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a b s t r a c t 

Monte Carlo sampling methods are the standard procedure for approximating complicated

integrals of multidimensional posterior distributions in Bayesian inference. In this work,

we focus on the class of layered adaptive importance sampling algorithms, which is a fam- 

ily of adaptive importance samplers where Markov chain Monte Carlo algorithms are em- 

ployed to drive an underlying multiple importance sampling scheme. The modular nature

of the layered adaptive importance sampling scheme allows for different possible imple- 

mentations, yielding a variety of different performances and computational costs. In this

work, we propose different enhancements of the classical layered adaptive importance

sampling setting in order to increase the efficiency and reduce the computational cost,

of both upper and lower layers. The different variants address computational challenges

arising in real-world applications, for instance with highly concentrated posterior distri- 

butions. Furthermore, we introduce different strategies for designing cheaper schemes, for

instance, recycling samples generated in the upper layer and using them in the final esti- 

mators in the lower layer. Different numerical experiments show the benefits of the pro- 

posed schemes, comparing with benchmark methods presented in the literature, and in

several challenging scenarios.
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1. Introduction

The general framework called Layered Adaptive Importance Sampling (LAIS) is a combination of the desirable exploratory 

behavior of Markov chain Monte Carlo (MCMC) algorithms, and the robustness (and easier theoretical validation) of the im- 

portance sampling (IS) schemes [1] . Let us denote with π̄ ( x ) = π̄ (x | y ) the posterior density in a Bayesian inference problem.

The main underlying idea of this algorithm is the layered (i.e., hierarchical) procedure for generating samples. In order to 

generate one sample, a location parameter is drawn from a probability density function (pdf) μi ∼ p( μ) (that plays the role

of a prior pdf over a location parameter in the hierarchical procedure) and, conditionally on it, a sample is generated from a

proposal density centered at μi , i.e., x i ∼ q i (x | μi ) . Then, the sample x i is properly weighted according to a multiple IS (MIS)

procedure [2,3] . Hence, the upper layer is formed by the generation of μ’s, while in the lower layer , we have the generation

of x ’s and its weighting. More generally, parallel MCMC algorithms addressing different p i ( μ) ’s, for i = 1 , . . . , N, can be em-

ployed to obtain the location parameters μ . The use of parallel MCMC chains in the upper layer makes the LAIS framework
i 
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Table 1 

Summary of the main contributions and the main acronyms of the work. 

Contribution/Proposed scheme Section Reducing cost Improving performance 

Partial posteriors LAIS (PLAIS) 4 � � 

Hamiltonian-driven IS (HMC-LAIS) 5 � 

Gibbs-driven IS (Gibbs-LAIS) 5 � 

Compressed LAIS (CLAIS) 6 � 

Recycling LAIS (RLAIS) 7 � 

Partial posteriors RLAIS (PA-RLAIS) 7 � � 

Discussion about the computation cost 8 related 

Numerical comparisons 9 related related 

Theoretical discussion Appendix A –Appendix B related 

Table 2 

Main notation of work. 

x ∈ X tot ⊆ R 
D X vector of parameters to infer π̄ (x | y tot ) normalized full posterior 

y tot data π(x | y tot ) unnormalized full posterior 

y n subset of data π̄n (x | y n ) normalized partial posterior 

D Y total number of data (in y tot ) πn (x | y n ) unnormalized partial posterior 

K n number of data in y n L (y | x ) likelihood function 

q n (x | μn ) proposal density in the lower layer g(x ) prior density 

ϕ n (x | μn ) proposal density within MH (in RLAIS) Z = p(y tot ) marginal likelihood 

μn location parameter (e.g., mean) I integral of interest 

N number of the MCMC chains w = 

π(x | y tot ) 
�(x ) 

importance weight 

T length of the MCMC chains �(x ) denominator in MIS weights 

M number of samples per proposal �(x ) denominator in MIS weights (in RLAIS) 

B number of sub-regions X m X m m -th sub-region, X 1 ∪ . . . ∪ X B = X tot 

 

 

 

 

 

 

 

 

 

 

 

 

 

particularly suitable in multimodal scenarios. Note that the samples μi are not included in the final estimators (just the 

samples x i ), but only used as location parameters for the proposal densities. In [1] , the specific choice p i ( μ) = π̄ ( μ) has

been suggested and successfully tested. 

With respect to other benchmark AIS techniques in the literature (see, e.g., [4] ), the LAIS scheme provides very competi-

tive results and exhibits a relevant robustness with respect to tuning of the parameters of proposal densities q i (such as the

scale parameters). The interested reader can observe these properties in the numerical comparison, provided in Section 9.1 . 

Moreover, LAIS can be interpreted as: 

• An efficient procedure of combining the outputs of several parallel MCMC chains. Several other attempts can be found 

in the literature (see, e.g., [5] ). 
• An efficient procedure for estimating the marginal likelihood by using MCMC chains, which is a well-known difficult task 

for the MCMC techniques [6] . 

These strengths of the LAIS scheme are very appealing for practitioners and researchers. At the same time, the generic 

LAIS framework offers a remarkable flexibility which have not been completely exploited in [1] , and have been not explored

in the further works. For instance, in the upper layer, the user must specify the choices of p i ( μ) and the type of MCMC

algorithms; in the lower layer, a specific MIS weighting scheme must be selected. This flexibility allows the LAIS algorithm 

to handle efficiently different complex inference scenarios, not only multimodality. Introducing specific LAIS schemes for 

tackling other difficult scenarios of inference is the first main goal of this work. The second main objective of this paper is

to describe different procedures for reducing the computational cost of the LAIS scheme. 

In this work, as disclosed above, we introduce different schemes for improving the overall performance and reduce the 

total computational cost. Specifically, we discuss suitable configurations of the LAIS algorithm for addressing the problem 

of sampling concentrated posteriors (due to complex model or great number of data) and posteriors in high dimensional 

spaces. This is possible by the use of data-tempered posteriors in the upper layer, that we refer to as partial posteriors

(see Section 4 ), and advanced MCMC schemes such as Hamiltonian MC (HMC) and sophisticated Gibbs-type techniques (see 

Section 5 ) [7] . We also discuss different strategies for reducing the overall computational cost. For instance, we propose a

procedure for recycling the samples in upper layer and use them in the final estimators, in such a way that the sampling

step in the lower layer can be avoided. This drastically reduces the number of evaluations of the posterior. Moreover, in the

lower layer, the cost of weighting can be quite high if we have run long MCMC chains in the upper layer. This problem can

also be alleviated by using ideas such as compression or alternative weighting schemes, that reduce the cost but maintain 

the same performance for the final estimators (see, e.g., [8] or [9] ). We test the variants in different scenarios with synthetic

and real data. A theoretical discussion about the optimal choice of p( μ) is also provided in the Appendix A . Several nu-

merical simulations show the benefits of the proposed LAIS techniques in different challenging sampling problems. Table 1 

summarizes the main contributions (and the novel schemes) and main acronyms employed in this work. Finally, Table 2 
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Table 3 

LAIS algorithm. 

Choose { q n, 0 } N n =1 , { μn, 0 } N n =1 and the MCMC algorithms in the upper layer. 

Upper layer (MCMC). 

• Adaptation: Apply MCMC transitions with invariant pdf p n ( μ) , e.g., p n ( μ) = π̄ ( μ| y tot ) , i.e., 

{ μn,t−1 } N n =1 

MCMC −−−→ { μn,t } N n =1 , ∀ t = 1 , . . . , T. 

Lower layer (IS). 

• Sampling: x n,t ∼ q n,t (x | μn,t ) , for all n, t . 

• Weighting: 

w n,t = 

π(x n,t | y tot ) 

�(x n,t ) 
, ∀ n, t, (6) 

where different denominators, �(x n,t ) , are possible. See Table 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

summarizes the main notation of the work. In Table 2 , with the acronym MH, we denote the Metropolis-Hastings algorithm

[10] . Related Python and Matlab codes are available at https://www.github.com/FLlorente/LAIS _ extensions . 

2. Problem statement 

In many applications, the interest lies in making inference about the vector x = [ x 1 , . . . , x D X ] ∈ X tot ⊆ R 

D X . A set of D Y 

measurements, y tot = [ y 1 , y 2 , . . . , y D Y ] , is received, related to the variable of interest x . The complete likelihood function is

denoted as L (y tot | x ) . Considering a prior probability density function (pdf) g(x ) , the complete posterior pdf can be written

as 

π̄ (x | y tot ) = 

1 

p(y tot ) 
L (y tot | x ) g(x ) = 

1 

Z 
π(x | y tot ) , (1) 

where we have denoted Z = p(y tot ) , and π(x | y tot ) = L (y tot | x ) g(x ) . Note that π̄ (x | y tot ) ∝ π(x | y tot ) for fixed y tot . 

Goal. The objective is to make inference about the variable x given the information provided by the knowledge of y tot .

Generally, this task requires computing integrals of type 

I = 

∫ 
X tot 

f (x ) ̄π(x | y tot ) dx , (2) 

where f (x ) : R 

D X → R 

s and I ∈ R 

s with s ≥ 1 . When f (x ) = x , the integral I represents the minimum mean square error

(MMSE) estimator of x [10] . Moreover, we are also interested in the so-called marginal likelihood , 

Z = p(y tot ) = 

∫ 
X tot 

π(x | y tot ) dx . (3) 

This quantity is particularly useful for the model selection purposes [6,10] . Generally, we are not able to calculate analytically

the integrals above. Importance sampling (IS) and Markov chain Monte Carlo (MCMC) are popular Monte Carlo techniques 

for approximating integrals as in Eq. (2) using random samples [11] . IS provides also an estimator of Eq. (3) , something that

is not straightforward with MCMC (see e.g. [6] for a review of methods for estimating Z). In this work, we consider the LAIS

framework which mixes the benefits of MCMC and IS algorithms [1] . In the rest of the work, the dependence on the data y

is often not (explicitly) included in the notation, using for instance π̄ (x ) and π(x ) instead of π̄ (x | y tot ) and π(x | y tot ) . 

3. Layered adaptive importance sampling (LAIS) 

LAIS is an adaptive IS framework that consists of two sampling layers, which are detailed in Table 3 and described next.

Let { q n, 0 (x | μn, 0 ) } N n =1 
denote an initial set of N parametric proposals. In the upper layer, the location parameters of the

proposals are updated by means of MCMC algorithms. In the simplest case, at iteration t , each μn,t−1 independently evolves 

to μn,t ( n = 1 , . . . , N) by running one iteration of a MCMC algorithm with invariant density p n ( μ) . More generally, the whole

population { μn,t−1 } N n =1 
can be updated to { μn,t } N n =1 

, e.g., considering more sophisticated population MCMC algorithms [12] .

Then, after performing T such iterations, a population of NT location parameters is obtained { μn,t } N n =1 
for all t . In the lower

layer, we sample x n,t ∼ q n,t (x | μn,t ) for n = 1 , . . . , N and t = 1 , . . . , T , and assign weights to each sample. 

The weighting procedure is done according to the so-called deterministic mixture approach [2] . Some possible choices 

of the denominator of the importance weights are given in Table 4 . Clearly, in the specific case of a unique chain N = 1 ,

the spatial denominator becomes the standard IS denominator. If N single MCMC steps are performed, i.e., T = 1 , then the

temporal denominator becomes the standard IS denominator. Note that, in LAIS, the adaptation ( upper layer ) is independent 

from the sampling and weighting steps ( lower layer ). As an example, we can run first, e.g., N parallel chains for T iterations

each in order to obtain the NT locations parameters { μn,t } , and then perform standard IS with the NT proposals. 
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Table 4 

Possible denominators �(x n,t ) . 

complete temporal spatial standard 

1 
NT 

∑ T 
τ=1 

∑ N 
i =1 q i,τ (x n,t | μi,τ ) 1 

T 

∑ T 
τ=1 q n,τ (x n,t | μn,τ ) 1 

N 

∑ N 
i =1 q i,t (x n,t | μi,t ) q n,t (x n,t | μn,t ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimators of Eq. (2) and Eq. (3) are then given by 

̂ I = 

1 

NT ̂  Z 

N ∑ 

n =1 

T ∑ 

t=1 

w n,t f (x n,t ) , (4) 

̂ Z = 

1 

NT 

T ∑ 

t=1 

N ∑ 

n =1 

w n,t . (5) 

Some bounds and theoretical results related to these estimators can be found in [13] . 

Consistency. The LAIS scheme can be interpreted as a standard, static IS scheme with NT proposals, and the consistency

only depends on the proper choice of the denominator �(x ) in the importance weights. In Table 4 , some proper choices,

that ensure consistency, are provided which follows the deterministic mixture approach [3] . It is important to remark that

the consistency does not depend on the choice of the densities p n ( μ) in the upper layer, but, clearly, the efficiency of LAIS

is affected by the selected pdfs p n ( μ) . 

Remark. For the sake of simplicity, we have assumed to draw only one sample x n,t from each proposal q n,t (x | μn,t ) , in

the lower layer. More generally, one could draw M > 1 samples, x (1) 
n,t , . . . , x 

(M) 
n,t from each q n,t (x | μn,t ) . This is often necessary

for performing a fair comparison with other AIS techniques and is an additional degree of freedom offered by the LAIS

framework (see Sections 9.1 and 9.4 ). For simplicity, in the rest of work we consider M = 1 , unless state otherwise that

M > 1 . 

Evaluations of the posterior. In the standard LAIS implementation (i.e. setting p n ( μ) = π̄ ( μ| y tot ) for all n ), the total

number of evaluations E of the posterior is E = 2 NT (or, more generally, E = N T + MN T ), where N T evaluations are per-

formed in the upper layer and NT (or, more generally, MNT ) in the lower layer. However, the final estimators only involve

S = NT samples. With M > 1 , the final estimators would involve S = MNT samples. 

3.1. About the choice of the denominator �(x ) 

The computation of the weights in the lower layer allows for different possible denominators, shown in Table 4 . The

function �(x n,t ) can be taken to be the proposal that actually generated x n,t ( standard ), the mixture of proposals across

different chains ( spatial ), the mixture of proposals within the chain ( temporal ), or the mixture of all proposals ( complete ).

Note that, we always have the evaluation of the complete posterior in the numerator, hence all the weighting strategies 

have the same number of posterior evaluations, i.e., NT . However, in practice, the cost of the complete, temporal and spatial

weighting schemes is higher than the standard one, and it will increase the overall computation time. This is more obvious

in real applications where many chains are run for a long time, i.e., T and N are very large. Commonly, T � N, so that

the spatial scheme is cheaper than the temporal scheme, and both are much cheaper than the complete scheme. In return,

these schemes can produce a remarkable improvement in the performance of the final estimators. It can be theoretically 

proved that the deterministic mixture denominators produce estimators with lower (or equal) variance than the standard 

weighting [2] . Indeed, our experiments in Section 9.3 show that the complete denominator consistently produces more 

stable estimators with only a small increase in computational cost, as compared to the overall cost of the algorithm. 

3.2. Elements for the design of a specific LAIS implementation 

A specific implementation of the LAIS algorithm is determined by the choices of 

1. the invariant densities p n ( μ) ; 

2. the MCMC approach (e.g., parallel or single longer chain Metropolis-Hastings, advanced MCMC schemes, etc.); 

3. the proposals q n,t (x | μn,t ) ; and 

4. the denominator �(x ) . 

Namely, a particular LAIS implementation is completely defined by the choice of those four elements. Below, we present 

several variants and improvements for the LAIS framework concerning each one of the elements above. For instance, regard- 

ing the pdfs p n ( μ) , we describe the suitable use of different type of tempered posteriors. The application of sophisticated

MCMC algorithms in the upper layer is also discussed. Recycling sample schemes (which involve the selection of proposals 

q n,t as well) and the design of cheap denominators � in the lower layer are also introduced in the next sections. 
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4. Data tempering and partial posteriors as p n (μ) 

The LAIS framework has flexibility in the upper layer design of selecting different invariant densities p n ( μ) . A theoret-

ical discussion regarding the optimal choice of the invariant densities, p n ( μ) , is given in Appendix A . In this section, we

introduce the possibility of using partial posteriors (i.e., posteriors considering a reduced number of data) as invariant pdfs 

p n ( μ) . The benefit is twofold: (a) reducing the cost of the posterior evaluations in the upper layer, and (b) helping the space

exploration of MCMC chains. This second effect is often called data tempering . See Appendix A.2.1 for further details. 

Specifically, let y n ∈ R 

K n denote a subset of data points, i.e., y n ⊂ y tot (with K n  D Y ) and assume we have N subsets

y 1 , . . . , y N . For the sake of simplicity, we assume that { y n } N n =1 
represents a partition of y tot , i.e., N non-overlapping pieces

such that 
∑ N 

n =1 K n = D Y . However, more generally, we could also have y n ∩ y n ′ � = ∅ . Note that we are keeping the vector

notation for data subset y n but sometimes we use it as a set notation, just for the sake of simplicity. Hence, let us define

the partial posteriors, for using them as invariant densities in the upper layer, 

p n (x ) = π̄n (x | y n ) ∝ L n (y n | x ) g n (x ) , (7) 

where L n (y n | x ) is the likelihood of the batch y n , and g n (x ) plays the role of a partial prior pdf. For our purpose, we can

keep g n (x ) = g(x ) for all n , or we can split the prior contribution into each data subset, for instance, setting g n (x ) = g(x ) 
1 
N 

for all n , which is a typical choice in several distributed settings (motivated so that the product of π̄n (x | y n ) is proportional
to the complete posterior) (e.g., see [14] ). Therefore, the partial posterior π̄n (x | y n ) is a tempered version of the complete

posterior since its likelihood L n (y n | x ) is less informative, i.e., wider, than in the case where we consider all data. 

Thus, we consider that each MCMC chain in the upper layer addresses a different partial posterior p n (x ) = π̄n (x | y n )
( n = 1 , . . . , N). Hence, there are as many chains as number of partial posteriors. We call this scheme as partial posteriors LAIS

(PLAIS) method. Note that, in PLAIS, we still evaluate the complete posterior in the lower layer, so the total number of full

posterior evaluations is NT (in the lower layer). Furthermore, the use of partial posteriors produces more dispersed location 

parameters of the proposals in the lower layer. This increases the robustness of the method, since it reduces the chance of

obtaining huge weight values and, as a consequence, avoids IS estimators with infinite variance (see the example 1 in [6] ). 

5. Hamiltonian and Gibbs-driven importance samplers 

The simplest choice of MCMC schemes in the upper layer is a unique Metropolis-Hastings (MH) chain, or to employ N

independent parallel MH algorithms. However, more sophisticated algorithms can be considered (such as Langevin, Hamil- 

tonian and Gibbs samplers), which can further enhance the performance of the algorithm. On the other hand, the LAIS 

algorithm can be interpreted as a way to help these MCMC schemes to improve their efficiency and allow them to estimate

efficiently the marginal likelihood Z (as shown in the numerical experiments in Section 9 ). 

Hamiltonian MC in the upper layer. The Hamiltonian Monte Carlo (HMC) algorithm is usually considered as the state-of- 

the-art technique in the MCMC world [15] . However, as with the rest of MCMC methods, it is not straightforward to estimate

the marginal likelihood with HMC samples [6] . Additionally, it is well-known the difficulty of tuning its hyperparameters 

for obtaining efficient sampling [15] . In this context, we propose using different HMC algorithms in the upper layer in

Table 3 , each chain employing possibly different parameters. Thus, several sets of parameters are jointly used. Note also that

we do not need to fine-tune the hyperparameters since the states in the upper layer are not used directly as samples in

our framework. The lower layer in the LAIS scheme provides a straightforward estimation of the marginal likelihood. We 

compare the performance of these algorithms, denoted as HMC-LAIS, with HMC in Sect. 9.3 . 

Gibbs algorithms in the upper layer. Another possibility is to use Gibbs samplers in the upper layer [10] . The Gibbs

sampler is component-wise scheme, i.e., at each iteration each component of the parameter vector x is drawn from the

corresponding full-conditional density keeping fixed the rest of components. Thus, they have the advantage of working in 

lower dimension at each iteration, which allows the design more efficient samplers in high dimensional spaces. For instance, 

extremely efficient MH-within-Gibbs algorithms can be designed using Adaptive Rejection Metropolis schemes for drawing 

from each one-dimensional full-conditional (e.g., see [16] and [17] ). Another important benefit is the use of a Gibbs sampler

is particularly useful for drawing from very tight posteriors, as shown in [18] (see also Section 9.5 ). 

More generally, the joint use of HMC, Langevin, and Gibbs-based schemes can be potentially applied in the upper layer. 

For instance, an extension of the Gibbs sampling idea is the so-called adaptive direction sampling, which can speed up the

mixing of generated chains, choosing different one-dimensional direction of sampling at each iteration [19] . Note that both, 

HMC-LAIS and Gibbs-LAIS, are very useful schemes for sampling from concentrated/tight posteriors or high-dimensional 

posteriors (see the numerical simulations in Section 9 ). 

5.1. Optimizers versus samplers 

Let us consider for simplicity the choice p n ( μ) = π̄ ( μ) suggested in [1] . Instead of sampling, a simpler alternative could

be simply to perform optimization steps for obtaining the location parameters μi . However, a sampler takes into account 

not just the modes of π̄ ( μ) but all the probability mass around these modes. Therefore, using a sampler, location param-

eters π̄ ( μ) would be spread out in the regions of high probability mass (not only at the modes; or close to the modes).

This aspect ensures and induces robustness in the IS scheme which uses proposal densities with location parameters μi , 
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Table 5 

Table of correspondence between benefits and inference scenarios, versus the proposed procedures (and 

methods) in the upper layer ( � = useful, and � = very useful). 

Methods/ Multimodality/ Robustness concentrated/tight high 

Procedures helping (e.g., to the choice posteriors dimensional 

(upper layer) the exploration of proposal parameters) spaces 

parallel chains � � 

data-tempering � � � � 

HMC-driven � � 

Gibbs-driven � � 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

since the full-mixture of proposal densities tends to have a greater variance than the variance of posterior distribution. See 

Appendix A , for further details. This property is extremely important since it avoids the catastrophic scenario of infinite 

variance in the final IS estimators, which can occur when the proposal density has smaller variance than the target pdf (see

the illustrative example 1 in [6] ). 

5.2. Upper layer design: A summary 

So far (in Sections 4 and 5 ), we have proposed strategies for improving the efficiency of the final estimators of LAIS,

focusing so far on the upper layer in Table 3 . These enhancements are particularly relevant in different challenging infer-

ence scenarios, such as tight posteriors and/or high dimensional problems. For other complex settings, such as multimodal 

posteriors, the use of parallel MCMC chains (already suggested in [1] ) is important. Table 5 outlines the correspondence

between inference scenarios (as well as other features and benefits) and the proposed procedures to employ in the upper 

layer. For instance, the data tempering is useful in multimodal and high-dimensional scenarios, and particularly useful in 

the case of concentrated posteriors. The cost of running the upper layer gets also reduced when using partial posteriors 

since the MCMC algorithms do not require to process all the data at each iteration. Moreover, the data tempering generally

increases the robustness of the LAIS algorithm. Last but not least, observe that all the techniques can be employed jointly

in the upper layer, for instance, parallel HMC (or Gibbs) chains (with different parameters) considering each one a different 

partial posterior. In this sense, LAIS can ensure good and robust performance. See Section 9 for further details. 

6. Compression for parsimonious sampling and weighting 

The complete weighting scheme (see Table 4 ) provides the best performance in terms of variance, at the expense of an

increase in the computational cost, especially in real applications since T and N can be very large (note that it requires NT 

proposal evaluations per sample). One possibility in order to reduce this cost, without decreasing T or N, is the use of partial

MIS denominators [2] . Another approach consists in using some technique that summarizes the population of NT samples. 

A first attempt has been provided in [8] . Another possible way is to apply a compression of Monte Carlo samples [9] , as we

describe below. These schemes reduce the cost of both sampling and weighting in the lower layer. 

Compressed LAIS (CLAIS). Let consider a set of R means { μk } R k =1 generated by MCMC in the upper layer, and let B be a

constant value such that B < R . Note that, in the case of N parallel chains of length T in the upper layer, we have R = NT .

Given a partition of X tot , i.e., X 1 ∪ X 2 ∪ . . . ∪ X B = X tot formed by convex, disjoint sub-regions X m 

, we denote the subset of

the set of indices { 1 , . . . , R } , 
J m 

= { i = 1 , . . . , R : μi ∈ X m 

} , m = 1 , . . . , B, 

which are associated with the samples in the m -th sub-region X m 

. The partition X 1 ∪ X 2 ∪ . . . ∪ X B = X tot can be obtained

using some a-priori information or, as an example, by means of a clustering method. The cardinality | J m 

| denotes the 
number of samples in X m 

and we have 
∑ B 

m =1 | J m 

| = R . We can compress the information contained in samples, constructing

a stratified approximation based on B weighted particles { s m 

, a m 

} B m −1 , where s m 

is a (properly chosen) point in X m 

and

a m 

= 

| J m | 
R . 

Possible choices of s m 

. The summary points s m 

can be randomly chosen, picking uniformly a mean in X m 

, in the set

{ μi } i ∈J m or using a deterministic procedure, e.g., 

s m 

= 

1 

| J m 

| 
∑ 

j∈ J m 
μ j . (8) 

For the statistical properties of these choices see [9] . Other choices based on empirical quantiles are also possible. As an

example, a suitable compression scheme can be provided applying a clustering method to the set { μk } R k =1 , where B repre-

sents the number of clusters. After the compression, we can consider as proposal and denominator in the lower layer the

following mixture of densities p(x | s , �) where s , � represent a location parameter and a covariance matrix, 

q B (x ) = 

B ∑ 

m =1 

a m 

p ( x | s m 

, �) . (9) 
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Thus, the mixture q B is used for sampling and computing the weights in the lower layer. A suitable choice of s m 

and � is

the key point for the success of the compressed scheme. For the summary points s m 

, we suggest the use of the deterministic

procedure in Eq. (8) . 

Suitable choice of �. We suggest to obtain the D X × D X covariance matrix � as 

� = Q μ − Q C + σ 2 
p I . (10) 

where Q μ = 

1 
R 

∑ R 
k =1 ( μk − m ) ( μk − m ) � with m = 

1 
R 

∑ R 
k =1 μk is the covariance matrix of all R means μk , and Q C = ∑ B 

m =1 a m 

( s m 

− m C ) ( s m 

− m C ) 
� with m C = 

∑ B 
m =1 a m 

s m 

is the covariance matrix of the summary samples. Clearly, if s m 

are 

chosen as in Eq. (8) , then m = m C . Finally, σ
2 
p is chosen by the user. With s m 

in Eq. (8) , it is possible to show that 

Q μ − Q C = 

B ∑ 

m =1 

a m 

( 

1 

| J m 

| 
∑ 

j∈J m 

(
μ j − s m 

)(
μ j − s m 

)� 
) 

. (11) 

That is, the covariance of each component in q B (x ) is the weighted average of the covariances within clusters plus the

term σ 2 
p I . We remark that a suitable choice of � is crucial for the performance of the compression technique. The proposed

covariance matrix � in Eq. (10) is a robust choice which provides good performance, as shown in Section 9.3 , and below

we explain the reasons. 

The combined choice of s m 

in Eq. (8) and � in (10) has the following property. Let us assume the use of denominator

with B components ( 1 ≤ B ≤ R ) in the mixture q B (x ) . Without compression, we have B = R , s k = μk , Q μ = Q C , so we have

the covariance of each mixture component is � = σ 2 
p I , as expected. With the maximum compression, B = 1 , then Q C is the

null matrix and � = Q μ + σ 2 
p I . Hence, with maximum compression, the proposal q B takes into account the dispersion set by

the user (by the term σ 2 
p I ) plus the covariance matrix of the R location parameters μk (i.e., the term Q μ), obtained in the

upper layer. Finally, note that the cost of the employed compression technique must be lower than the cost of evaluating

the full denominator. We test the performance of CLAIS with several choices of R , and compare it with standard LAIS in

Section 9.3 . 

7. Recycling LAIS (RLAIS) 

In this Section, we discuss the possibility of recycling the samples, and their corresponding evaluations, from the upper 

layer for their use in the lower layer, hence reducing the overall computational cost. For simplicity, let us assume the use

of N parallel Metropolis-Hastings (MH) algorithms in the upper layer. Moreover, in this first part of the section, assume 

that p n = π̄ for all n . Given the initial state μn, 0 , a proposal pdf ϕ n , and a length value T , the n -th MH chain follows the

following steps: 

- For t = 1 , . . . , T : 

1. Draw z n,t ∼ ϕ n (x | μn,t−1 ) . 

2. Set μn,t = z n,t with probability 

α = min 

[
1 , 

π(z n,t | y tot ) ϕ n ( μn,t−1 | z n,t ) 

π( μn,t−1 | y tot ) ϕ n (z n,t | μn,t−1 ) 

]
, (12) 

otherwise, set μn,t = μn,t−1 (with probability 1 − α). 

- Outputs: The chain { μn,t } T −1 
t=0 

. Additionally, we obtain and store { z n,t } T t=1 
, { π(z n,t | y tot ) } T t=1 

and { ϕ n (z n,t | μn,t−1 ) } T t=1 
. 

Therefore, at each iteration, a candidate is drawn z n,t ∼ ϕ n (x | μn,t−1 ) and then it is tested (accepted or discarded) as

possible new state, according to the acceptance MH probability. If we store all candidates { z n,t } T t=1 
and the corresponding

evaluations of the posterior { π(z n,t | y tot ) } T t=1 
(for all n ), required in the computation of α in Eq. (12) , we can use them in

the lower layer as samples, i.e., we set x n,t−1 = z n,t . In this way, we reduce the computation time since we do not need to

draw additional samples. 

Note that ϕ n (x | μn,t−1 ) becomes the proposal in the lower layer, i.e., we set q n,t (x ) = ϕ n (x | μn,t−1 ) . The evaluations of the

proposal ϕ n (z n,t | μn,t−1 ) can be also stored. Depending on the choice of the weighting scheme, other evaluations of different

proposals ϕ j , with j � = n , can be required. This also produces a slight reduction of the cost of evaluating the denominator

of the weights in the lower layer. See the next section for further details. The algorithm is outlined in Table 6 , and Table 7

shows different weighting procedures. Since p n = π̄ and the posterior evaluations are recycled, the total number of posterior 

evaluations in RLAIS is only E = NT . 

Consistency. It is important to note that we can find an equivalent proposal ˜ q MH (x ) of MH-type algorithms which can

be expressed as a convolution integral, similarly as we have done in LAIS. See the Appendix B for more details. In RLAIS, the

different MIS denominators can be considered as Monte Carlo approximations of this equivalent proposal ̃  q MH , expressed as 

an integral in Eq. (24) . Therefore, in the case of the first 3 different MIS denominators (the complete, spatial and temporal

mixtures) as N and T grow, the chosen denominator provides a better approximation of the ˜ q and the MIS weights 
MH 
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Table 6 

LAIS with recycling (RLAIS). 

1. Sampling: Let consider Metropolis-Hastings (MH)-type schemes with random walk proposal densities ϕ n,t (x | μn,t ) ( ϕ n,t can vary 

with t since we assume they can be also adaptive schemes), generating N MCMC chains of length T . 

Then, the states of the chains are μn,t , for n = 1 , . . . , N and t = 1 , . . . , T . At each iteration of one MH scheme, we draw a candidate 

z n,t ∼ ϕ n,t (x | μn,t−1 ) that will be accepted or rejected in the MH step. We save all the NT candidates z n,t for n = 1 , . . . , N and 

t = 1 , . . . , T . 

2. Weighting: Assign to z n,t the weights 

w n,t = 

π(z n,t | y tot ) 

�(z n,t ) 
, (13) 

where different possible choices for �(z n,t ) are possible (see Table 7 ). 

3. Output: Return all the pairs { z n,t , w n,t } , and/or the estimators given in Eqs (5) and (4) . 

Table 7 

Possible denominators �(x n,t ) . 

complete temporal spatial standard 

1 
NT 

∑ T−1 
τ=0 

∑ N 
n =1 ϕ n,τ (x n,t | μn,τ ) 1 

T 

∑ T−1 
τ=0 ϕ n,τ (x n,t | μn,τ ) 1 

N 

∑ N 
n =1 ϕ n,t (x n,t | μn,t ) ϕ n,t (x n,t | μn,t ) 

 

 

 

 

 

 

 

 

 

 

 

becomes closer and closer to standard importance weights of the form w n,t = 

π(x n,t | y tot ) ˜ q MH (x n,t ) 
. RLAIS can be seen as a multiple-

chain generalization of [20,21] . 

PLAIS with recycling (PA-RLAIS). We can combine the idea of using the partial posteriors and the RLAIS approach. In- 

deed, also in PLAIS, it is possible to avoid the sampling step if we recycle all candidates produced within the MH algorithms

in the upper layer. We denote the resulting scheme as PA-RLAIS. We can recycle the candidates { z n,t } T t=1 
and the proposal

evaluations { ϕ n (z n,t | μn,t−1 ) } T t=1 (for all n ) but, in this scenario, we have not evaluations of the full posterior in the upper

layer (then we cannot recycle the posterior evaluations). 

8. Computation costs of the proposed schemes 

Generally, the most costly step is the evaluation of the complete posterior π(x | y tot ) (due to a costly model or number

of data). The evaluation of the partial posteriors is not that costly since we choose the batch sizes such that K n  D Y for all

n = 1 , . . . , N. Thus, the comparison among PLAIS, RLAIS and PAPIS, as well as with other methods, must be done in terms of

number of evaluations of the (unnormalized) posteriors, the complete posterior π(x ) , and/or the partial posteriors πn (x ) ’s.

A summary of the number of evaluations of π(x ) and all partial posteriors πn (x ) ’s is given below: 

Method Upper layer Lower layer Drawing samples 

evals of π(x | y tot ) evals of π(x | y n ) evals of π(x | y tot ) in the lower layer 

LAIS NT 0 NT � 

PLAIS 0 NT NT � 

RLAIS NT 0 0 X 

PA-RLAIS 0 NT NT X 

— — cheaper — —

CLAIS can be also combined with the other schemes above for building cheaper denominators. 

Therefore, the total number of full-posterior evaluations of the standard LAIS scheme is E = N T + N T = 2 N T . If we draw

M > 1 samples from each proposal density q n,t in the lower layer, the total number of full-posterior evaluations is E =
N T + MN T = (M + 1) N T . 

If we denote as C the atomic cost of evaluating once the likelihood function with only one data point, then the total

cost associated to the total number of the target evaluations (considering evaluations of full-posterior and/or evaluations of 

partial posteriors) of the different techniques is given below: 

Method Total cost associated to the posterior evaluations 

LAIS 2 NT CD Y 

PLAIS T C 
(∑ N 

n =1 K n 
)

+ NT CD Y 
= T CD Y + NT CD Y = (N + 1) T CD Y 

RLAIS NT CD Y 

PA-RLAIS T CD Y + NT CD Y = (N + 1) T CD Y 
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where N is the number of chains (with length T ) in the upper layer, D Y is the total number of data, and C is the atomic

cost previously described. We have used that 
∑ N 

n =1 K n = D Y where K n are the number of data in the n -th partial posterior.

Clearly, RLAIS and standard LAIS are the algorithms with lowest and greatest costs, respectively, as shown below. 

Inequalities in terms of cost of total posterior evaluations: 

Cost of RLAIS < Cost of PA-RLAIS = Cost of PLAIS < Cost of LAIS 

⇓ ⇓ ⇓ ⇓ 

NT CD Y < (N + 1) T CD Y = (N + 1) T CD Y < 2 NT CD Y 

However, considering also the cost of sampling from the proposal pdfs, PA-RLAIS is less costly than PLAIS since it does

not require extra samples in the lower layer. This is an additional advantage of RLAIS as well. We recall that the reason

of using partial posteriors is not only a reduction on the computational cost. Indeed, the use of partial posteriors fosters

the space exploration due to the data-tempering effect. Finally, we also remark that the overall computational cost also 

depends on the denominator choice: this is the reason of employing the proposed scheme in Section 6 , denoted as CLAIS.

The number of proposal evaluations per sample in the lower layer with the different possible denominators is given below: 

Method complete temporal spatial standard 

Stand. LAIS NT T N 1 

RLAIS NT − 1 T − 1 N − 1 0 

Recall that, for simplicity, throughout this work we have considered to draw M = 1 sample from each proposal, in the

lower layer. However, all the formulas above just suffer some mild changes for M > 1 . 

9. Numerical experiments 

In this section, we test the performance of the algorithms described in this work. We have considered different challeng- 

ing scenarios. As an example, we tackle multimodal target densities (in Sections 9.1 and 9.4 ), high-dimensional problems 

(in Section 9.4 ) and extremely sharp/tight posteriors (in Section 9.5 ). In the last experiment ( Section 9.6 ), we also analyze

real data in a regression problem on the daily deaths during the COVID-19 pandemic in Italy. The correspondence between 

proposed algorithms and sections is given below: 

Method Section 9.1 Section 9.2 Section 9.3 Section 9.4 Section 9.5 Section 9.6 

Stand. LAIS � � 

PLAIS � 

CLAIS � 

RLAIS � 

PA-RLAIS � 

HMC-LAIS � � 

Gibbs-LAIS � � 

Diff. Den. �(x ) � 

9.1. Comparison with benchmark AIS schemes 

In this section, we compare LAIS with the most relevant and benchmark AIS schemes proposed in the literature [4,22–24] .

The objective of this section is to highlight the robustness of the LAIS scheme with respect to the choice of the parameters,

comparing with the results of the other AIS techniques. With this aim, we consider a highly-multimodal bivariate target pdf 

defined as a mixture of five Gaussians, i.e., 

π(x ) = 

1 

5 

5 ∑ 

i =1 

N (x ;νi , �i ) , x ∈ R 

2 , (14) 

where N (x ;νi , �i ) denotes a Gaussian density with mean vector νi and covariance matrix �i , ν1 = [ −10 , −10] � , ν2 =
[0 , 16] � , ν3 = [13 , 8] � , ν4 = [ −9 , 7] � , ν5 = [14 , −14] � , �1 = [2 , 0 . 6 ;0 . 6 , 1] , �2 = [2 , −0 . 4 ;−0 . 4 , 2] , �3 = [2 , 0 . 8 ;0 . 8 , 2] ,
�4 = [3 , 0 ;0 , 0 . 5] , and finally �5 = [2 , −0 . 1 ;−0 . 1 , 2] . This is a very challenging scenario since we have 5 different modes,

far away one from another. In this example, we can analytically compute different moments of the target in (14) , and there-

fore we can easily validate the performance of the different techniques. In particular, we consider the computation of the 

mean of the target, E[ X ] = [1 . 6 , 1 . 4] � , and the normalizing constant, Z = 1 , for X ∼ 1 
Z π(x ) . We compute the mean squared

error (MSE) in the estimation of E[ X ] and in the normalizing constant Z (which usually represents a marginal likelihood,

when the density of interest is a Bayesian posterior). 
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Fig. 1. MSE in log-scale obtained by different techniques, of the experiment in Section 9.1 . (a) With N = 10 , and varying σ ; (b) with N = 100 and varying 

σ ; (c) with σ = 5 and varying N. 

 

 

 

 

 

 

 

 

 

 

 

 

We apply LAIS with N parallel MH chains in the upper layer (of length T ). We assume Gaussian proposal densities for

all of the methods compared, and deliberately choose a bad initialization of the means in order to test the robustness

and the adaptation capabilities. Specifically, the initial location parameters of the proposals are selected uniformly within 

the [ −4 , 4] × [ −4 , 4] square, i.e., μn, 0 ∼ U([ −4 , 4] × [ −4 , 4]) for n = 1 , . . . , N. Note that none of the modes of the target

are contained within this initialization square. We test all the alternatives using the same isotropic covariance matrices for 

all the Gaussian proposals, C n = σ 2 I 2 , where in some simulations we vary σ . All the results have been averaged over 10 3 

independent runs, where the total number of target evaluations E is the same in all the techniques (see Section 8 for LAIS).

In order to make possible a fair comparison with other schemes, in LAIS we draw M > 1 samples from each proposal density

q n,t in the lower layer, so that the total number of full-posterior evaluations in LAIS is E = N T + MN T = (M + 1) N T (as shown

in the previous section). We apply also the following schemes: the standar Population Monte Carlo (PMC) technique [4] ,

the Adaptive Population Importance Sampling (APIS) method [24] , the improved PMC schemes GR-PMC and LR-PMC [23] , 

and the Adaptive Multiple Importance Sampling (AMIS) approach [22] . We remark that all the comparisons have been 

performed with the same number of target evaluations E. 

For instance, in Fig. 1 (a), we vary the standard deviation of the proposal densities σ , and we set N = 10 , M = 9 , T = 100

for LAIS, N = 10 , M = 10 T = 100 for APIS, GR-PMC and LR-PMC, and M = 100 and T = 100 in AMIS (since in AMIS we have

a unique proposal density). We repeat the experiment in Fig. 1 (b), but considering N = 100 . In Fig. 1 (c), we set σ = 5 and

vary N. We can observe that stand. LAIS generally outperforms the other techniques. Even when LAIS does not provide the

smallest MSE, it obtains close results. Namely, LAIS provides competitive results for any of the values σ or N, proving its

robustness. As N grows, LAIS becomes even more competitive. 
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Fig. 2. Results corresponding to the experiment in Section 9.2 . (a) The solid line is the function that defines the model, and the blue dots are the obser- 

vations generated from it. The yellow dots represent an example of random subset of data used in a partial-posterior. (b) MSE versus N, with T = 20 and 

K n = 10 for all n = 1 , . . . , N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.2. Parameter fitting in a non-linear regression problem 

In this section, we consider a non-linear regression problem. This is a simplified version of astronomical models, e.g., see 

the second numerical example in [25] . We generate 50 observations, y tot = { y i } 50 i =1 
, from the following observation model 

y i = exp (−αt i ) sin (βt i ) + v i 

where the values α and β were fixed at 0.1 and 2, respectively. The error terms v i were independently generated from a

Gaussian, N (0 , 0 . 1 2 ) . For this model, we take x = [ α, β] � and set a uniform density over the rectangle [0 , 10] × [0 , 2 π ] as

prior density for x . Fig. 2 (a) shows the function exp (−αt) sin (βt) and some data generated according to the model. The 

goal is to investigate the use of partial posteriors in the LAIS framework when computing E [ x | y tot ] , var [ x | y tot ] (marginal

variances) and Z = p(y tot ) . By using a very thin grid over the space, we are able to calculate the true values, obtaining

E [ x | y tot ] = [0 . 1 , 2] � , var [ x | y tot ] = [6 . 88 · 10 −5 , 8 . 38 · 10 −5 ] � and Z = 3 . 03 · 10 −15 . We compute the MSE in estimating those

quantities with the following methods: (a) LAIS, (b) PLAIS, and (c) PA-RLAIS. 

For all the methods, the upper layer consists of N independent random walk Metropolis-Hastings (MH) algorithms with 

Gaussian proposals (the same for all the schemes). In the upper layer, PLAIS and PA-RLAIS differ from LAIS in that, instead

of the full posterior, each of the N chains targets a different partial posterior (with the same number of data K n for all n ). In

the lower layer, one sample was drawn from each of the Gaussian proposal pdf. The covariance matrix of all the Gaussian

proposals was set to C n = 2 I 2 where I 2 is a 2 × 2 unit matrix. In the lower layer, PA-RLAIS differs from LAIS and PLAIS, in

that we do not need to draw samples, but all samples are recycled from the chains in the upper layer. In a first experiment,

we test the values N ∈ { 1 , 2 , 5 , 10 , 25 } , and set T = 20 , K n = 10 for all n . The results (averaged over 10 3 runs) in terms of

MSE are shown in Fig. 2 (b). We can already see the benefits of PLAIS and PA-RLAIS. 

In a second experiment, we fix the number of total evaluations of the full-posterior to E = 20 0 0 . In this case, for any

value of N ∈ { 1 , 2 , 5 , 10 , 25 , 50 } we change T , in order to keep constant the total number evaluations of the full-posterior

(see Section 8 ). In each simulation the partial posteriors were created by choosing randomly K n data, with K n ∈ { 5 , 10 } .
Fig. 2 (a) depicts some data generated according to the model. The orange dots are the observations chosen to construct

the partial posterior in one simulation with K n = 5 . Finally, in all the methods, the initial mean vectors were drawn from

the prior, i.e., μn, 0 ∼ U ( [0 , 10] × [0 , 2 π ] ) , for all n . The results are averaged over 500 independent simulations. In Fig. 3 , we

show the obtained results of this a second experiment. In both figures (a)-(b), we see the behavior of the MSE as N grows

(and also T decreases, since we keep E = 20 0 0 constant). The solid line corresponds to the standard LAIS implementation

where we use all the data available for the computation of the likelihood in the upper layer. The dashed lines show the

behavior of the errors when partial posteriors are considered in the upper layer. The left side shows the case K n = 5 for all

n , while, on the right side, we show K n = 10 for all n . In both graphics, it can be seen that PLAIS and PA-RLAIS outperform

the results of standard LAIS, for the values of N considered. Hence, in this simple example, using partial posteriors improves

the performance of the algorithms. For all methods, the error tends to grow after certain optimal N (recall that T is also

varying in this figure). However, the methods that use partial posteriors show better performance, as compared to standard 

LAIS, when N increases, that is, when there is more number of shorter chains. This can be due to the fact that the partial

posteriors are wider, and hence easier to explore in a small number of iterations. Also in both cases, the errors of PLAIS and

PA-RLAIS are rather similar, although, as expected, PLAIS outperforms PA-RLAIS. 
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Fig. 3. Results corresponding to the experiment in Section 9.2 . MSE obtained by the different algorithms for distinct numbers of data in the partial 

posteriors. Note that we keep fixed the total number of posterior evaluations to E = 20 0 0 . This means that as N grows, then T decreases (e.g., in standard 

LAIS we have E = 2 NT ); (a) with K n = 5 ; (b) with K n = 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3. HMC-LAIS vs HMC algorithms 

For the next experiment, we consider π̄ (x ) which consists of an equally-weighted mixture of two Gaussian pdfs. The 

Gaussians pdfs are located at [0 , 0] � and [ −4 , 4] � , respectively. The covariance matrix of both is � = [4 , 3 ;3 , 4] . Here,
it is straightforward to calculate the true values for the quantities of interest: the expected value is [ −2 , 2] � , the vari-
ances are [8,8] and the covariance is −1 . We test the performances of HMC-LAIS algorithms in estimating these quan-

tities, i.e., expected value of π̄ (x ) (2 quantities), and covariance matrix of π̄ (x ) (3 quantities). The goal is to compare

their performances against only using HMC algorithms. The error measure we employ is the averaged Mean Squared Error 

(MSE). 

The computational budget is fixed to E = 2400 target evaluations. We consider HMC algorithms with kinetic energy 

using a Gaussian distribution with covariance matrix equal to 2 I , and test the following values for step length and path

length {(0.25,1),(0.5,1),(1,3),(1,5)}. In the lower layer, we also consider Gaussian proposals with covariance matrix equal 

to C n = 2 I . Here, we compare the performance of three deterministic-mixture weighting schemes: spatial, temporal and 

complete. 

For setting the number of chains, N, and the number of iterations, T , we follow the same rules as for the previous

experiment. We kept constant the product NT = 

E 
2 = 1200 and vary N within {2,3,4,6,8,10,12,16,20,25,30,40,50,60,100}. For a 

fair comparison, when we only consider HMC algorithms, the N chains were run for 2 T iterations each (i.e. twice number

of iterations than the HMC algorithms in the upper layer of the HMC-LAIS algorithms), so that the final number of target

evaluations is 2 NT = E = 2400 . The initial mean vectors were chosen uniformly within the square [ −10 , 10] 2 . The results

were averaged over 500 independent simulations. 

In Fig. 4 , we show the MSE of the HMC and HMC-LAIS algorithms, with three weighting schemes, as a function of N.

Recall that, for every N, the HMC algorithms were run for twice number of iterations, i.e., they were run for 2 T iterations, in

order to have the same number of target evaluations. Each figure corresponds to a different choice of step and path lengths

in the HMC algorithms. 

First main observation. We can observe that the LAIS schemes (except some few specific cases) always outperform the 

HMC algorithms. 

Second main observation. It is important to remark the excellent and robust performance provided by HMC-LAIS with 

the complete denominator, regardless the parameters of HMC chains (in the upper layer) used and the number of chains N.

In fact, HMC-LAIS algorithm with complete denominator clearly outperforms the rest of techniques, providing the smallest 

error and remaining constant for all N and all HMC parameters. 

Other considerations. The error of HMC is smallest when N is close to the minimum (i.e. when the chains are longer),

and gets worse as N increases since, consequently, the chains become shorter and cannot explore properly the two modes. 

Interestingly, even in the best scenario, the results show that the error of HMC is always greater than the one pro-

vided by HMC-LAIS algorithms with temporal and complete denominators. Namely, even when HMC works best, it is 

better to run it for half number of iterations and then use it within the LAIS framework with a temporal or complete

denominator. 

Spatial vs Temporal. The performance of the temporal and spatial denominators behave in an opposite manner. As 

expected, the error corresponding to the spatial denominator is worse when N is small. In fact, the greatest error is

achieved always when N is minimum. As N increases, the performance greatly improves. It rapidly beats HMC and its 

performance matches that of the complete weighting scheme for large N. Conversely, in the temporal denominator, the 
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Fig. 4. Results corresponding to the experiment in Section 9.3 . MSE in estimation obtained by HMC-LAIS and HMC versus N, with the same number 

of evaluations of the posterior E = 2400 (hence, the HMC chains have twice the length of the HMC chains used in the upper layer of HMC-LAIS). Each 

figure corresponds to a different choice of step and path lengths in the HMC algorithms. 

 

 

 

 

 

 

 

 

 

 

 

best results are always achieved when N is minimum, since in this case, the chain length T is maximum. As N increases,

the performance of the temporal denominator worsens, but in a slower fashion than the corresponding error of the HMC 

algorithms. 

In this experiment, the spatial denominator seems to outperform the temporal denominator for more values of N. This 

means that the mixture of spatial proposals is usually better than the mixture of temporal proposals. For some value N ∗,
both weighting schemes provide the same results. Only for values N ≤ N ∗, the temporal denominator is better than the

spatial denominator. Namely, if T is not sufficiently big ( T ≤ E 
2 N ∗ ), the temporal denominator does not pay off, as compared

to the spatial denominator. In fact, for N > 50 , the spatial denominator can be considered as a compressed version of the

complete denominator, i.e., it provides almost the same performance but with a smaller number of components (recall that 

the complete denominator has E 2 = 1200 mixture components). 

Compressed schemes. We have also tested the performance of compressed LAIS (CLAIS), where a compression tech- 

nique is applied to the NT proposals from the upper layer (see Sect. 6 ). Here, we have run a clustering algorithm with

B ∈ { 3 , 21 , 50 , 200 } clusters to obtain the compressed denominators. In Fig. 5 , we show the error of these schemes against

the three previous weighting schemes and HMC. With the proposed compression scheme, we see that the performance is 

very close to that of the complete denominator and it is insensitive to the choice of number of clusters and N. For moder-

ately low N, CLAIS outperforms LAIS with spatial denominator. However, as N increases, the spatial denominator matches 

the performance of CLAIS, i.e., the spatial denominator is also a very efficient way of compressing the NT proposals as dis-

cussed above. Finally, in Fig. 6 we display the computation time of CLAIS versus the compression level η, which is η = 0

when there is no compression at all ( B = NT , i.e. the maximum number of clusters), and η = 1 − 1 
NT when we have B = 1

clusters. 
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Fig. 5. Results corresponding to the experiment in Section 9.3 . MSE of CLAIS with different values of B ∈ { 3 , 21 , 50 , 200 } , compared with LAIS with different 

denominators and parallel HMC chains (with twice lengths with respect to the LAIS schemes, in order to have the same number of posterior evaluations, 

E = 2400 , for all methods). 

Fig. 6. Results corresponding to the experiment in Section 9.3 . Normalized computational time versus compression level η, where η = 1 − B 
NT 

, and B is the 

number of clusters. 
9.4. High-dimensional experiment 

In order to be able to compare different schemes in a high-dimensional sampling problem, we need to know the 

groundtruth. For this reason, we assume a mixture of Gaussians as target pdf, i.e., 

π̄ (x ) = 

1 

3 

3 ∑ 

k =1 

N (x ;νk , χ
2 
k I D X ) , x ∈ R 

D X , (15) 
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Fig. 7. Results corresponding to the experiment in Section 9.4 . MSE (in log-scale) versus the dimension of the space D X , obtained by the different samplers, 

with the same total number of target evaluations E = 2 · 10 5 . Namely, we keep fixed the computational cost, that in HMC-LAIS means keeping fixed the 

parameters N = 100 , M = 19 and T = 100 (for all D X ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where νk = [ νk, 1 , . . . , νk,D X 
] � , for k ∈ { 1 , 2 , 3 } , with I D X being the D X × D X identity matrix and D X is the dimension of the

space. In this section, we vary the dimension of the state space in Eq. (15) considering 2 ≤ D X ≤ 50 . Moreover, we set

ν1 , j = −5 , ν2 , j = 6 , ν3 , j = 3 for all j = 1 , . . . , D X , and χk = 8 for all k ∈ { 1 , 2 , 3 } . Note that the expected value of X ∼ π̄ (x ) is

E[ X j ] = 

4 
3 for j = 1 , . . . , D X . In order to study the performance of different Monte Carlo methods, we consider the problem of

approximating this expected value. We apply HMC-LAIS considering N = 100 parallel chains of HMC in the upper layer, each

chain with different parameters. The HMC chains require the selection of following parameters: a positive integer number 

of “leap-frog steps” Q , a positive number for the step size ζ and the covariance matrix of the Gaussian kinetic energy

λ2 I D X (where we set λ = 10 ). We select the two first parameters both randomly, for each chain and at each run: we select

Q uniformly between 1 and 7 (it must be an integer), and ζ ∈ U([0 . 01 , 0 . 7]) . The proposal pdfs used in the lower layer, 

q n,t (x | μn,t , C n ) , are Gaussian pdfs with covariance matrices C n = σ 2 I D X again with σ = 10 . We also draw M > 1 (more than

one samples) from each proposal in the upper layer. More precisely, we set M = 19 and the length of the chains T = 100

because, since N = 100 , we have a total number of target evaluations of E = (M + 1) NT = 2 · 10 5 . 
We compare HMC-LAIS with different benchmark schemes: (a) the standard PMC scheme [4] , (b) N parallel indepen- 

dent MH chains (Par-MH), (c) and a Sequential Monte Carlo (SMC) scheme [26] . For a fair comparison, all the mentioned

algorithms have been implemented in such a way that the number of total evaluations of the target is E = 2 · 10 5 as in HMC-

LAIS. Moreover, all the proposal pdfs involved in the experiments are Gaussians, with the same covariance matrices for all 

the techniques. The initial mean vectors in all techniques are selected randomly and independently as μn, 0 ∼ U([ −6 , 6] D X )

for n = 1 , . . . , N. 

The results are averaged over 10 3 independent runs. Fig. 7 shows (in log-scale) the MSE in the estimation of E[ X ] as a

function of the dimension D X of the support space. We remark that we have kept fixed the number of total evaluations of

the target E = 2 · 10 5 for all the techniques. As expected, the performance of all the methods deteriorates as the dimension

of the problem, D X increases, since we maintain fixed the computational cost E = 2 · 10 5 . HMC-LAIS always provides the best

results, i.e., obtaining the lower MSE values. 

9.5. Parameter estimation in a chaotic system 

In this section, we show that the use of Gibbs-LAIS cab be useful in complex inference scenarios where sophisticated 

MCMC techniques seem to fail (see, for instance, [27] or [28] ). We consider the problem of estimating parameters in a

chaotic system, which is considered a very challenging framework in the literature (see, e.g., [29] or [27] ). This is due to the

very tight and sharp posteriors induced by this model. As an example, see the conditional posterior densities in Fig. 8 . The

density in Fig. 8 (c) is extremely tight (resembling a delta function), so even sophisticated adaptive Monte Carlo techniques 

fail. This type of systems are often utilized for modeling the evolution of population sizes, for instance in ecology [28] .
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Fig. 8. Results corresponding to the experiment in Section 9.5 . (a) - (b) Examples of conditional densities in log-domain with λ = 0 . 1 , and considering K = 20 

observations. (a) Fixing � = 4 . (b) Fixing R = 0 . 7 . (c) The conditional pdf corresponding to the plot (b). Even advanced and adaptive MCMC techniques often 

fail in drawing samples from this kind of sharp/tight densities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specifically let us consider a logistic map [30] perturbed by multiplicative noise, 

y k +1 = R 

[ 
y k 

(
1 − y k 

�

)] 
exp (εk ) , εk ∼ N (0 , λ2 ) , k = 1 , . . . , K, (16) 

starting with y 1 ∼ U([0 , 1]) . The parameters R > 0 and � > 0 are unknown and object of the inference. Hence, using the

notation in this work, we have x = [ R, �] . Let us assume that a sequence y = y 1: K = [ y 1 , . . . , y K ] is observed and, for the sake

of simplicity, let us consider that the standard deviation λ of the noise is known. The corresponding likelihood function is 

given by 

L (y | x ) = p(y 1: K | R, �) = 

K−1 ∏ 

k =1 

p(y k +1 | y k , R, �) , 

where, denoting b(y k , R, �) = R 
[
y k 

(
1 − y k 

�

)]
, we have 

p(y k +1 | y k , R, �) ∝ 

∣∣∣∣g(y k , R, �) 

y k +1 

∣∣∣∣ exp 
( 

−
log 

(
y k +1 

g(y k ,R, �) 

)2 
2 λ2 

) 

, if b(y k , R, �) > 0 , 

and p(y k +1 | y k , R, �) = 0 , if b(y k , R, �) ≤ 0 . We set uniform priors, R ∼ U([0 , 10 4 ]) and � ∼ U([0 , 10 4 ]) , our goal is computing

the mean of the bivariate posterior pdf, π̄ (x | y ) = p(R, �| y 1: K ) ∝ p(y 1: K | R, �) , which represents the minimum mean square

error estimator of the vector parameter x = [ R, �] (computing the MSE obtained by the different techniques). 

We have generated artificial data y = y 1: K , setting R = 3 . 7 , � = 0 . 4 and K = 20 (i.e., a trajectory of 20 values). We employ

different values of standard deviation λ = { 0 . 0 01 , 0 . 0 05 , 0 . 01 , 0 . 05 , 0 . 08 , 0 . 1 } of the noise in the system (16) of the same

order of magnitude considered in [27] . We apply a Gibbs-LAIS scheme where, for drawing from the full-conditional pdfs, we

apply (within the Gibbs sampler) the so-called FUSS technique proposed in [18] . For simplicity, we consider a unique Gibbs

chain ( N = 1 ) in the upper layer with length T = 25 iterations, i.e., μ1 , . . . , μT . In the lower layer of Gibbs-LAIS scheme, we

consider two-dimensional Gaussian proposals q (x | μt ) = N (x | μt , σ
2 
p I 2 ) with σp = 1 and I 2 is the 2 × 2 identity matrix. We

draw one sample from each proposal q (x | μt ) , hence we have S = 25 samples in the lower layer. Therefore, the total number

of posterior evaluations of the Gibbs-LAIS scheme is E = 25 + 25 = 50 . Since we have only one chain ( N = 1 ), we use a

temporal weighting scheme. We also apply the corresponding Gibbs-RLAIS with the same parameters (then E = 25 ), and

also we perform a Gibbs-RLAIS but increasing the length of the Gibbs sampler to T = 50 (so that again E = 50 ). Finally, we

compare the results with an MH-within-Gibbs approach with a Gaussian random walk proposal ( σp = 1 again) for drawing

from the full-conditionals, i.e., with T = 50 steps for the Gibbs samplers, in order to have E = 50 for a fair comparison. For

the employed MCMC techniques, the initial states of the chains are chosen randomly from U([1 , 5]) for R and U([0 . 38 , 1 . 5])

for �. 

The MSE in estimation obtained by the different techniques (averaged over 10 0 0 independent runs) is given in Table 8 .

The Gibbs-LAIS schemes outperform clearly the MH-within-Gibbs approach. Moreover, Gibbs-RLAIS with E = 25 obtains very 

close results to Gibbs-LAIS, and Gibbs-RLAIS with E = 50 even outperforms Gibbs-LAIS when λ grows. Another remarkable 

advantage of employing the Gibbs-LAIS schemes is that one could easily approximating the marginal likelihood Z = p(y ) =
p(y 1: K ) in this problem, by computing the estimator ̂  Z in (5) . In this way, we could perform a model selection study. On the

other hand, approximating Z by MH-within-Gibbs method is not a straightforward task [6] . 

9.6. Experiment with COVID-19 data 

This section is devoted to a model selection application. We consider the number of daily deaths caused by SAR-CoV-2 

in Italy from 18 February 2020 to 6 July 2020 as the dataset. We denote the values of daily deaths as y = [ y 1 , . . . , y D Y ] 
� . Let
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Table 8 

MSE in estimation of R and �, obtained by the different compared techniques. 

λ

E Parameter 0.001 0.005 0.01 0.05 0.08 0.10 

Gibbs-LAIS 50 R 0.0065 0.0067 0.0085 0.0125 0.0142 0.0681 

� 4.97 10 −5 6.16 10 −5 4.18 10 −5 5.26 10 −5 6.33 10 −5 1.70 10 −4 

Gibbs-RLAIS 25 R 0.0082 0.0090 0.0089 0.0138 0.0160 0.0752 

� 5.21 10 −5 6.22 10 −5 6.13 10 −5 4.22 10 −5 5.89 10 −5 1.82 10 −4 

Gibbs-RLAIS 50 R 0.0070 0.0069 0.0078 0.0126 0.0130 0.0547 

� 5.01 10 −5 6.20 10 −5 5.75 10 −5 5.19 10 −5 6.08 10 −5 1.56 10 −4 

MH-within-Gibbs 50 R 0.6830 0.7264 0.7067 1.1631 1.3298 1.3293 

� 0.0373 0.0402 0.0423 0.0399 0.0471 0.0440 

 

 

 

 

 

 

 

 

 

 

 

 

t i denote the i -th day, we model each observation as 

y i = f (t i ) + e i , i = 1 , . . . , D Y = 140 , 

where f is the function that we aim to approximate and e i ’s are independent Gaussian realizations with zero means and

variance σ 2 
e . We consider the approximation of f at t as a weighted sum of M localized basis functions, 

f (t) = 

M ∑ 

m =1 

ρm 

ψ(t| μm 

, h, ν) , 

where ψ(t| μm 

, h ) is m -th basis located at μm 

with bandwidth h . Let also be ν an index denoting the type of basis. We

consider M ∈ { 1 , . . . ., D Y } , then 1 ≤ M ≤ D Y . When M = D Y , the model becomes a Relevance Vector Machine (RVM), and the

interpolation of all data points (maximum overfitting, with zero fitting error) is possible [31,32] . We study 2 possible kinds

of basis (i.e., ν = 1 , 2 ): Gaussian ( ν = 1 ), and Laplacian ( ν = 2 ). After fixing ν and M, we select the locations { μm 

} M 

m =1 
as a

uniform grid in the interval [1 , D Y ] (recall that D Y = 140 ). Hence, by knowing ν and M, the locations { μm 

} M 

m =1 
are given. 

We define the vector of coefficients ρ = [ ρ1 , . . . , ρM 

] � . Let also � be a D Y × M matrix with elements [ �] i,m 

= ψ(t i | μm 

, h )

for i = 1 , . . . , D Y and m = 1 , . . . , M. Then, the observation equation in vector form is 

y = �ρ + e , 

where e ∼ N (0 , σ 2 
e I D Y ) is a D Y × 1 vector of noise, where I D Y is the D Y × D Y identity matrix. Therefore, the likelihood func-

tion will be 

� (y | ρ, h, σe , ν, M) = N (y | �ρ, σ 2 
e I D Y ) . 

We assume a Gaussian prior density over the vector of coefficients ρ, i.e., g( ρ| λ) = N ( ρ| 0 , �ρ ) , where �ρ = λI M 

and λ >

0 . Therefore, the complete set of parameters to infer is { ρ, ν, M, h, λ, σe } . The conditional posterior of ρ given the rest of

parameters is also Gaussian, 

π̄ ( ρ| y , λ, h, σe , ν, M) = 

� (y | ρ, h, σe , ν, M) g( ρ| λ) 

p(y | λ, h, σe , ν, M) 
= N ( ρ| μρ| y , �ρ| y ) , 

and a likelihood marginalized w.r.t. ρ is available in closed-form, 

p(y | λ, h, σe , ν, M) = N (y | 0 , ��ρ�� + σ 2 
e I D Y ) . (17) 

For further details see [31,32] . Now, we assume g λ(λ) , g h (h ) , g σ (σe ) are folded-Gaussian priors over h, λ, σe , defined on

R + = (0 , ∞ ) with location and scale parameters { 0 , 10 0 } , { 0 , 40 0 } and { 1 . 5 , 9 } , respectively. Then, we study the following

posterior marginalized w.r.t. ρ and conditioned to μ, M, 

π̄ (λ, h, σe | y , ν, M) = 

1 

p(y | ν, M) 
p(y | λ, h, σe , ν, M) g λ(λ) g h (h ) g σ (σe ) , 

Finally, we want to compute the marginal likelihood, i.e., 

p(y | ν, M) = 

∫ 
R 

3 + 
p(y | λ, h, σe , ν, M) g λ(λ) g h (h ) g σ (σe ) d λd hd σe . (18) 

Furthermore, assuming a uniform probability mass p(M = i ) = 

1 
D Y 

as prior over M, we have p(M| y , ν) = 

p(y | ν,M) p(M) 
p(y | ν) 

∝
1 
D Y 

p(y | ν, M) . We can marginalize out M obtaining 

p(y | ν) = 

1 

D Y 

D Y ∑ 

M=1 

p(y | ν, M) , for ν = 1 , 2 . (19) 

Considering also a uniform prior over ν , we can obtain the marginal posterior p(ν| y ) ∝ 

1 p(y | ν) . 
2 
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Fig. 9. Results corresponding to the experiment in Section 9.6 . Best fit with 8 bases with different types of basis, ν = 1 , 2 . The circles represent the 

analyzed data and the squares show the positions of the bases. 

Table 9 

The approximate marginal posterior p(ν| y ) 
with different techniques. 

Method p(ν = 1 | y ) p(ν = 2 | y ) 
NMC 0.4831 0.5169 

Gibbs-LAIS 0.4930 0.5070 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Goal. Our purpose is: (a) to make inference regarding the parameters of the model { λ, h, σe } , (b) approximate Z =
p(y | ν, M) , (c) study the posterior p(M| y , ν) . We also study the marginal posterior p(ν| y ) for ν = 1 , 2 . 

Methods. For approximating p(y | ν, M) , for M = 1 , . . . , D Y , and p(ν| y ) , we first apply a Naive Monte Carlo (NMC) method

with 10 4 samples [6] . We apply also a Gibbs-LAIS scheme with a MH-within-Gibbs sampler in the upper layer. More

specifically, we employ an interpolative piecewise constant function as proposal in the MH scheme to draw from the full- 

conditionals (considering 2 internal steps) [18] . Hence, in the upper layer, we obtain a unique Markov chain ( N = 1 ) of

μt = [ λt , h t , σe,t ] for t = 1 , . . . , T . We set T = 50 0 0 , hence also 50 0 0 samples drawn in the lower layer and used in estima-

tors. The total number of evaluations of the posterior is 2 T = 10 4 for both, NMC and Gibbs-LAIS schemes. 

Results. With both methods, We obtain that the MAP estimator of M is M 

∗ = 8 . In Fig. 9 , we show the fitting obtained

with M = 8 bases and the parameter estimations provided by the Gibbs-LAIS scheme. Thus, a first conclusion is that the re-

sults obtained with models such as RVMs and Gaussian Processes (GPs) (both having M = 140 [31,32] ) can be approximated

in a very good way with a much more scalable model, as our model here with only M = 8 [31,32] . Regarding the marginal

posterior p(ν| y ) , we can observe the results in Table 9 . With the results provided by both schemes, we should prefer slightly

the Laplacian basis. These considerations are reasonable after having a look at Fig. 9 . 

10. Conclusions 

We show the LAIS scheme is a flexible framework for designing efficient and robust AIS algorithms. Furthermore, we 

have introduced several enhancements in the LAIS framework in order to improve the performance and reduce the overall 

computational cost. Specifically, we have proposed that the MCMC algorithms in the upper layer address different partial 

posteriors (i.e., posteriors of subsets of data) to improve the mixing of the chains due to the data-tempering effect, and

at the same time, reducing the costs of the upper layer. We have also studied the use of sophisticated MCMC algorithms,

such as HMC and advanced Gibbs techniques, in the upper layer. These improvements allow the inference in very complex 

inference problems where other sophisticated techniques fail [27] , as we have shown in Section 9.5 . The proposed schemes

are particularly useful to make inference with extremely concentrated posteriors, as shown in Fig. 8 (c), and where the

computation of the marginal likelihood is also required. Moreover, the proposed methods provide also a clear improvement 

in high-dimensional inference spaces, as shown in Fig. 7 , obtaining at least a reduction of 25% in the estimation error. 

Furthermore, we have designed a compression scheme for reduce the cost of the lower layer. Specifically, with the com- 

pression scheme, we can save more of the 70% of evaluations in the denominator of the IS weights (see Section 9.3 ). Nu-

merous numerical experiments show that the proposed schemes outperform standard applications of the LAIS scheme and 

other benchmark algorithms. Interesting related theoretical considerations have been provided in the Appendices. 

As future research lines, we consider that the automatic choice and the possible adaptation of the covariance matrices of 

the proposal densities in the lower layer are still open problems. Furthermore, the possible use of the MCMC samples also

in the final estimators deserves additional studies. 
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Appendix A. On the choice of p(μ) in the upper layer 

A1. Theoretical considerations: Optimal invariant distribution in upper layer 

Let us consider a hierarchical procedure which mimics the LAIS sample generation approach. For this purpose, we con- 

sider a single proposal pdf q in the lower layer defined by the mean μ ∈ R 

D X and scale matrix C ∈ R 

D X ×D X , so that the

proposal can be denoted as q (x | μ, C ) , and it fulfills q (x | μ, C ) = q (x − μ| 0 , C ) . This property is satisfied by relevant distribu-
tions such as Gaussian, Student’s t and Laplace pdfs, for instance. The assumption is that the location parameter μ is drawn

exactly from the density p( μ) . This is clearly a simplification since, with MCMC chains, we obtain correlated samples. Hence,

the simplified LAIS generation procedure is given below: 

1. Draw a possible location parameter μ′ ∼ p( μ) . 

2. Draw x ∼ q 
(
x | μ′ , C 

)
. 

Note that p( μ) plays the role of a prior pdf over the location parameter of the proposal density q ( x | μ, C ) . The sample x

is distributed according to the following equivalent density, 

˜ q (x | C ) = 

∫ 
X 
q (x | μ, C ) p( μ) d μ = 

∫ 
X 
q (x − μ| 0 , C ) p( μ) d μ, (20) 

i.e., x ∼ ˜ q (x | C ) . From Eq. (20) we can deduce the following considerations. The last expression in (20) is a convolution

integral. Hence, considering the sum of two independent random variables 

X = Z + M , (21) 

where Z ∼ q (x | 0 , C ) (with μ = 0 ) and M ∼ p( μ) , then X is distributed as ̃  q (x | C ) [10] . 
Now, let us consider the problem of finding the optimal density p ∗( μ| C ) over the location parameter μ. In the LAIS

scheme, the samples obtained by this procedure are then used in a self-normalized importance estimator. The variance of 

the IS weights is minimized when the proposal is exactly π̄ (x | y tot ) [10,13] . Therefore, the desirable scenario is to have˜ q (x | C ) = π̄ (x | y tot ) . The optimal pdf depends on the chosen scale parameter C and since q (x | μ, C ) = q (x − μ| 0 , C ) , as μ is a

location parameter, we can write 

π̄ (x | y tot ) = 

∫ 
X 
q (x − μ| 0 , C ) p ∗( μ| C ) d μ. (22)

Equation (22) above can be rewritten in terms of the characteristic functions: Q( ν| C ) = 

∫ 
q (x | 0 , C ) e i ν� x dx , P ∗( ν| C ) =∫ 

p ∗(x | C ) e i ν� x dx , and �̄( ν) = 

∫ 
π̄ (x | y tot ) e i ν

� x dx , where ν ∈ R 

D X . The characteristic function of X is the product of character-

istic functions of Z and M . Hence, in some cases, the optimal invariant pdf in the upper layer has the following characteristic

function, 

P ∗( ν| C ) = 

�̄( ν) 

Q( ν| C ) . (23) 

In a general case, it is not possible to determine analytically the expression of the optimal pdf p ∗( μ| C ) , and thus, other
practical choices must be considered, as discussed below. 

A2. Practical choices of the invariant distribution in the upper layer 

Here, we discuss some practical selection of p( μ) . First of all, from Eq. (21) , we can obtain the following relevant

considerations for this purpose: 

1. E [ X ] = E [ Z ] + E [ M ] = 0 + E [ M ] , i.e., the expected value of the equivalent proposal ˜ q is equal to the expected value of the

density p( μ) in the upper layer. 
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2. Var [ X ] = Var [ Z ] + Var [ M ] ≥ Var [ M ] , where Var [ ·] returns the elements in the diagonal of the covariance matrix and, the

inequality ≥ is applied to each element in the diagonal. Namely, the variances of each component of the equivalent 

proposal ̃  q are greater or equal to the variances of each component of the density p( μ) in the upper layer. 

Thus, the equivalent density ̃  q (x | C ) has the same expected value and a bigger variance with respect to the density p( μ) .

Consideration about the optimal pdf p ∗( μ) . Given Eq. (22) and the observations above, we can deduce that the optimal

pdf p ∗( μ) will have the same mean as the posterior, and it will have lighter tails than the posterior π̄ (i.e., p ∗ is more

“concentrated” than π̄ ). 

A possible choice of p( μ) in the upper layer. In practice, we cannot employ the optimal density p ∗( μ) . However, the

choice p( μ) = π̄ ( μ| y tot ) provides an equivalent proposal with the same mean as the posterior, but with heavier tails. This

is a relevant property: indeed, it avoids infinite variance estimators (see example 1 in [6] ) and, as a consequence, this is the

reason why this choice provides good performance in practice [1] . It can be shown that, in this case, the equivalent proposal

is the kernel density estimator of the posterior (for a fixed optimal choice of C ). However, with a large amounts of data,

evaluating the posterior can be very costly, so that the upper layer can require too much computational time. Furthermore, 

it is common that π(x | y tot ) is highly concentrated in some regions, so the MCMC algorithms in the upper layer can suffer

from bad mixing. For these reasons, we provide the enhancements described in this work. 

A2.1. Standard tempering and anti-tempering 

One idea for solving the second issue above, i.e., the bad mixing of the MCMC chains when π(x | y tot ) is highly concen-

trated, is the so-called tempering . Roughly speaking, tempering is a technique used to artificially change the scale of the

target density. It is commonly used in order to improve the exploration of the posterior support in optimization, MCMC and

IS [33,34] . For instance, taking p( μ) ∝ π( μ| y tot ) β with 0 < β < 1 as the target density can be useful if π̄ concentrates in a

small region that is not easy to discover. The β is usually referred to as the (inverse) temperature parameter. More generally,

a temperature schedule is a sequence of tempered posteriors ending with π̄ . A common choice is the geometric path be-

tween prior and posterior π̄βn 
(x | y tot ) ∝ π(x | y tot ) 

βn g(x ) 1 −βn = L (y tot | x ) βn g(x ) , for a sequence 0 = β0 < β1 < . . . < βN = 1 ,

such π̄β0 
(x | y tot ) = g(x ) (i.e., the prior pdf over x ) and π̄βN 

(x | y tot ) = π̄ (x | y tot ) . Note that the tempered posterior has a

powered, less informative (i.e., wider) likelihood. 

Therefore, in order to improve the exploration of the posterior support, one possibility consists in taking p n ( μ) =
π̄βn 

(x | y tot ) in the upper layer. 

Anti-tempering. An important point is that, in LAIS, one could set β ≤ 1 in order to foster the mixing of the chains, but

also we can choose some β > 1 since, theoretically, the optimal pdf p ∗( μ) is more “concentrated” than the posterior π̄ (as

described above). 

In any case, with a standard tempering strategy (using an auxiliary parameter β), we only solve one of the two issues

pointed out in the rest of the work: improving the exploration of the posterior support. The cost of evaluating a tempered

posterior π̄βn 
(x ) is the same as the cost of evaluating the non-tempered posterior π̄ . An alternative to the standard tem-

pering procedure is the so-called data tempering , which reduces also the evaluation cost by the use of the partial posteriors.

Appendix B. Hierarchical interpretation of the random walk Metropolis-Hastings (MH) algorithm 

Consider a target density π(x ) ∝ π̄ (x ) and a random-walk proposal pdf q ( x | x t−1 , C ) = q ( x − x t−1 | 0 , C ) , where x t−1 the

current state of the chain and C is a covariance matrix. One transition of the MH algorithm is summarized by 1. Draw x ′ 
from a proposal pdf q ( x | x t−1 , C ) . 2. Set x t = x ′ with probability 

α = min 

[ 

1 , 
π

(
x ′ 

)
q 
(
x t−1 | x ′ , C 

)
π( x t−1 ) q ( x ′ | x t−1 , C ) 

] 

otherwise set x t = x t−1 (with probability 1 − α). 

There are two well-known general classes of proposal pdf: independent proposal q (independent from the current state), 

and random walk proposal, q ( x | x t−1 , C ) , as previously considered. The use of a random walk proposal q ( x − x t−1 | 0 , C ) is 
often preferred due to its explorative behavior, since it relocates the proposal at the current state of the chain at each

iteration. See Fig. 10 (a)-(b), for an example. As a consequence, this approach is more robust with respect to the choice of

the tuning parameters. Below, we provide some further arguments explaining the success of the random walk approach. 

We provide a hierarchical interpretation in the same fashion on LAIS. Let us assume a ”burn-in” length T b − 1 . Hence,

considering an iteration t ≥ T b , we can assert x t ∼ π̄ (x ) . It implies that the random walk generating process is equivalent,

for t ≥ T b , to the following hierarchical procedure: (a) draw a location parameter μ′ from π̄ ( μ) , (b) draw x ′ from q 
(
x | μ′ , C 

)
.

Therefore, for t ≥ T b , the probability of proposing a new sample (i.e., the equivalent proposal) can be written as 

˜ q MH (x | C ) = 

∫ 
X 
q ( x | x t−1 , C ) ̄π( x t−1 ) dx t−1 , 

= 

∫ 
q ( x − x t−1 | 0 , C ) ̄π( x t−1 ) dx t−1 , for t ≥ T b , (24) 
X 
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Fig. 10. Graphical representation of the equivalent proposal of a random-walk proposal in a MH method. A bimodal target pdf π(x ) is shown in solid line. 

The proposal densities are depicted in dashed lines. (a) A proposal pdf q (x | x t−1 , C ) = q (x − x t−1 | 0 , C ) at the iteration t − 1 , and the next state of the chain 

x t . (b) The proposal pdf q (x | x t , C ) = q (x − x t | 0 , C ) at the t-th iteration. (c) The equivalent independent proposal pdf ̃  q MH (x | C ) is represented in dashed line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

since x t−1 ∼ π̄ ( x t−1 ) after a burn-in period, t ≥ T b , and x t−1 represents the location parameter of q . The function ˜ q MH (x | C )
is an equivalent independent proposal pdf corresponding to a random walk generating process within an MCMC method 

(after the ”burn-in” period). See Fig. 10 (c) for an example of ̃  q MH . 

Clearly, this interpretation has no direct implications for practical purposes, since we are not able to draw directly form 

the target π̄ . However, it is useful for clarifying the main advantage of the random walk approach, i.e., that the equivalent

proposal ˜ q MH is a better choice than an independent proposal roughly tuned by the user with non-optimal parameters. In 

fact, as an example, Eq. (24) ensures that the equivalent proposal ˜ q MH (x | C ) has a fatter tails than the target π̄ . Indeed,

the random walk generating procedure includes indirectly certain information about the target: denoting X ∼ ˜ q MH (x | C ) ,
Z ∼ q ( x | 0 , C ) and M ∼ π̄ (x ) , we have 

E[ X ] = E[ M ] , �X = C + �M 

, 

where E[ M ] and �M 

are the mean and covariance matrix of the target pdf π̄ (x ) . 
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