns. Very
recently, Patton et al. (2019) also propose estimating the parameters in Equation (12) by minimiz-
ing a loss function especially designed for quantiles. This alternative estimator of the parameters
is implemented by Liu and Stentoft (2021). The asymptotic properties of the G-QML estimator
are revised by Francq and Zakoïan (2009) and Hamadeh and Zakoïan (2011) for GARCH and GJR
models, respectively.
Alternatively, when 𝜀

(ℎ)
𝑡 has a non-normal distribution, the parameters can be estimated by

maximum likelihood (ML), maximizing the corresponding likelihood. In particular, in this sur-
vey, we consider two popular further distributions for standardized returns, namely, the Student
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with 𝜈 degrees of freedom and the Skewed-generalized-t (SGT) distribution defined by Theo-
dosiou (1998). Note that the SGT distribution with parameter 𝑘 = 2 is the same as the distribution
proposed by Hansen (1994) and implemented by Anatolyev and Petukhov (2016), Bali and Theo-
dossiou (2008), Fenunou et al. (2016), Le (2020), Theodossiou (2015), Wong and So (2003), and
Zhou et al. (2016), among others; see Aas and Haff (2006), Li and Nadarajah (2020), and Nadara-
jah et al (2017) for surveys of asymmetric Student distributions often assumed in the context of
financial econometrics. Fan et al. (2014) deal with the distribution of the QML estimator when
the maximized likelihood is non-Gaussian. Finally, note that the marginal variances required
to compute the starting values of the conditional volatilities, 𝜎(ℎ)2

𝑡 , can be estimated using the
corresponding sample variances of multiperiod returns.
The VaR in Equation (3) also depends on 𝑞

(ℎ)

𝛿
, the 𝛿% quantile of the distribution of 𝑒(ℎ)𝑇 , which

can be obtained by assuming a particular distribution as, for example, in Wong and So (2003),
who consider that 𝑒(ℎ)𝑇 has either a normal or a SGT distribution. If the assumed distribution is
non-Gaussian, its parameters can be estimated by ML together with all other parameters of the
conditional variance. Alternatively, one can estimate 𝑞(ℎ)

𝛿
by simulation. One of the most popular

simulationmethods to estimate 𝑞(ℎ)

𝛿
, which does not assume a particular distribution formultistep

standardized returns, is conditional historical simulation (CHS), as proposed by Hull and White
(1998). CHS estimates 𝑞(ℎ)

𝛿
as the empirical quantile of standardized residuals, 𝑒(ℎ)𝑇 . It is well known

that estimating a quantile by inverting the empirical distribution may not be efficient; see, for
example, Modarres et al. (2002). Alternatively, these latter authors propose a weighted estimator
using information on the mean being zero and the variance being one. As proposed by Barone-
Adesi et al. (2008), it is also possible to bootstrap from the empirical distribution of standardized
residuals. This procedure is known as filtered historical simulation (FHS). Finally, some authors
estimate 𝑞

(ℎ)

𝛿
using extreme value theory (EVT) as independently proposed by Danielsson and de

Vreis (2000) andMcNeil and Frey (2000). In this case, the center of the distribution is estimated by
bootstrapping while the extremes are obtained by using the Hill (1975) estimator . This alternative
is particularly tailored for models with heavy-tailed errors. However, while intuitive, it lacks a
solid theoretical foundation.

3.2 Iterated procedures

Assuming that one-period standardized returns, 𝜀(1)𝑡 , are an independent sequence, the condi-
tional variance needed to compute 𝑉𝑎𝑅

(ℎ)
𝑡 in Equation (3) is given by

𝜎
(ℎ)2
𝑡 =

ℎ∑
𝑖=1

𝜎2
𝑡+𝑖|𝑡, (13)

where 𝜎2
𝑡+𝑖|𝑡 is the variance of one-period returns, 𝑟𝑡+𝑖 , conditional on the information available

at time 𝑡, which can be obtained recursively for the particular model fitted to 𝑟𝑡. If the conditional
variance of one-period returns is specified as a GJR model, the 𝑖-step-ahead conditional variance
is given by

𝜎2
𝑡+𝑖|𝑡 =

{
𝜎2
𝑡+1

, 𝑖 = 1

𝜎2
𝑟 + (𝛼 + 𝛽 + 𝐹0𝛾)

𝑖−1(
𝜎2
𝑡+1

− 𝜎2
𝑟

)
, 𝑖 ≥ 2,

(14)
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where 𝜎2
𝑡+1

= 𝜔 + 𝛼𝑟2𝑡 + 𝛽𝜎2
𝑡 + 𝛾𝑟2𝑡 𝐼(𝑟𝑡 < 0) and 𝜎2

𝑟 =
𝜔

1−𝛼−𝛽−𝐹0𝛾
. Consequently, the conditional

variance of future multiperiod returns is given by

𝜎
(ℎ)2
𝑡 = ℎ𝜎2

𝑟 +
1 − (𝛼 + 𝛽 + 𝐹0𝛾)

ℎ

1 − (𝛼 + 𝛽 + 𝐹0𝛾)

(
𝜎2
𝑡+1

− 𝜎2
𝑟

)
. (15)

Once 𝜎(ℎ)2
𝑡 is estimated by the iterated approach, estimates of 𝑞(ℎ)

𝛿
can be obtained by assuming

a particular distribution of 𝑒(ℎ)𝑡 . Normality is assumed by Tsay (2010), Liu and Stentoft (2021), and
Wong and So (2003), among others while Barendsen et al. (in press) assume a Student-t distri-
bution with 5 and 30 degrees of freedom, and Skewed-Student distributions have been assumed
by Liu and Stentoft (2021) and Wong and So (2003). If this distribution is not Gaussian, then its
parameters can be estimated by matching the moments of multiperiod returns to the theoretical
ones implied by the model specified to one-period returns; see Lönnbark (2016), Wong and So
(2003), So and Wong (2012), and Zhou et al. (2016) for the good behavior of this estimator.
Alternatively, one can assume a particular distribution of the standardized one-period returns,

𝜀𝑡 =
𝑟𝑡

𝜎𝑡|𝑡−1

. In this case, the corresponding distribution of multiperiod returns is not generally

available in closed-form. Brummelhuis and Guégan (2005) study the tail behavior of the condi-
tional probability of 𝑅(ℎ)

𝑇 when 𝜎2
𝑡 is specified as a GARCH(1,1) process and 𝜀𝑡 is an independent

sequence of standard normal variables while Wong and So (2003) carry out Monte Carlo experi-
ments to analyze the distribution of 𝑒(ℎ)𝑇 when 𝜀𝑡 is either normal or Student-5. After assuming a
particular distribution of 𝜀𝑡, several authors propose simulating paths of 𝑟𝑡+ℎ|𝑡 using the estimated
conditional variance and the assumed distribution in order to compute 𝑉𝑎𝑅

(ℎ)
𝑡 ; see, for example,

Bams et al. (2005), Christoffersen (2003), Degiannakis, Floros and Dent (2013), Degiannakis et al.
(2014), Degiannakis and Potamia (2017), Engle (2004), andWong and So (2003). Even if the distri-
bution of standardized returns is known and ℎ = 1, in order to compute 𝑞(ℎ)

𝛿
one should take into

account that one is using returns standardized using estimated volatilities; see Hartz et al. (2006)
and Taniai and Taniguchi (2008) for point corrections of the VaR estimates that take into account
this estimation error. Consider, for example, that the model assumed for one-period returns is a
GJR model with normal errors. In this case, at each moment of time 𝑡, 𝑁 paths of future returns
are generated recursively, for 𝑗 = 1,… ,𝑁 and 𝑖 = 1, … , ℎ, as follows:

𝑟𝑗,𝑇+𝑖 = �̂�𝑗,𝑇+𝑖𝜀𝑗,𝑇+𝑖 (16)

�̂�2
𝑗,𝑇+𝑖+1

= �̂� + �̂�𝑟2
𝑗,𝑇+𝑖

+ 𝛽�̂�2
𝑗,𝑇+𝑖

+ �̂�𝑟2
𝑗,𝑇+𝑖

𝐼(𝑟𝑗,𝑇+𝑖 < 0), (17)

where 𝑗 = 1,… ,𝑁 represents each of the paths, �̂�, �̂�, 𝛽, and �̂� are either ML or QML estimates
of the corresponding parameters, and 𝜀𝑗,𝑡+𝑖 are random draws from the normal distribution. The
𝑉𝑎𝑅

(ℎ)
𝑡 is then computed as the corresponding quantile of the empirical distribution of 𝑅(ℎ)

𝑗,𝑡
=∑ℎ

𝑖=1
𝑟𝑗,𝑡+𝑖, 𝑗 = 1, … ,𝑁. We denote this procedure as SIM.

If no assumptions are made neither on the distribution of 𝑒(ℎ)𝑡 nor on that of 𝜀𝑡, 𝜀𝑗,𝑡+𝑖 in Equa-
tion (16) can be obtained by simulation, using bootstrap methods. The most popular method is
FHS, which consists on simulating paths of 𝑟𝑗,𝑡+𝑖 as in Equations b(16) and (17) but with 𝜀𝑗,𝑡+𝑖

being random draws from the empirical distribution of the standardized returns; see Hsieh (1993)
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for a very early proposal of using simulated paths and Giannopoulos (2003), Engle (2004), Le
(2020), Mancini and Trojani (2011), Liu and Stentoft (2021), Pritsker (2006), and Wong (2020) for
the implementation of FHS with multiperiod returns. An important issue is the nonrobustness of
several resampling procedures used to computemultiperiod VaR estimates. It is known that a few
large observations are sufficient to cause the break down of quantile estimates based on nonpara-
metric residual bootstrap and, consequently, multiperiod VaR forecasts can be strongly affected
by a few large observations; see Mancini and Trojani (2011) and Trucíos et al. (2017), who propose
robustified procedures to estimate GARCHmodels in the presence of outliers.
Finally, the quantile, 𝑞(ℎ)

𝛿
, can also be estimated by EVT; see Mancini and Trojani (2011) for the

good performance of this approach.
Table 1 summarizes the main point estimators of 𝑉𝑎𝑅

(ℎ)
𝑡 available in the literature and some

selected references implementing each of them.

3.3 Some further two-step procedures

Several authors propose alternative procedures to the direct and iterated procedures described
above. Among them, Taylor (1999, 2000) proposes estimating multiperiod VaR using quantile
regression. Recently, Le (2020) and Chen et al. (2021) propose procedures combining the quan-
tile regression and the MIDAS approach of Ghysels (2014). MIDAS uses daily data to produce
directly multiperiod volatility forecasts and can thus be viewed as a middle ground between the
direct and the iterated approaches.
Alternatively, some authors propose estimating multiperiod VaR using intra-daily data and

realized volatilities; see, for example, Beltratti and Morana (2005) and Louzis et al. (2013). It is
important to note that the conclusions about using ultra-high-frequency returns to compute mul-
tiperiod VaR are mixed. While Beltratti and Morana (2005) conclude that using ARFIMAmodels
in the context of realized volatilty provide a superior performance, Degiannakis and Potamia
(2017) show that the accuracy of multiperiod VaR forecasts does not improve with respect to
estimating them using daily data.
Finally, Hoogerheide and van Dijk (2010) also propose a two-step approach based on

Bayesian procedures.

3.4 A quick look at multiperiod expected shortfall

As mentioned above, ES is gaining popularity as the risk measure that should be reported by
financial institutions to assess their risk level. However, the research about multiperiod is still
extremely scarce with just a bunch of works available in this topic. In this subsection, we describe
those that we are aware about.
The multiperiod ES is given by the expected loss when multiperiod returns are below the

multiperiod VaR, 𝑉𝑎𝑅
(ℎ)
𝑡 , as follows:

𝐸𝑆
(ℎ)
𝑡 = −𝐸

[
𝑅
(ℎ)
𝑡 |𝑅(ℎ)

𝑡 ≤ −𝑉𝑎𝑅
(ℎ)
𝑡

]
= −

1

𝛿 ∫
𝛿

0

𝑉𝑎𝑅
(ℎ)
𝑡 (𝑢) 𝑑𝑢, (18)

where 𝑉𝑎𝑅
(ℎ)
𝑡 (𝑢) stands for the multiperiod VaR for a probability level of 𝑢.
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When the multistep VaR is given by Equation (3), the ES is given by

𝐸𝑆
(ℎ)
𝑡 = −𝜎

(ℎ)
𝑡 𝐸

[
𝑒
(ℎ)
𝑡 |𝑒(ℎ)𝑡 ≤ 𝑞

(ℎ)

𝛿

]
(19)

It is important to remark that, when the VaR is underestimate (overestimated), the ES is also
underestimated (overestimated). There are several proposals in the literature to estimate the ES
based on two-step procedures. So and Wong (2012) propose three different estimators of the mul-
tiperiod ES. First, assuming that 𝑒(ℎ)𝑡 is normal, they propose estimating the multiperiod VaR as
follows:

𝐸𝑆
(ℎ)
𝑡 = −𝜎

(ℎ)
𝑡 𝜙(𝑞

(ℎ)

𝛿
), (20)

where 𝜎(ℎ)
𝑡 is obtained by the exact conditional variance of 𝑅(ℎ)

𝑡 under a QGARCHmodel for one-
period returns as described by Wong and So (2003), and 𝜙(∙) is the standard normal probability
density function.
Second, assuming that 𝑒(ℎ)𝑡 has a Skewed-Student distribution, So and Wong (2012) propose

using the exact conditional kurtosis of 𝑅(ℎ)
𝑡 as proposed by Wong and So (2003) to estimate its

parameters. Then, the multiperiod ES is obtained by using the expression of the expectation of
the estimated distribution.
Finally, So and Wong (2012) propose using the simulation procedures described above in

Equations (16) and (17), to obtain replicates of multiperiod returns, 𝑅(ℎ)
𝑗,𝑡
, 𝑗 = 1,… ,𝑁. Then, the

multiperiod ES is given by

𝐸𝑆
(ℎ)
𝑡 = −

1

𝑁𝛿

𝑁∑
𝑗=1

𝑅
(ℎ)
𝑗,𝑡

𝐼
(
𝑅
(ℎ)
𝑗,𝑡

< 𝑉𝑎𝑅
(ℎ)
𝑡

)
, (21)

where 𝐼(∙) takes value one when the argument is true and zero otherwise. In an empirical
application to seven worldwide financial indices, they conclude that the last two estimators
are unbiased.
Alternatively, Degiannakis et al. (2013) propose an alternative estimator of multiperiod ES,

which is also based on assuming normality, although they obtain the multiperiod VaR for dif-
ferent probability levels. Denoting the multiperiod VaR at time 𝑡 for a probability level of 𝛼 by
𝑉𝑎𝑅

(ℎ)
𝑡 (𝛼), their proposed estimator of the multiperiod ES is given by

𝐸𝑆
(ℎ)
𝑡 =

1

𝑅

𝑅∑
𝑖=1

𝑉𝑎𝑅
(ℎ)
𝑡 (1 − 0.05 + 𝑖0.05(𝑅 + 1)−1) (22)

where 𝑅 is the number of slices in which the interval [0, 𝛿] is divided.
Very recently, Barendsen et al. (in press) propose estimatingmultiperiod ES using Equation (19)

with 𝜎
(ℎ)2
𝑡 given as in Equation (15) and assuming a particular distribution of the multistep quan-

tile, in particular, 𝑞(ℎ)

𝛿
being the 𝛿-quantile of a Student-t distribution with either 𝜈 = 5 or 30

degrees of freedom. In this case

𝐸
[
𝜀
(ℎ)
𝑡 |𝜀(ℎ)𝑡 ≤ 𝑞

(ℎ)

𝛿

]
=

√
𝜈 − 2

𝜈

𝜈 + (𝑔𝛿)
2

𝜈 − 1

𝐺𝜈(𝑔𝛿)

𝛿
(23)
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with 𝑔𝛿 being the 𝛿 quantile of the standard Student-t distribution with 𝜈 degress of freedom and

𝐺𝜈(𝑥) =
Γ
(

𝜈+1

2

)
Γ
(

𝜈

2

)√
𝜋𝜈

(
1 −

𝑥2

𝜈

)−
𝜈−1

2

, (24)

where Γ(∙) is the Gamma function. In an application to compute 10-period VaR and ES of FTSE-
100 returns, Barendsen et al. (in press) conclude that VaR(10) is underestimated while ES(10)
forecasts are too pessimistic.

4 COMPARING DIRECT AND ITERATEDMULTIPERIOD VAR
ESTIMATES

There are few works comparing direct and iterated approaches in the context of estimating
multiperiod volatilities. Among them, in a recent paper, Ghysels et al. (2019) undertake a com-
prehensive empirical examination of multiperiod volatility forecasting approaches. In addition
to the simple SRoT and the direct and iterated approaches, they consider a MIDAS regression to
estimate multiperiod volatilities. The results of their study suggest that long-horizon volatility is
much more predictable than previously suggested at horizons as long as 60 trading days (about
three months) with MIDAS being convenient for ℎ > 10; see also Christoffersen and Diebold
(2000), who show that, depending on the particular model for one-period returns, the volatility
forecastability ends around ℎ = 10. Furthermore, Ghysels et al. (2019) also conclude that, when
volatilities are represented by GARCH models, the direct approach provides worse (in the MSFE
sense) forecasts than the iterated approach.
The literature on the comparison between direct and iterated approaches to estimate multi-

period VaR is even more scarce. As far as we know, Mancini and Trojani (2011) were the first
aiming to this comparison. They consider simulated and real returns concluding that the direct
approach does not workwell. They advocate the use of iterated forecasts based onGARCHmodels
for 1-day returns with the quantile computed using a robust bootstrap procedure.
More recently, Kole et al. (2017) also carry out an empirical comparison about the effects of tem-

poral aggregation on the quality of multistep VaR forecasts based on a portfolio of eight indexes
observed daily, weekly and biweekly from 1994 to 2014. Their conclusions also favor the iter-
ated approach based on daily returns. They attribute this better performance to the more precise
identification and propagation of shocks in the daily models.
Le (2020) and Chen et al. (2021) compare empirically multiperiod VaR estimates based on some

direct, iterated and MIDAS approaches and also conclude that the direct approaches have the
worst performance. The results in the latter paper favor the iterated approaches when estimating
the 1%VaRwhile approaches based onMIDAS are favoredwhen estimating the 2.5% and 5%VaRs.
Therefore, in the context of multiperiod VaR forecasting, most studies support the best per-

formance of the iterated approaches when compared with the direct ones. Although this result
is different from that of most works dealing with linear models, it is in concordance with the
conclusions of Baek (2019), Marcellino et al. (2006), McCracken and McGillicuddy (2019), and
Quaedvlieg (2021). This apparent contradiction between the performance of direct and iterated
approaches in the context of linear and conditionally heteroscedastic models could be due to the
different nature of misspecifications faced in both types of models. Also, it is possible that the
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large sample sizes required for the correct estimation of the parameters of GARCH-type models
are not available when the direct approach is implemented.

5 THE DISTRIBUTION OFMULTIPERIOD VAR ESTIMATES:
AMONTE CARLO EXERCISE

In this section, we carry out Monte Carlo experiments to compare the finite sample properties
of the direct and iterated procedures to forecast multiperiod VaR in the context of possibly mis-
specified conditionally heteroscedastic models for one-period returns. In particular, we generate
𝑅 = 1000 series of sizes 𝑇 = 1000, 5000, 10000 from seven different data generating processes
(DGPs) for one-period returns, which are chosen to replicate the empirical characteristics often
observed in real financial returns. The first three DGPs are based on the following symmetric and
highly persistent GARCH(1,1) model

𝑟𝑡 = 𝜀𝑡𝜎𝑡 (25)

𝜎2
𝑡 = 0.02 + 0.1𝑟2

𝑡−1
+ 0.88𝜎2

𝑡−1
, (26)

where 𝜀𝑡 is an independent and identically distributed white noise with variance one.We consider
three (adequately standardized) alternative distributions for 𝜀𝑡, namely, normal, Student with 𝜈 =

7 degrees of freedom, and SGTwith 𝜈 = 7 degrees of freedomand asymmetry parameter 𝜆 = −0.8.
To analyze the effect of asymmetric volatilities, the second three DGPs are given by

Equation (25) with the conditional variances given by the following asymmetric GJR model

𝜎2
𝑡 = (0.065 − 0.09𝐹0) + 0.055𝑟2

𝑡−1
+ 0.88𝜎2

𝑡−1
+ 0.09𝑟2

𝑡−1
𝐼(𝑟𝑡−1 < 0), (27)

and 𝜀𝑡 having the same three distributionsmentioned above. Note that, for the two symmetric dis-
tributions, 𝐹0 = 0.5while, in the SGT distribution, 𝐹0 = 0.36. Therefore, the constant in Equation
(27) is 0.02 when the errors are normal or Student and it is 0.033 when they are SGT. In any case,
regardless of the particular distribution of standardized returns, the marginal variance of returns
in the GARCH and GJR models in Equations (26) and (27), respectively, is 1.
Finally, we deal with misspecification by considering a last DGP for one-period returns. In

particular, we generate returns by Equation (25) with 𝜀𝑡 having a standardized GED distribution
with parameter 𝜈 = 1.7 and the following asymmetric stochastic volatility (ASV)

𝑙𝑜𝑔𝜎2
𝑡 = −0.00001 + 0.98𝑙𝑜𝑔𝜎2

𝑡−1
+ 0.02(𝐼(𝜀𝑡−1 < 0) − 0.5) − 0.15𝜀𝑡−1

−0.04[|𝜀𝑡−1| − 𝐸(|𝜀𝑡−1|)] + 𝜂𝑡 (28)

where 𝜂𝑡 is 𝑁(0, 𝜎2
𝜂) with 𝜎2

𝜂 = 0.02, distributed independently from 𝜀𝑡+𝑠 for all leads and lags;
see Mao et al. (2020) for a description of the properties of this model that nets several popular
stochastic volatility models designed to capture asymmetric volatility. The main objective when
considering the DGP in Equation (28) is to generate returns by a model different from any of the
models used in the iterated procedures. In this case, all models are misspecified.
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For each DGP and Monte Carlo replicate, we compute the true 𝑉𝑎𝑅
(10)
𝑇 for 𝛿 = 0.01, which is

the VaR level originally required by the Basel accords. Note that, in the context of insurance, the
required VaR level is even smaller, 𝛿 = 0.005 (Fröhlich and Weng, 2018) while Hsieh (1993) also
considers 𝛿 = 0.005 when calculating daily minimum capital requirements of a futures position.
Furthermore, Basel Committee on Banking Supervision (2019) also recommends banks employ
the 2.5% risk level to estimate financial risk. The true 𝑉𝑎𝑅

(10)
𝑇 is obtained by generating paths

of independent future noises 𝜀(𝑖)
𝑇+1

, … , 𝜀
(𝑖)
𝑇+10

from the assumed distribution for 𝑖 = 1, … , 200, 000.
It is important to mention that, in order to generate a reliable value of the “true” 𝑉𝑎𝑅

(10)
𝑇 , the

number of replicated paths has to be very large for small values of 𝛿. Furthermore, the values in
the extremes generate volatility paths, which can diverge as ℎ increases. Consequently, Wong and
So (2003) choose 𝑁 = 200, 000 paths for 𝛿 = 0.01 and 0.05 while Hsieh (1993), Engle (2004), and
Hoogerheide and van Dijk (2010) choose 𝑁 = 10, 000 when 𝛿 = 0.05. Finally, Degiannakis et al.
(2014) generate 𝑁 = 5000 paths when 𝛿 = 0.01 and 0.05. According to our experience, values of
𝑁 below 100,000 are not enough when 𝛿 = 0.01. The generated paths are inserted in the corre-
sponding true specification of the volatility to generate paths of future returns, 𝑟(𝑖)

𝑇+1
, … , 𝑟

(𝑖)
𝑇+10

,
which are used to compute 10-period returns, 𝑅(10)(𝑖)

𝑇 =
∑10

𝑗=1
𝑟
(𝑖)
𝑇+𝑗

. Finally, the “true” 𝑉𝑎𝑅
(10)
𝑇 is

obtained as the empirical quantile of 𝑅(10)(𝑖)
𝑇 . Then, we estimate 𝑉𝑎𝑅

(10)
𝑇 using each of the direct

and iterated procedures described above. Finally, we compute the corresponding relative errors as
𝑉𝑎𝑅

(10)(𝑀)

𝑇 − 𝑉𝑎𝑅
(10)
𝑇

𝑉𝑎𝑅
(10)
𝑇

, where𝑉𝑎𝑅
(10)(𝑀)

𝑡 is the estimated VaR at time 𝑇 obtained using procedure

𝑀.
Tables 2–4 report the averages and rootMSFEs (RMSFEs) throughMonte Carlo replicates of the

relative errors incurredwhen the𝑉𝑎𝑅
(10)
𝑇 is estimated using the direct approaches and one-period

returns are generated by the GARCH, GJR, and SV models, respectively. The direct approaches
are based on first fitting to nonoverlapping ten-period returns either a GARCH or a GJR model.
It is important to note that the effective sample size is reduced by 1

10
. Consequently, when the

sample sizes are 𝑇 = 1000, 5000, 10000, the effective sample sizes of nonoverlapping returns used
in the estimation of the model parameters are 100, 500, and 1000 observations, respectively. After
fitting the GARCH or GJR models to 10-period returns, the quantile is estimated by: (i) assuming
a particular distribution for the multiperiod errors (normal, Student, or SGT); (ii) using CHS;
(iii) using FHS; and (iv) using the EVT procedure. Note that, when the errors are assumed to be
Student or SGT, the model parameters are estimated by ML. In all other cases, the parameters are
estimated by G-QML.
Table 2 shows that, when one-period returns are generated by the GARCH model, the results

are very similar regardless of whether theGARCHorGJRmodels are fitted tomultiperiod returns.
This result could be expected as the asymmetry parameter of the GJR model would be nonsignif-
icant in the latter case. It seems that there is not a price to pay for fitting the GJR model to
multiperiod returns even when one-period returns are symmetric with the RMSFEs being only
slightly larger when the GJR model is fitted. Somehow more unexpected is the fact that, regard-
less of the particular error distribution of standardized 1-day returns, the biases and RMSFEs
of multiperiod VaR estimates are minimized when 𝑒

(10)
𝑇 is assumed to be normal. The tempo-

ral aggregation of returns generates conditional normality even if 1-day returns have distributions
with excess kurtosis and/or asymmetry. If the multiperiod quantile is estimated by CHS, FHS,
or EVT, the estimates of 𝑉𝑎𝑅

(10)
𝑇 are negatively biased with the biases being largest when the
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TABLE 2 Monte Carlo averages and RMSFEs (in brackets) of 𝑉𝑎𝑅
(10)
𝑇 relative errors based on the direct

approach when one-period returns are generated by a GARCH(1,1) model with Normal errors (top panel),
Student errors (middle panel), and Skewed-Student errors (bottom panel). The effective size used for estimating
the VaR is 𝑇

10
. Figures in bold denote that the bias is not significantly different from zero at 1% significance level.

GARCH GJR
N S Sk CHS FHS EVT N S Sk CHS FHS EVT

N T = 1000 .01 −.07 −.07 −.23 −.09 −.03 .02 −.05 −.05 −.20 −.07 .01
o [0.24] [0.28] [0.33] [0.50] [0.33] [0.30] [0.26] [0.30] [0.35] [0.48] [0.39] [0.32]
r T = 5000 −.02 −.10 −.10 −.14 −.11 −.10 −.01 −.10 −.10 −.14 −.10 −.10
m [0.20] [0.22] [0.24] [0.32] [0.27] [0.24] [0.22] [0.24] [0.24] [0.32] [0.28] [0.24]
a T = 10000 −.02 −.11 −.11 −.13 −.12 −.12 −.02 −.11 −.11 −.13 −.11 −.12
l [0.20] [0.24] [0.26] [0.28] [0.27] [0.26] [0.20] [026] [0.26] [0.30] [0.26] [0.26]
S T = 1000 .03 −.07 −.05 −.26 −.11 −.04 .04 −.05 −.05 −.23 −.09 −.02
t [0.24] [0.30] [0.34] [0.60] [0.45] [0.32] [0.27] [0.30] [0.35] [0.57] [0.48] [0.35]
u T = 5000 .00 −.11 −.11 −.15 −.12 −.11 .01 −.11 −.11 −.15 −.11 −.11
d [0.23] [0.27] [0.29] [0.35] [0.30] [0.29] [0.23] [0.27] [0.28] [0.36] [0.31] [0.29]

T = 10000 −.01 −.12 −.11 −.15 −.12 −.13 −.00 −.12 −.12 −.15 −.12 −.12
[0.21] [0.26] [0.27] [0.33] [0.27] [0.27] [0.22] [0.27] [0.27] [0.34] [0.28] [0.28]

S T = 1000 .02 −.09 −.10 −.31 −.17 −.09 .03 −.08 −.10 −.26 −.15 −.06
G [0.26] [0.32] [0.37] [0.69] [0.55] [0.39] [0.27] [0.34] [0.36] [0.62] [0.53] [0.37]
T T = 5000 .01 −.11 −.13 −.21 −.16 −.15 .01 −.10 −.14 −.20 −.16 −.15

[0.21] [0.25] [0.28] [0.40] [0.33] [0.31] [0.22] [0.25] [0.29] [0.39] [0.33] [0.32]
T = 10000 .02 −.09 −.11 −.16 −.14 −.14 .02 −.09 −.13 −.16 −.14 −.16

[0.20] [0.24] [0.27] [0.33] [0.29] [0.29] [0.21] [0.24] [0.27] [0.34] [0.29] [0.34]

CHS procedure is implemented to compute the quantile. In this later case, even if 𝑇 = 10, 000,
and the effective sample size used to estimate the multiperiod model is 1000, the bias estimating
𝑉𝑎𝑅

(10)
𝑇 can be as large as 16%. Therefore, the direct approachwould underestimate risk with dan-

gerous potential damages for financial companies. Underestimation of the own level of risk may
lead to insufficient amount of capital reserves to cover potential losses, thus increasing the risk
of bankruptcy.
Finally, in relation with the dispersion of multiperiod VaR estimates, Table 2 shows that the

RMSFEs are not only rather large but also that they decrease very slowlywith the sample size. This
lack of efficiency is a well-known characteristic of direct approaches. Mancini and Trojani (2011),
who also conclude empirically that direct methods do not work well in the context of multiperiod
VaR estimation, argue that these methods suffer the inefficient use of available information, dis-
carding nine out of 10 observations, when computing nonoverlapping 10-day returns. However,
according to our results, the bad performance of direct methods does not seem to be associated
only to the inefficient use of information. Table 2 shows that, for each particular procedure, the
standard deviations of the 𝑉𝑎𝑅

(10)
𝑇 forecasts are of the same order of magnitude regardless of the

sample size. For example, when the quantile is estimated assuming normality ofmultiperiod stan-
dardized returns, the RMSFE is 0.24 when 𝑇 = 1000 and decreases to 0.20 when 𝑇 = 10, 000.
Using more information, the biases do not decrease and the standard deviations are similar. It
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TABLE 3 Monte Carlo averages and RMSFE (in brackets) of 𝑉𝑎𝑅
(10)
𝑇 relative errors based on the direct

approach when one-period returns are generated by a GJR model with Normal errors (top panel), Student errors
(middle panel), and Skewed-Student errors (bottom panel). The effective size used for estimating the VaR is 𝑇

10
.

Figures in bold denote that the bias is not significantly different from zero at 1% significance level.

GARCH GJR
N St SGT CHS FHS EVT N St SGT CHS FHS EVT

N T = 1000 −.12 −.21 −.28 −.49 −.32 −.24 −.10 −.19 −.27 −.42 −.28 −.20
o [0.30] [0.40] [0.49] [0.73] [0.64] [0.49] [0.30] [0.39] [0.48] [0.70] [0.56] [0.44]
r T = 5000 −.14 −.24 −.29 −.37 −.33 −.32 −.13 −.22 −.29 −.35 −.31 −.30
m [0.28] [0.36] [0.41] [0.51] [0.46] [0.44] [0.26] [0.33] [0.40] [0.48] [0.43] [0.41]
a T = 10000 −.14 −.24 −.29 −.35 −.33 −.33 −.12 −.22 −.28 −.33 −.30 −.31
l [0.28] [0.36] [0.41] [0.48] [0.44] [0.44] [0.26] [0.33] [0.38] [0.46] [0.41] [0.41]
S T = 1000 −.11 −.22 −.26 −.53 −.34 −.25 −.09 −.20 −.26 −.46 −.32 −.22
t [0.32] [0.41] [0.50] [0.87] [0.67] [0.51] [0.31] [0.40] [0.50] [0.79] [0.66] [0.48]
u T = 5000 −.11 −.13 −.26 −.30 −.40 −.35 −.34 −.12 −.24 −.31 −.40 −.33
d [0.29] [0.38] [0.45] [0.57] [0.49] [0.47] [0.29] [0.37] [0.42] [0.57] [0.47] [0.47]
t T = 10000 −.12 −.25 −.28 −.37 −.34 −.34 −.11 −.24 −.30 −.36 −.32 −.32

[0.28] [0.38] [0.41] [0.52] [0.47] [0.46] [0.25] [0.35] [0.40] [0.50] [0.44] [0.43]
S T = 1000 −.01 −.13 −.22 −.58 −.53 −.37 .02 −.09 −.22 −.48 −.43 −.31
T [0.37] [0.40] [0.52] [1.16] [1.15] [0.75] [0.35] [0.37] [0.52] [0.88] [0.91] [0.68]
G T = 5000 −.06 −.20 −.30 −.41 −.53 −.34 .13 −.15 −.30 −.43 −.47 −.35

[0.31] [0.39] [0.52] [0.73] [0.73] [0.60] [0.37] [0.32] [0.52] [0.71] [0.64] [0.53]
T = 10000 −.06 −.20 −.29 −.45 −.52 −.36 −.02 −.14 −.29 −.41 −.45 −.35

[0.32] [0.39] [0.52] [0.68] [0.70] [0.54] [0.27] [0.31] [0.52] [0.65] [0.60] [0.51]

TABLE 4 Monte Carlo averages and RMSFE (in brackets) of 𝑉𝑎𝑅
(10)
𝑇 relative errors based on the direct

approach when one-period returns are generated by a ASV model with GED errors. The effective size used for
estimating the VaR is 𝑇

10
. Figures in bold denote that the bias is not significantly different from zero at 1%

significance level.

GARCH GJR
N S Sk CHS FHS EVT N S Sk CHS FHS EVT

T = 1000 −.01 −.12 −.17 −.45 −.18 −.26 −.05 −.05 −.21 −.47 −.12 −.17
[0.45] [0.54] [0.59] [0.54] [0.61] [0.65] [0.40] [0.46] [0.52] [0.54] [0.52] [0.58]

T = 5000 −.02 −.16 −.22 −.46 −.28 −.29 −.03 −.08 −.27 −.46 −.28 −.30
[0.47] [0.55] [0.61] [0.53] [0.65] [0.66] [0.39] [0.45] [0.45] [0.53] [0.66] [0.67]

T = 10,000 −.01 −.16 −.22 −.47 −.31 −.31 −.04 −.08 −.28 −.48 −.21 −.22
[0.42] [0.51] [0.56] [0.53] [0.63] [0.63] [0.33] [0.38] [0.42] [0.52] [0.48] [0.48]

does not seem that the bad performance of direct procedures is just a problem associated with the
sample size. If it were, we could expect RMSFEs decreasing at a larger rate with 𝑇.
Tables 3 and 4 report the results when 1-day returns are generated by the nonsymmetric GJR

and SV models in Equations (27) and (28), respectively. The conclusions are mainly the same
as those obtained from Table 2. The multiperiod VaR are always negatively biased (even when
normality of multiperiod standardized returns is assumed), with the biases being generally even
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TABLE 5 Monte Carlo averages and RMSFEs (in brackets) of 𝑉𝑎𝑅
(10)
𝑇 relative errors based on the iterated

approach when one-period returns are generated by a GARCH(1,1) model with Normal errors (top panel),
Student errors (middle panel) and Skewed-Student errors (bottom panel). Figures in bold denote that the bias is
not significantly different from zero at 1% significance level.

GARCH GJR
N S Sk SIM FHS EVT N S Sk SIM FHS EVT

N T = 1000 .05 −.00 −.00 .00 .00 .00 .05 −.00 .01 .00 .01 .00
o [0.07] [0.07] [0.12] [0.06] [0.08] [0.10] [0.07] [0.07] [0.12] [0.08] [0.09] [0.11]
r T = 5000 .05 −.03 −.03 .00 .00 −.00 .05 −.03 −.03 .00 .00 −.00
m [0.05] [0.05] [0.06] [0.04] [0.03] [0.07] [0.05] [0.05] [0.06] [0.04] [0.04] [0.07]
a T = 10000 .05 −.03 −.03 −.00 −.00 −.00 .05 −.03 −.03 .00 −.00 .00
l [0.05] [0.04] [0.05] [0.03] [0.02] [0.07] [0.05] [0.04] [0.05] [0.04] [0.03] [0.07]
S T = 1000 .08 .01 .01 .03 .01 .01 .08 .01 .02 .03 .01 .01
t [0.10] [0.09] [0.13] [0.08] [0.10] [0.12] [0.11] [0.09] [0.13] [0.10] [0.12] [0.13]
u T = 5000 .07 −.03 −.02 .02 .00 −.00 .07 −.03 −.03 .02 −.00 −.00
d [0.08] [0.05] [0.06] [0.04] [0.05] [0.09] [0.08] [0.06] [0.07] [0.05] [0.06] [0.09]

T = 10000 .07 −.03 −.02 .03 .00 .00 .07 −.03 −.03 .03 .00 .00
[0.07] [0.04] [0.04] [0.05] [0.03] [0.07] [0.07] [0.04] [0.05] [0.05] [0.04] [0.08]

S T = 1000 .08 .01 −.01 .03 −.03 .05 .08 .01 −.01 .03 −.03 .05
T [0.10] [0.09] [0.14] [0.08] [0.11] [0.12] [0.11] [0.10] [0.14] [0.10] [0.13] [0.14]
G T = 5000 .08 −.02 −.06 .03 −.04 .05 .08 −.02 −.05 .03 −.04 .05

[0.09] [0.05] [0.08] [0.05] [0.06] [0.09] [0.09] [0.05] [0.08] [0.06] [0.07] [0.08]
T = 10000 .08 −.02 −.05 .03 −.04 .05 .08 −.02 −.06 .03 −.04 0.05

[0.08] [0.03] [0.06] [0.05] [0.06] [0.09] [0.08] [0.03] [0.07] [0.05] [0.06] [0.09]

larger than those observed in Table 2. Similarly, the RMSFEs are also larger than those observed
when one-period returns are generated by the symmetric GARCHmodel.
We nowmove on to analyze the finite sample properties of𝑉𝑎𝑅

(10)
𝑇 forecasts when the variance

in Equation (13) is obtained by the iterated 10-period variance and the quantile is estimated using
the procedures described in Section 2, namely: (i) assuming that the 10-period errors are normal,
Student and SGT; (ii) EVT; (iii) simulation assuming that one-step innovations are normal with
𝑁 = 5000 replicates; and (iv) using the FHS procedure with 𝐵 = 500, 000. Tables 5–7 report the
Monte Carlo averages and RMSFEs of the relative errors when one-period returns are generated
by the GARCH(1,1), GJR, and SV models, respectively.
Consider first the results when one-period returns are generated by the symmetric GARCH(1,1)

model. Several important conclusions emerge fromTable 5. First, as above, when dealing with the
direct approach, the results are nearly identical regardless of whether the true GARCH model or
the GJR model are fitted to one-period returns. Therefore, there is not a price to pay for iterating
the GJR model even when the volatility of one-period returns is symmetric. Second, contrary to
what we conclude when using the direct approach, the worst results in terms of bias are obtained
when the multiperiod quantile is obtained by assuming normality of multiperiod standardized
returns. It seems that, when the variance is computed by iterating, the aggregation effect is not
generating normality. If one assumes normal multistep standardized returns, the biases are pos-
itive and moderately large. Therefore, risk is overestimated. Although risk overestimation seems
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TABLE 6 Monte Carlo averages, standard deviations (in parenthesis) and RMSFEs (in brackets) of 𝑉𝑎𝑅
(10)
𝑇

relative errors based on the iterated approach when one-period returns are generated by a GJR model with
Normal errors (top panel), Student errors (middle panel), and Skewed-Student errors (bottom panel). Figures in
bold denote that the bias is not significantly different from zero at 1% significance level.

GARCH GJR
N S Sk SIM FHS EVT N S Sk SIM FHS EVT

N T = 1000 −.07 −.14 −.20 −.13 −.13 −.14 −.07 −.13 −.19 .00 .00 .00
o [0.11] [0.18] [0.26] [0.16] [0.18] [0.19] [0.09] [0.15] [0.24] [0.06] [0.08] [0.10]
r T = 5000 −.07 −.17 −.22 −.13 −.13 −.14 −.07 −.15 −.21 .00 .00 .00
m [0.10] [0.19] [0.24] [0.15] [0.15] [0.17] [0.07] [0.16] [0.22] [0.04] [0.04] [0.06]
a T = 10000 −.07 −.17 −.22 −.13 −.13 −.13 −.07 −.16 −.21 .00 .00 .00 )
l [0.10] [0.19] [0.24] [0.15] [0.15] [0.16] [0.07] [0.16] [0.21] [0.03] [0.03] [0.06]
S T = 1000 −.05 −.13 −.17 −.10 −.13 −.14 −.04 −.12 −.17 .02 .00 .01
t [0.11] [0.18] [0.24] [0.15] [0.19] [0.17] [0.08] [0.16] [0.23] [0.09] [0.11] [0.12]
u T = 5000 −.05 −.17 −.21 −.11 −.14 −.14 −.04 −.15 −.20 .03 .02 −.01
d [0.09] [0.19] [0.23] [0.14] [0.17] [0.18] [0.05] [0.16] [0.21] [0.06] [0.05] [0.12]
e T = 10000 −.05 −.16 −.21 −.10 −.13 −.13 −.04 −.16 −.21 .02 −.00 −.01
n [0.09] [0.18] [0.23] [0.13] [0.15] [0.17] [0.04] [0.16] [0.22] [0.03] [0.03] [0.11]
S T = 1000 .08 −.01 −.16 −.11 −.26 .28 .09 .01 −.17 −.06 −.08 −.11
G [0.12] [0.11] [0.22] [0.15] [0.32] [0.29] [0.12] [0.11] [0.23] [0.16] [0.23] [0.14]
T T = 5000 .07 −.06 −.21 −.12 −.28 .28 .09 −.02 −.21 −.04 −.06 −.09

[0.09] [0.08] [0.22] [0.14] [0.30] [0.28] [0.10] [0.05] [0.22] [0.10] [0.03] [0.10]
T = 10000 .06 −.06 −.22 −.12 −.28 .28 .09 −.03 −.22 −.03 −.05 −.09

[0.07] [0.07] [0.23] [0.14] [0.29] [0.28] [0.09] [0.05] [0.23] [0.09] [0.09] [0.10]

to be less dangerous than risk underestimation, it also has some undesirable consequences, as
mentioned in the Introduction. Except when the multiperiod quantile is obtained by assuming
normality, the biases estimating multiperiod VaR are nearly zero regardless of the particular
procedure implemented to estimate the quantile. This conclusion is in concordance with the
empirical results by Kole et al. (2017), who conclude that the distribution choice is of less impor-
tance when estimating multiperiod VaR. Third, comparing the RMSFEs reported in Table 5 with
those reported for the direct procedures in Table 2, we can observe a dramatic decrease in the dis-
persion of multiperiod VaR forecasts that could be expected given that the effective sample size
used for estimation is 10 times larger and we are assuming the true DGP for one-period returns.
However, the decrease is even larger than expected, with the RMSFEs of the iterated approaches
ranging from 0.02 to 0.14 while those of the direct approaches range from 0.24 to 0.69. Also note
that theRMSFEs are slightly largerwhen the EVTprocedure is implemented to estimate the quan-
tile and are generally minimized when the quantile is estimated by simulation assuming that
one-period returns are conditionally normally distributed.
To analyze the role of misspecification in the iterated multiperiod VaR estimates, we also

generate one-period returns by the GJR model in Equation (27) and fit both the misspecified
GARCH(1,1) and the true GJR models. The results are reported in Table 6. If one-period returns
are symmetric, we can observe large negative biases incurred when the GARCHmodel is fitted to
one-period returns before iterating. On the contrary, if the one-period returns have an asymmetric
distribution, the biases can be either positive or negative; compare with results in Mancini and
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TABLE 7 Monte Carlo averages and RMSFEs (in brackets) of 𝑉𝑎𝑅
(10)
𝑇 relative errors based on the iterated

approach when one-period returns are generated by an ASV model with GED errors. Figures in bold denote that
the bias is not significantly different from zero at 1% significance level.

GARCH GJR
N S Sk SIM FHS EVT N S Sk SIM FHS EVT

T = 1000 −.09 −.01 −.07 −.32 −.36 −.36 −.12 −.05 −.04 −.07 −.09 −.09
[0.28] [0.29] [0.34] [0.28] [0.31] [0.30] [0.25] [0.25] [0.27] [0.33] [0.32] [0.32]

T = 5000 −.08 −.03 −.12 −.34 −.37 −.38 −.11 −.08 −.09 −.10 −.11 −.15
[0.27] [0.29] [0.34] [0.28] [0.29] [0.30] [0.25] [0.25] [0.28] [0.32] [0.31] [0.32]

T = 10000 −.09 −.02 −.11 −.32 −.36 −.35 −.12 −.02 −.08 −.08 −.09 −.09
[0.25] [0.28] [0.33] [0.27] [0.28] [0.29] [0.24] [0.24] [0.27] [0.32] [0.32] [0.32]

Trojani (2011) who only consider the GJR model with Student-5 errors and 𝑇 = 2000. However,
it is important to point out that the biases reported in Table 6, when the multiperiod volatility is
obtained by iterating themisspecifiedGARCHmodel, are of the same order ofmagnitude and gen-
erally smaller than those observed in Table 3 when using the direct approach. Therefore, it seems
that there is not any reason for using the direct approach to estimate multiperiod VaR, not even
being robust against misspecification. Also note that the RMSFEs are much smaller than those
reported in Table 3. Therefore, according to our results, even in the case of misspecification of the
conditional variance, using the iterated approaches seems to be less damaging for estimating the
multiperiod VaR than using the direct approaches. Finally, when looking at the multiperiod VaR
estimates obtained by iterating the true GJR model fitted to one-period results, we observe that,
if one-period returns have a symmetric conditional distribution, the multiperiod VaR estimates
are unbiased as far as the quantile is estimated by either simulation, bootstrap, or EVT. Among
these alternatives, the dispersion isminimumwhen the quantile is obtained by simulation assum-
ing that one-period returns are normal and maximum if it is estimated using EVT. On the other
hand, if the distribution of returns is asymmetric, the best results are obtained by iterating the
GJR model and estimating the quantile by assuming that multiperiod returns have a Student-t
distribution; see Spierdijk (2016) for the problems of bootstrapping when estimating the VaRwith
asymmetric conditional distributions.
Finally, Table 7 reports the results when one-period returns are generated by the ASV model

and the misspecified GARCH and GJR models are iterated. We can see that the best results are
obtained when the GJRmodel is fitted to 1-day returns and the quantile is estimated by assuming
a Student-t distribution.
Summarizing, the simulation results of this section, we observe a large decrease in dispersion

when using iterated approaches as compared to direct approaches, supporting the increase in
efficiency when iterated methods are used instead of direct approaches to forecast multiperiod
VaRs. This conclusion is in concordance with conclusions by Marcellino et al. (2006), who show
that, in the context of forecasting macroeconomic variables using linear models, iterated fore-
casts typically outperform the direct forecasts in terms of MSFEs. However, while improvements
in Marcellino et al. (2006) are modest, we observe large improvements when forecasting 𝑉𝑎𝑅

(10)
𝑇 .

These results also support the empirical results by Kole et al. (2017) who conclude that, for their
particular, portfolio, iterating the GJR model gives the best VaR forecasts. The large variances of
multiperiod VaR forecasts based on direct procedures cannot be only attributed to the inefficient
use of information; compare the results for 𝑇 = 10, 000 in the direct procedures and for 𝑇 = 1000
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in the iterated procedures with the effective sample size used for estimation being the same for
bothmethods. However, if one would like to use the direct approach, regardless of the conditional
distribution of one-period returns, the results are best when fitting a GJR model estimating the
quantile by assuming normality of multistep standardized returns. On the other hand, the best
performance of iterated approaches, based on iterating the GJR model, depends on the distribu-
tion of one-day returns. If this distribution is symmetric, the results are best when the quantile
is obtained by simulation assuming that 1-day returns are normal. However, if the distribution is
asymmetric, the best performance is obtained when the quantile is estimated by assuming that
multistep standardized returns are Student.

6 EMPIRICAL ILLUSTRATION OF ALTERNATIVEMULTIPERIOD
VAR ESTIMATES

In this section, we illustrate the performance of the direct and iterated procedures described
above when forecasting VaR in practice. We obtain one-step-ahead 10-day VaR predictions of
three series of financial returns, namely, S&P500, Dollar/Euro, and IBM returns, observed daily
from January 1, 1995, to December 12, 2018, with 𝑇 = 6000. One-day log-returns are obtained as
usual as 𝑟𝑡 for 𝑡 = 2, 3, … , 6000. We also compute nonoverlapping 10-day log-returns as 𝑅

(10)
𝑡−10

,
for 𝑡 = 11, 21, 31, … , 5991. S&P500 and Dollar/Euro returns have been chosen because they are
ubiquitous in the literature dealing with the empirical analysis of financial returns. Further-
more, Table 8, which reports several descriptive statistics of 𝑟𝑡 for each of the three series of 1-day
and 10-day returns, shows that they have different stylized facts. When looking at 1-day S&P500
returns, we can observe that their distribution is leptokurtic and negatively skewed and the cross-
correlation between absolute and lagged returns is negative suggesting asymmetric volatility. The
Dollar/Euro returns are closer to normality with symmetric volatilities. Finally, the volatility of
IBM is also symmetric with the distribution of returns being leptokurtic but symmetric. As often
observed in the related literature, 10-day returns have larger skewness (in absolute value) and
stronger asymmetric effects while the kurtosis is smaller than those of 1-day returns; see, among
others, Ghyselset al. (2016), Le (2020), Neuberger (2012), andWong (2020) for the same empirical
result and Alexander et al. (2021), Berd et al. (2007), Colacito and Engle (2010), Engle (2004, 2011),
Fama and French (2018), Meddahi and Renault (2004), andWong and So (2003), who explain why
the presence of asymmetric volatilities increase the asymmetry of multiperiod returns even in the
case of one-period innovations being symmetric. The three series of returns considered have been
chosen to represent common stylized facts of daily returns often observed in real time series.
We fit the GJR model with normal, Student, and SGT errors to 1- and 10-day returns with the

parameters estimated byML. Note that theML estimates of the parameters obtained by maximiz-
ing the Gaussian likelihood are G-QML estimates when the errors are not assumed to be normal.
Also, given the previous Monte Carlo results, we focus on the more general GJR model and do
not fit the GARCH model. The parameter estimates, reported in Table 9 for the GJR model with
SGT errors, are in concordance with the sample moments reported in Table 8. When looking at
the parameter estimates for 1-day returns, we can observe that Dollar/Euro returns can be rep-
resented by a symmetric and persistent GARCH model with normal errors. On the other hand,
volatilities of S&P500 and IBM 1-day returns are characterized by strong leverage effects and their
errors are leptokurtic with asymmetric and symmetric distributions, respectively. When looking
at the parameter estimates corresponding to 10-day returns, we can see that the persistence of
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TABLE 8 Sample moments of (a) 1-day log-returns and (b) nonoverlapping 10-day log-returns, for S&P500,
Dollar/Euro, and IBM observed from January 1, 1995 to December 12, 2018.

S&P500 DOLLAR/EURO IBM
(a) Oneday log-returns
Mean 0.000 −0.002 0.000
Median 0.100 0.000 0.000
Max 11.000 3.733 12.400
Min −9.500 −2.781 −16.900
Stand. dev. 1.200 0.614 1.700
Skewness −0.300 0.068 −0.100
Kurtosis 11.40 4.54 10.80
𝐶𝑜𝑟𝑟(𝑦𝑡, 𝑦𝑡−1) −0.100 −0.024 0.000
𝐶𝑜𝑟𝑟(|𝑦𝑡|, |𝑦𝑡−1|) 0.200 0.088 0.200
𝐶𝑜𝑟𝑟(|𝑦𝑡|, 𝑦𝑡−1) −0.100 0.017 0.000
(b) Nonoverlapping 10-day log-returns
Mean 0.294 −0.017 0.310
Median 0.628 0.077 0.356
Max 9.956 7.503 27.143
Min −15.590 −8.647 −18.917
Stand. dev. 3.117 1.893 5.313
Skewness −0.848 −0.211 0.281
Kurtosis 5.564 4.020 5.730
𝐶𝑜𝑟𝑟(𝑦𝑡, 𝑦𝑡−1) −0.026 0.054 0.061
𝐶𝑜𝑟𝑟(|𝑦𝑡|, |𝑦𝑡−1|) 0.254 0.061 0.222
𝐶𝑜𝑟𝑟(|𝑦𝑡|, 𝑦𝑡−1) −0.227 −0.040 −0.069

TABLE 9 ML parameter estimates of GJR models with SGT errors based on 1-day log-returns and
nonoverlapping 10-day log-returns for S&P500, Dollar/Euro, and IBM. Asymptotic standard errors in parenthesis.

S&P500 DOLLAR/EURO IBM
1-day 10-day 1-day 10-day 1-day 10-day

𝜔 0.017 0.795 0.001 0.123 0.017 0.824
(0.00) (0.23) (0.00) (0.01) (0.01) (1.12)

𝛼 0.000 0.000 0.024 0.069 0.036 0.058
(0.00) (0.02) (0.00) (0.00) (0.01) (0.00)

𝛽 0.897 0.787 0.968 0.867 0.940 0.872
(0.00) (0.02) (0.00) (0.00) (0.03) (0.01)

𝛾 0.192 0.323 0.013 0.056 0.098 0.043
(0.00) (0.03) (0.00) (0.00) (0.02) (0.02)

𝜈 7.76 11.57 10.17 70.23 4.63 7.19
(0.64) (32.53) (1.69) (54.94) (0.15) (4.58)

𝜆 −0.138 −0.371 0.002 −0.146 −0.021 −0.058
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00)
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volatilities (measured by 𝛼 + 𝛽 + 0.5𝛾) is smaller. However, while the ARCH parameter is larger
for 10-day returns, the estimated asymmetry parameter, 𝛿, is larger for 10-day S&P500 and Dol-
lar/Euro returns while it is smaller for IBM returns. Finally, with respect to the parameters of the
error distribution, the degrees of freedom of the Student are clearly larger when estimated with
10-day returns indicating that they are closer to normality. However, the asymmetry parameter, 𝜆,
is also larger in absolute value suggesting larger asymmetry in the conditional distribution of 10-
day returns. Therefore, the conditional distribution of 10-day returns is non-normal but different
than the non-normal distribution of 1-day returns.
No attempt is made to identify the best model in terms of goodness of fit or ability to pass diag-

nostic tests. Our goal is to compare the empirical performance of the models considered when
predicting multiperiod VaRs. The estimated GJR models for 1- and 10-day returns are imple-
mented to obtain daily in-sample estimates of𝑉𝑎𝑅

(10)
𝑡 . First, we estimate𝑉𝑎𝑅

(10)
𝑡 using the direct

approach based on the GJRmodel estimated for 10-day returns and computing the quantile using
each of the six procedures described above. Similarly, daily one-step-ahead forecasts of 𝑉𝑎𝑅

(10)
𝑡

are obtained by iterating the GJR model estimated for 1-day returns and computing the quantile
by each of the six procedures described in the previous section. The top panels of Figures 1–3
plot the series of returns together with the estimated 𝑉𝑎𝑅

(10)
𝑡 obtained iterating the GJR mod-

els estimated for 1-day returns and estimating the quantile using FHS for S&P500, Dollar/Euro,
and IBM returns, respectively. These figures also represent scatter plots of these iterated-GJR-FHS
estimates of 𝑉𝑎𝑅

(10)
𝑡 against each of the other estimated 𝑉𝑎𝑅

(10)
𝑡 .

Consider first the results for S&P500 plotted in Figure 1, which shows that the 𝑉𝑎𝑅
(10)
𝑡 pre-

dictions obtained by the direct approach are usually below the iterated GJR-FHS VaRs; recall
that Table 3 reports negative biases for direct multiperiod VaR estimates when 1-day returns are
generated by a GJR model with asymmetric and leptokurtic errors. As also shown in the Monte
Carlo experiments, this is specially the case when the quantile is estimated by the empirical quan-
tile (CHS). This result is also in concordance with the conclusions in Wong (2020), who analyze
S&P500 daily returns and show that multiperiod VaRs based on GARCH models for the condi-
tional variances underestimate risk.We can also observe the large dispersion of direct predictions,
with the dispersion being larger as the VaR increases. The direct and iterated VaR predictions are
similar for small values of 𝑉𝑎𝑅

(10)
𝑡 . However, as 𝑉𝑎𝑅

(10)
𝑡 increases, the differences between direct

and iterated estimates are larger. Finally, in concordancewith the simulation results in Table 6, we
can also observe that, when estimating 𝑉𝑎𝑅

(10)
𝑡 by iterating the GJR model, the results are very

similar regardless of the particular procedure implemented to estimate the quantile. The only
remarkable conclusion from the iterated multiperiod VaR predictions plotted in Figure 1 is that
the predictions obtained using EVT have somehow a larger dispersion. This could be due to the
fact that EVT needs a large number of observations to work properly for extreme quantiles.
Consider now the estimates of the Dollar/Euro 𝑉𝑎𝑅

(10)
𝑡 plotted in Figure 2. In this case, there

are not strong differences in average when the direct approaches are implemented to estimate the
multiperiod VaR and when it is estimated by iterating the GJRmodel with the quantile estimated
by FHS. However, the dispersion of the direct estimates is larger and, as above, when looking at
the results for S&P500 returns, the variability of direct multiperiod VaRs increases with the VaR;
compare with the results reported in Table 2 when returns are generated by a GARCHmodel with
conditionally symmetric errors and 𝑇 = 5000. On the other hand, in concordance with the results
reported in Table 5, regardless of the particular approach used to estimate the quantile, the results
for the iterated multiperiod VaRs are almost identical.
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F IGURE 1 (a) S&P500 10-period returns (blue) together with 𝑉𝑎𝑅
(10)
𝑡 estimates (red) obtained iterating the

GJR model with bootstrap errors (FHS). Scatter plots of 𝑉𝑎𝑅
(10)
𝑡 estimates obtained by (b) Direct-normal; (c)

Direct-Student; (d) Direct-SGT; (e) Direct-CHS; (f) Direct-FHS; (g) Direct-EVT; (h) Iterated-Normal; (i)
Iterated-Student; (j) Iterated-SGT; (k) Iterated-Simulation; and (l) Iterated-EVT, against GJR-FHS VaR estimates.
The red line represents the 45ž line. [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 (a) Dollar-Euro exchange rate 10-period returns (blue) together with 𝑉𝑎𝑅
(10)
𝑡 estimates (red)

obtained iterating the GJR model with bootstrap errors (FHS). Scatter plots of 𝑉𝑎𝑅
(10)
𝑡 estimates obtained by (b)

Direct-Normal; (c) Direct-Student; (d) Direct-SGT; (e) Direct-CHS; (f) Direct-FHS; (g) Direct-EVT; (h)
Iterated-Normal; (i) Iterated-Student; (j) Iterated-SGT; (k) Iterated-Simulation; and (l) Iterated-EVT, against
GJR-FHS VaR estimates. The red line represents the 45ž line. [Colour figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 3 (a) IBM 10-period returns (blue) together with 𝑉𝑎𝑅
(10)
𝑡 estimates (red) obtained iterating the GJR

model with bootstrap errors (FHS). Scatter plots of 𝑉𝑎𝑅
(10)
𝑡 estimates obtained by (b) Direct-Normal; (c)

Direct-Student; (d) Direct-SGT; (e) Direct-CHS; (f) Direct-FHS; (g) Direct-EVT; (h) Iterated-Normal; (i)
Iterated-Student; (j) Iterated-SGT; (k) Iterated-Simulation; and (l) Iterated-EVT, against GJR-FHS VaR estimates.
The red line represents the 45ž line. [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 10 Rows K and C report 𝑝-values of Kupiec (1995) and Christoffersen (1998) backtesting tests,
respectively. PCLF row reports 1000 × 𝐶(𝑚), obtained if the estimates of multiperiod VaR are not rejected by both
K and C tests.

DIRECT ITERATED
N S Sk CHS FHS EVT N S Sk SIM FHS EVT

S&P 500
K 0.00 0.00 0.06 0.00 0.00 0.00 0.07 0.07 0.07 0.13 0.76 0.74
C 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.19 0.19 0.32 0.92 0.32
PQLF - - - - - - - - - 0.40 0.61 0.88
Dollar/Euro
K 0.76 0.74 0.28 0.16 0.08 0.00 0.28 0.08 0.08 0.28 0.08 0.08
C 0.06 0.61 0.55 0.00 0.22 0.00 0.55 0.22 0.22 0.55 0.22 0.22
PQLF - 0.30 0.31 - - - 0.27 - - 0.26 - -
IBM
K 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.08 0.08 0.28 0.28 0.76
C 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.22 0.22 0.55 0.55 0.87
PQLF - - - - - - 0.78 - - 0.73 0.76 1.14

Finally, we consider the results for IBM𝑉𝑎𝑅
(10)
𝑡 , which are reported in Figure 3.We can observe

that the multiperiod VaR estimates obtained using the direct approaches are much smaller than
those obtained by iterating the GJR model and estimating the quantile by FHS. This is the case
mainly when the quantile is obtained by assuming a particular distribution for multiperiod stan-
dardized returns; see the simulation results reported in Table 3 for returns generated by a GJR
model with Student errors and 𝑇 = 5000. In Figure 3, we can also observe mild negative biases
when using the iterated approaches assuming a particular distribution for 10-day standardized
returns. The dispersion of the𝑉𝑎𝑅

(10)
𝑡 predictions obtained by iterating the GJR and using EVT to

estimate the quantile is larger while the predictions obtained by simulation assuming normality
are very similar to those obtained by bootstrapping.
To assess the adequacy of the 𝑉𝑎𝑅

(10)
𝑡 estimates plotted in Figures 1–3, we backtest the in-

sample daily one-step-ahead forecasts of 𝑉𝑎𝑅
(10)
𝑡 using the popular tests by Kupiec (1995) and

Christoffersen (1998); see Degiannakis and Potamia (2017), Kole et al. (2017), Le (2020), and
Mancini and Trojani (2011), who also test for their iterated estimates of 𝑉𝑎𝑅

(10)
𝑡 using these tests

and Barendsen, Kole and van Dijk (in press), who show that the effect of parameter estimation on
the size of these tests is somehow minor. Table 10, which reports the 𝑝-values of both tests, con-
firms theMonte Carlo results about the adequacy of iterated methods to compute one-step-ahead
forecasts of 1% 𝑉𝑎𝑅

(10)
𝑡 . The one-step-ahead forecasts of 𝑉𝑎𝑅

(10)
𝑡 of S&P500 and IBM returns are

rejected for a 10% significance level by at least one of the Kupiec (1995) or the Christoffersen (1998)
tests when they are obtained by the direct approach. In the case of S&P500 returns, characterized
by asymmetric volatilities and an asymmetric conditional distribution, models based on iterating
the GJR model with the quantile estimated simulating, bootstrap or EVT are adequate to forecast
the 𝑉𝑎𝑅

(10)
𝑡 ; see also the empirical results in Le (2020) about the adequacy of iterating the GJR

model with either FHS or EVT when estimating the 1% 10-day VaR in the context of a very large
number of series of returns. The results for IBM are similar, although iterating the GARCHmodel
with normal 10-day standardized returns is also valid. Looking at the results for the Dollar/Euro
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returns,we can observe that they are also in concordancewith the results obtained from theMonte
Carlo experiments when both the volatilities and the conditional distribution are symmetric. In
this case, the direct approach based on the GJRmodel with normal errors or the iterated approach
based on simulating the GJR model with SIM are not rejected.
It is important to note that multiperiod VaRs forecasts obtained by iterating the GJR by

simulation with the errors assumed to be normal are never rejected.
Finally, the estimates of multiperiod VaR not rejected by both of the two backtesting tests above

are compared following Lopez (1999) by selecting the procedure that minimizes the loss function
𝐶(𝑚) =

∑𝑇

𝑡=1
𝐶

(𝑚)
𝑡 , where the index 𝑚 stands for each of the models considered for forecasting

𝑉𝑎𝑅
(10)
𝑡 . In particular, we chose the consistent predictive quantile loss function (PQLF), imple-

mented by, for example, Bao et al. (2006), Giacomini and Komunjer (2005), Kole et al. (2017), and
Le (2020). PQLF is given by

𝐶
(𝑚)
𝑡 = [0.01 − 𝐼(𝑅𝑡 < 𝑉𝑎𝑅𝑡)][𝑅𝑡 − 𝑉𝑎𝑅𝑡]. (29)

Note that because of the asymmetry of the PQLF, VaR violations lead to a larger loss. Table 10,
which reports the values of 𝐶(𝑚), shows that iterating the GJR model by simulation assuming
normal errors (SIM) is nearly always the procedure with smallest losses.
According to the two-stage backtesting procedure described above, a risk manager can select a

simple direct procedure to compute themultistep𝑉𝑎𝑅
(10)
𝑡 when the 1-day returns have symmetric

volatilities or volatilitieswith a verymild leverage effect. In this case, themodel favored by theQLF
loss function is theGJRmodelwith Student errors. However, when 1-day returns have asymmetric
volatilities, the results clearly favor 𝑉𝑎𝑅

(10)
𝑡 forecasts based on iterated procedures. In particular,

when dealing with S&P500 and IBM returns, the iterated GJR model with SIM errors lead to
𝑉𝑎𝑅

(10)
𝑡 forecasts with minimum PQLF.

7 CONCLUSIONS

MultiperiodVaR is a key element of the Basel capital regulations. In this paper, we carry out a com-
prehensive survey of popular direct and iterated procedures to obtain multiperiod VaR forecasts.
The scarce literature comparing both alternative methodologies clearly favors iterated procedures
as comparedwith either SRoT or direct procedures. This is in contrast with themain results found
in the context of linear time series models, which tend to favor direct approaches. This apparent
contradiction could be due to the loss of information involved in the direct approaches, which is
harmless in the context of linearmodels but could be perniciouswhen dealingwith nonlinearities.
Based on some Monte Carlo experiments, we show that, when computing the 1% 10-day VaR,

differences between direct and iterated approaches can be large when volatilities are asymmetric
and/or the conditional distribution of returns is non-normal. In these cases, the direct approach
generates, in general, forecasts of 𝑉𝑎𝑅

[10]
𝑡 with large negative biases, with dangerous potential

damages for financial companies. Underestimation of the own level of riskmay lead to insufficient
amount of capital reserves to cover potential losses, thus increasing the risk of bankruptcy. Mul-
tiperiod VaR estimates based on iterating the GJR model with one-period standardized returns
assumed to be normal or with their quantile estimated by bootstrapping are generally unbiased
and have smaller RMSFEs than those of alternative approaches.
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The conclusions in this paper are important for risk managers. It is always safer to obtain
multistep VaR forecasts using iterated procedures based on simulating the asymmetric model for
volatilities with either normal or bootstrapped errors. Never use the direct approach if you observe
asymmetric volatilities.
Finally, it is important to note that the Basel 3 regulations allow 10-dayVaR forecasts to be calcu-

latedwith overlapping returns. Research in this area has also been very scarce; see Frankland et al.
(2019) for a discussion of the issues caused by using serially dependent overlapping returns in the
context of estimation of marginal cumulants and statistical testing. However, as far as we are con-
cerned, only Sun et al. (2009) consider the effects on VaR estimation of using overlapping returns,
concluding that VaR is underestimated in this case. It could be interesting to investigate whether
explicitly modeling the dependencies of overlapping returns can help recreasing these biases; see,
for example, Richardson and Smith (1991), Taylor and Fang (2018), and Wong (2020) for appli-
cations to testing based on overlapping returns with corrected dependencies and Giannopoulos
(2003) for an application to multistep VaR forecasting. Recently, Hedegaard and Hodrick (2016)
have proposed a GMMmethodology to estimate GARCH-M models using all the high-frequency
datawhilemaintaining the low frequency forecasting period. Consequently, it could be of practical
interest further research on direct approaches based on overlapping observations.

ACKNOWLEDGMENTS
Financial Support from the Spanish Government contract Grant PDI2019-108079GB-
C21/AIE/10.13039/501100011033 (MINECO/FEDER) is gratefully acknowledged by the first
author. We are also very grateful to two anonymous referees, for very constructive comments.
Any remaining errors are obviously our responsibility.
Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC

2022)

DATA AVAILAB IL ITY STATEMENT
The authors confirm that the link to the data supporting the findings of this study is available
within the article.

ORCID
EstherRuiz https://orcid.org/0000-0002-5944-9449

ENDNOTES
1Baek (2019) proposes amodification of the direct forecast procedure consisting in imposing a smoothing parameter
on the first differences of parameters across horizons. This modification outperforms the conventional iterated
and direct approaches.

2Some authors have also analyzed the performance ofmultiperiod VaR estimates assuming long-memory volatility
by fitting FIGARCH models. However, we do not pursue this avenue given that there is no evidence that the
FIGARCHmodel improves VaR estimates over the short-memory GARCHmodel; see, for example, Beltratti and
Morana (1999), Wu and Shieh (2007) and Degiannakis et al. (2013).
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