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A B S T R A C T

This paper provides novel estimates of the implicit cost of carbon abatement associated with the
COVID-19 crisis. We compare that to the costs from renewable investments that would lead to
similar abatement. Focusing on the Spanish economy and its power sector, we combine machine
learning and simulation tools to construct a precise counterfactual of market performance in
absence of the crisis. Results suggest that power sector CO2 emissions fell by 4.13 Million
Tons (about 11.5%) during 2020 due to the pandemic, less than half of the actual year-on-year
emissions reductions. Investing in renewables to achieve similar carbon abatement would yield
an implicit cost of 60–65 Euro/Ton of CO2. Conversely, the pandemic caused a substantial GDP
loss in Spain, relative to the extent of overall carbon abatement. The resulting cost of carbon
abatement associated with the pandemic thus exceeded 7 thousand Euro/Ton.

1. Introduction

Despite the dire consequences of the COVID-19 pandemic, early media reports were already alluding to a potential silver lining:
educed pollution (Forbes, 2020). Indeed, academic publications later found that carbon emissions were relatively low during 2020
(e.g. Le Quéré et al., 2020; Liu et al., 2020b). Naturally, that carbon abatement came at a cost. Other than the loss of life and health
onsequences to many afflicted by viral infection, the COVID-19 pandemic also gave rise to negative economic growth rates (World
ank, 2020). The magnitude and the abrupt nature of the decrease in economic activity (and emissions) caused by the pandemic has
ad no parallel, compared to modern-era recessions. The pandemic therefore constitutes a unique event which can provide insight
n the link between short-term economic downturns and carbon emissions. Specifically, in this paper we provide estimates of the
mplicit cost of carbon abatement observed during the pandemic. We benchmark those against the costs and potential abatement
rom investing in renewable technologies.
Since the pandemic was an unexpected shock to the economy, agents did not have enough time to optimally adjust in anticipation

f the changes in behaviour necessary to contain the viral spread. On the one hand, this is advantageous for our thought exercise
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because it implies that the short-term economic effects are observed while holding many (long-term) factors fixed.1 On the other
hand, we acknowledge that this shock impacted the various sectors of the economy asymmetrically. In particular, since some carbon-
intensive sectors – such as transportation – were severely affected, the scale of carbon abatement has been significant, but so has
been the reduction in economic activity. To the extent that the pandemic’s effects were orthogonal to sectors’ carbon intensities, the
associated cost of carbon abatement might have been greater than that from, for example, a planned and ‘‘sustainable degrowth’’
strategy (Schneider et al., 2010). Yet, the quantification that we provide in this paper sheds light on the orders of magnitude of
the implicit cost of carbon abatement from halting economic growth, without changing the underlying economic structures. We
compare that implicit cost to those from alternative abatement strategies that do imply structural changes with long-lasting effects:
investing in power sector renewable technologies.

We place special attention on power markets because they are particularly suitable to shed light on our questions of interest,
for several reasons. First, electricity generation is a major source of carbon emissions. Indeed, 30% of global CO2 emissions stem
from coal-fired generation alone (IEA, 2019a), and billions of dollars are invested annually in policies aimed at reducing the power
sector’s footprint (UN, 2018; IEA, 2019b). Second, electricity is a key input for most activities, making it a valuable indicator of
overall economic activity. During the COVID crisis, the economic contraction led to electricity demand reductions, which in turn
led to substantial emissions reductions, which we assess. Finally, thanks to the highly detailed available data, electricity markets
lend themselves to robust empirical analyses.

We further focus on the performance of the Spanish economy during 2020, when it faced strict lockdowns and movement
restrictions, especially at earlier stages of the pandemic. Prior evidence suggests that these restrictions led to strong electricity
demand reductions (Bover et al., 2020). Within this context, we stress the importance of building a counterfactual scenario in the
absence of the pandemic, in contrast to relying on year-on-year comparisons to estimate the extent of carbon abatement caused by
the pandemic. Prior years’ emissions do not provide an accurate counterfactual as several time-variant factors would have affected
emissions even in the absence of the pandemic. For instance, in the context of the Spanish electricity market, during 2020, the
vast majority of coal plants were phased-out while many new renewable investments started operating. As these exit and entry
decisions were made well before the pandemic, the associated emissions reductions would have also occurred in the absence of it.
Furthermore, the amount of emissions in the power sector is highly sensitive to the availability of natural resources (water, wind,
sun), which are subject to substantial variation across time.

Accordingly, we build our measure of avoided emissions in the power sector by running simulations of market performance
under realized and counterfactual demand values, holding all else equal. The simulations are based on a model developed by De
Frutos and Fabra (2012), which incorporates technological and institutional features of electricity markets, and allows for strategic
bidding behaviour by electricity companies. The model solves for the Nash equilibria in discrete supply functions, which determine
market clearing prices and quantities. Simulations with counterfactual demand thus provide a clear picture of the carbon intensity
had the crisis not occurred.

A key input of the simulations thus regards the estimation of the electricity demand reductions attributable to the COVID-19
crisis, for which we build on prior literature using machine learning methods (Burlig et al., 2020; Christensen et al., 2021). We
se high-frequency energy data, weather variables, and date/time fixed effects from 2015–2019 to train a highly flexible model
o predict counterfactual demand in 2020 in the absence of the pandemic. Our estimates are more accurate than those from more
onventional approaches, particularly so if we focus on the hourly predictions, which is the frequency at which the market power
imulations have to be conducted. For instance, in comparison to Santiago et al. (2021), we take into account nonlinear relationships
between energy demand and weather variations, which allows us to predict more accurate counterfactuals. Further, to assess the
predictive accuracy of our model, we implement a cross-validation approach that is adequate for time series data. Specifically, we
use forward chaining cross-validation errors as a proxy for out-of-sample errors (Hyndman and Athanasopoulos, 2018).2

Our results reveal that reductions in electricity demand were stronger during periods in which stricter lockdown measures were
n place, and during certain hours of the day.3 We highlight changes in hourly electricity demand patterns – and not just the overall
emand reduction – because they have a key impact on market performance and hence on the extent of emissions reductions in
he power sector. Another key insight is that by the last quarter of 2020 electricity demand in Spain was almost back to normal
pre-pandemic) levels.
Regarding our simulation results, we find that the difference between counterfactual and realized emissions in the Spanish power

ector during 2020 ranged from 3.9 to 4.1 Million Tons of CO2, depending on assumptions regarding competitive or strategic firm
ehaviour. This is only half of the actual power sector emissions reductions relative to the previous year, as the other half cannot
e attributed to the pandemic.4

1 For example, among the many factors that could not rapidly adjust, we highlight: transportation, building, and power sector infrastructures; consumers’
hoice of residence and occupation; industrial and retail sector physical capital investments.
2 Prior related literature uses validation folds assigned at random (Graf et al., 2020; Benatia, 2020; Benatia and Gingras, 2020). The implication is that

training folds may contain observations that are in the future, relative to validation folds. We argue that such approach is inconsistent with our objective of
using past observations to predict future counterfactual electricity demand. Further, in Appendix B.1. we show that standard cross-validation approaches, as
opposed to forward chaining, may underestimate out-of-sample errors in our setting, potentially due to serial correlation across observations.

3 For example, during full lockdown (March 29–April 10), demand was reduced by almost 26% at 8 am, while demand at night (9 pm–2 am) went down
by about 15%. During partial lockdowns and looser movement restrictions (April 11–August 14), reductions ranged from 7%–10% throughout the day.

4 This is partly explained by the fact that 2020 was more humid and sunny, leading to a 24% and 68% increase in hydro and solar generation, respectively,
relative to 2019 (REE, 2020b). This was accompanied by the coal phase-out and the renewables expansion.
2



European Economic Review 147 (2022) 104165N. Fabra et al.

s
v

p
f

Our analysis for the other sectors of the Spanish economy relies on data from Carbon Monitor (Liu et al., 2020b).5 Although
abatement was substantial in the power sector, we find that other sectors experienced even stronger emissions reductions. For
example, in percentage terms, the carbon reductions in the power sector are about 10 times smaller than those from aviation, 3.1
times smaller than those from ground transport, 2.8 times smaller than those from industry, and only slightly larger than those
from residential.6 This is consistent with findings from prior literature showing that the power sector experienced relatively smaller
reductions in activity during the pandemic (Le Quéré et al., 2020). Bover et al. (2020) provide one reason for this finding, which is
that the reduction in electricity demand by firms was partly offset by the increase in electricity demand by households, as people
spent more time at home due to the lockdown measures (see also Cicala, 2020). This finding can also be explained by differences in
the emissions intensity across sectors: the power sector relies on gas plants, while other sectors rely on more polluting fossil fuels,
such as oil in aviation and transport. Summing the estimates of emission reductions in all sectors, the total carbon abatement in
Spain reached about 23.14 Million Tons during 2020.

To compute the implicit cost of carbon abatement during the pandemic, we take into account the associated reduction in
economic activity. Hence, another key input is the estimation of the short-run GDP loss caused by the crisis. For this, we again rely
on counterfactual projections. In particular, we use growth rate forecasts that were produced by the Bank of Spain in November
2019, thus without knowledge of the forthcoming pandemic. Comparing those to observed data, we find that GDP loss was about
169.37 Billion Euros (13.1%). The resulting implicit cost of carbon abatement reaches an astonishing 7319 Euro/Ton. We highlight
that, in contrast with our results from the power sector, GDP levels were still far from normality by the end of 2020.

Finally, to benchmark the abatement cost associated with the pandemic, we compute the costs of reducing emissions by investing
in power sector renewables. For this purpose, we run further simulations of the Spanish power market to understand the amount
of renewable investments necessary to achieve the same emission reductions as those observed in the power sector during the
pandemic.7 We explore two options regarding the composition of the additional investments – all solar PV or all onshore wind.
We find that solar PV and wind capacity would have had to increase by 90% or 10% respectively, in order to achieve the same
emissions reductions as those caused by the pandemic. Using the most recent cost estimates provided by IRENA (2020) for Spain,
we compute the costs of such investments (including both initial investments as well as the operation and maintenance costs), and
compare those to the avoided emissions. The resulting implicit cost of carbon is in the range 60–65 Euro/Ton,8 which is well below
our estimate for the pandemic.

Admittedly, our analysis omits some of the costs and benefits of carbon abatement. In particular, we do not take into account the
long-run costs of the GDP loss caused by the pandemic, including the social costs associated with reduced potential output, lower
labour productivity and increased unemployment (ECB, 2020; World Bank, 2020; Baqaee and Farhi, 2020) plus the political backlash
that would likely follow. For this reason, our estimate for the pandemic could be considered as a lower bound. In contrast, our
analysis does not compute the economic benefits of renewable investments. Indeed, evidence shows that the low carbon investments
trigger economic growth through their multiplier effects.9 For instance, according to IRENA (2020), replacing 500 GWs of coal
capacity with solar and wind would cut annual power system costs by up to USD 23 Billion per year, providing an economic
stimulus worth USD 940 Billion, or around 1% of global GDP. In turn, through learning economies, this could trigger further cost
declines for future investments (Gillingham and Stock, 2018; Borenstein, 2012). Nevertheless, it is also fair to say that investments
in renewables would eventually trigger further costs that are not included in this analysis, such as the strengthening of power grids
and storage facilities.

In sum, our analysis shows that the pandemic indeed triggered significant carbon abatement. However, that abatement may have
been short-lived (especially for the power sector), and was associated with high costs. The economic losses were substantial, and
are expected to be felt for years to come. This highlights the prominence of alternative abatement strategies, such as power sector
renewables, which could help decoupling growth from emissions.

The remainder of the paper is structured as follows. In Section 2 we provide a simple theory-based framework to assess the link
between the pandemic, economic activity and carbon emissions. In Section 3 we measure the impact of the COVID-19 crisis on the
Spanish power sector; in particular, on electricity demand and carbon emissions. In Section 4 we provide evidence regarding the
impact on carbon abatement in other polluting sectors of the Spanish economy. In Section 5 we estimate counterfactual GDP which,
combined with results from previous sections, allows us to compute and compare the implicit cost of carbon abatement during the
pandemic versus the one obtained under renewables investments. Section 6 concludes, and the Appendix provides further details
and robustness checks on the methodologies used.

5 They use comparisons between 2019 and 2020 emissions, which may be less precise than the counterfactual analysis that we performed for the power
ector. However, other sectors of the economy might be less vulnerable to the shortcomings highlighted above. Other sectors might be less dependent on weather
ariables, and there are no major exit/entry decisions affecting their emissions intensity.
6 ‘‘Residential’’ here excludes electricity consumption. This category includes mostly emissions due to natural gas for heating.
7 Clearly, other strategies for abatement could be considered as well. For example, a least-cost decoupling strategy would resort to a combination of
olicies, including investments in energy efficiency, storage, and transmission and distribution, among many others. Here we focus on renewable investments
or concreteness and because of their relevance.
8 These costs are in line with estimates from Callaway et al. (2018) for the state of California.
9 Several papers have documented the positive impact of renewable investments on growth. See Bhattacharya et al. (2016) or Narayan and Doytch (2017),

and the UK’s Office for National Statistics (2019).
3
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2. A simple framework to decompose emissions

In order to explore the link between economic activity and energy-related factors, we first derive a simple theory-based
ecomposition of carbon emissions. Our analysis combines elements in Barrera-Santana et al. (2021) and Bretschger (2021).10
Consider a neoclassical aggregate production function, augmented with energy use, 𝐸𝑡:

𝑌𝑡 = 𝐴𝑡𝐿
𝛼
𝑡 𝐾

𝛽
𝑡 𝐸

1−𝛼−𝛽
𝑡

here 𝑡 is time, 𝐴 is total factor productivity, 𝐿 is labour and 𝐾 is capital. We assume decreasing marginal returns of each input,
.e., 0 < 𝛼, 𝛽 < 1, with constant returns to scale for labour, capital and energy.11 Furthermore, we assume that energy production
equires capital according to the expression 𝐸𝑡 = 𝐾𝑡∕𝜐𝑡, where 𝜐𝑡 is a measure of technological progress (the higher it is, the less
apital is needed to produce one unit of energy). Using this, we can rewrite aggregate production as a function of technological
rogress (embedded in the expression 𝐴𝑡𝜐

𝛽
𝑡 ), energy intensity (i.e., how much energy is consumed per unit of output, 𝐸𝑡∕𝑌𝑡) and

abour:

𝑌𝑡 =
(

𝐴𝑡𝜐
𝛽
𝑡

)1∕𝛼
(

𝐸𝑡
𝑌𝑡

)
1−𝛼
𝛼

𝐿𝑡. (1)

Following Stokey (1998), we assume that carbon emissions are proportional to production,

CO2𝑡 = 𝜙
(

𝑧𝑡
)

𝑌𝑡 (2)

where 𝑧𝑡 parameterizes the dirtiness of the energy mix (the higher it is, the higher is the emission rate). The function 𝜙
(

𝑧𝑡
)

is
increasing in 𝑧𝑡, possibly in a non-linear fashion.

Using (1), we can further express carbon emissions as

CO2𝑡 =
(

𝐴𝑡𝜐
𝛽
𝑡

)1∕𝛼
(

𝐸𝑡
𝑌𝑡

)
1−𝛼
𝛼

(

𝜙
(

𝑧𝑡
)

𝑌𝑡
𝐸𝑡

)

(

𝐿𝑡
𝑌𝑡

)

𝐸𝑡

where 𝜙
(

𝑧𝑡
)

𝑌𝑡∕𝐸𝑡 is a measure of carbon intensity (i.e., how much carbon is emitted per unit of energy consumed) and 𝐿𝑡∕𝑌𝑡 is a
measure of labour intensity (i.e., how much labour is employed per unit of output produced).

Last, solving for 𝐸𝑡 in (1) and re-arranging, we can recover the following expression for carbon emissions

CO2𝑡 = 𝑌𝑡

(

𝐸𝑡
𝑌𝑡

)𝛾1
(

𝜙
(

𝑧𝑡
)

𝑌𝑡
𝐸𝑡

)

(

𝐿𝑡
𝑌𝑡

)𝛾2 (
𝐴𝑡𝜐

𝛽
𝑡

)𝛾3
(3)

where 𝛾1 =
1−𝛼
𝛼 , and 𝛾2 =

1−2𝛼
1−𝛼 and 𝛾3 =

1−2𝛼
𝛼(1−𝛼) ⋅

This expression provides a useful framework to disentangle the impacts of the pandemic on total emissions. It makes it clear
that emissions depend on economic activity (𝑌𝑡), energy intensity (𝐸𝑡∕𝑌𝑡), carbon intensity (𝜙

(

𝑧𝑡
)

𝑌𝑡∕𝐸𝑡), labour intensity (𝐿𝑡∕𝑌𝑡)
nd technological progress (embedded in 𝐴𝑡𝜐

𝛽
𝑡 ).

he impact of the pandemic. We can make use of Eq. (3) to assess the impact of the pandemic on carbon emissions. A direct impact
as been to reduce economic activity 𝑌𝑡, which has contributed to pushing down emissions. To the extent that the pandemic has also
educed 𝐸𝑡 and 𝐿𝑡, Eq. (3) suggests that the pandemic might have also acted indirectly through energy intensity, carbon intensity,
nd labour intensity. However, the sign of these cross effects is in principle unclear. First, with 𝑌𝑡 and 𝐸𝑡 moving in the same
irection, it is possible that energy intensity has gone up or down during the pandemic. Second, the characteristics of the energy
ix 𝑧𝑡 determine whether a reduction in 𝐸𝑡 translates in lower or higher carbon intensity. This, coupled with the asymmetries in
he shocks and carbon intensities of the various sectors (European Commission, 2021), suggest that the impact of the pandemic on
arbon intensity might have gone either way. Third, changes in labour intensity might have had a positive or negative impact on
missions, depending on the substitution patterns between labour and other inputs (note that the coefficient on labour intensity 𝛾2
s positive for 𝛼 < 1∕2 or negative otherwise). Furthermore, while it is plausible that the pandemic might have also affected total
actor productivity 𝐴𝑡, it is reasonable to assume that technological progress 𝜐𝑡 has remained constant given the short-run nature
f the shock.12 In this paper, we aim to quantify the short-run combined direct and indirect effects of reduced economic activity on
arbon abatement, whatever the sign of the latter effects is.
We compute the difference between actual and counterfactual (i.e., in the absence of the pandemic) emissions, and actual and

ounterfactual GDP during 2020.13 To compare them, we use the ratio of these differences as a measure of the implicit cost of

10 Other useful references are Hassler et al. (2021) and Bretschger and Karydas (2019) for unified frameworks to analyse the economics of climate change.
11 Hassler et al. (2021) find that unitary elasticity is a reasonable assumption for periods as long as ten years.
12 In the long-run, Gillingham et al. (2020) argue that the pandemic may have adverse long-run consequences on innovation by postponing renewable capacity
nvestments.
13 We acknowledge that GDP does not necessarily capture all of the costs associated with the pandemic. Also, one may argue that GDP is not a comprehensive
easure of well-being. However, while it is clear that GDP leaves out some welfare-enhancing activities, it is also true that GDP is positively correlated with
ost metrics that capture important notions of well-being, such as education, life expectancy, reduced child mortality, women’s employment, and others. For a
4

iscussion on this issue, see Milanovici (2021).
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carbon abatement associated with the pandemic. This metric captures the direct effect of the pandemic on economic activity and
emissions, as well as the indirect effects through changes in energy intensity, carbon intensity, labour, and total factor productivity.
To the contrary, we do not assess the long-run effects of the shock on future economic activity or emissions.14

As mentioned above, the pandemic not only led to reduced economic activity overall, but also impacted sectors asymmetrically.
hile some energy-related sectors were particularly affected by the lockdown measures, the impact on other sectors was milder. For
nstance, travel restrictions halted aviation and significantly reduced ground transportation, and while the industry’s power demand
ell, this was partly compensated by the increase in households’ electricity consumption (Bover et al., 2020). To the extent that this
ectoral reallocation was not part of a planned carbon abatement strategy, the pandemic’s implicit cost of carbon has probably been
igher than optimal. Yet, the emissions reductions from the pandemic might have been greater than those from a planned degrowth
trategy. This is because some of the less energy-efficient and most carbon intensive sectors of the economy have been the ones
ost severely affected by the pandemic, e.g., aviation and ground transportation.15
In order to provide a benchmark for the implicit cost of carbon abatement during the pandemic, in this paper we also compute the

mplicit cost of reducing carbon emissions through investments in power sector renewables. This reduces 𝑧𝑡 in expression (2), which
n turn reduces the carbon intensity term in expression (3). In words, investing in renewables implies that the power sector’s carbon
ntensity goes down, which pushes emissions down. If renewable investments do not crowd out other sources of economic activity
i.e., consumption and investment in other activities), then emissions reductions can be achieved without sacrificing economic
rowth.
The ratio between the emissions reductions and the costs of the renewable investments thus measures the implicit cost of carbon

batement through renewable investments. This metric captures the direct effect of renewables on carbon emissions and investment
osts, but omits their indirect effects through changes in economic activity in the short and in the long-run. If these indirect effects
re positive overall, this metric provides an upper bound on the implicit cost of carbon abatement of the renewables strategy.16
We devote the next sections to provide details both on our empirical assessment of the effects of the pandemic, as well as on

he benchmark exercise of investment in renewables.

. Methods and results for the power sector

We start with a careful evaluation of the impact of the COVID-19 crisis on the power sector in Spain. Specifically, we are interested
n measuring the electricity demand reductions caused by the movement restrictions and the overall reduction in economic activity,
hich in turn led to carbon abatement. For this purpose, we first implement an event study approach with machine learning to
redict counterfactual demand in the absence of the crisis. Next, we simulate and compare the equilibrium outcomes in the Spanish
lectricity market under realized demand versus the estimated counterfactual demand. This allows us to compute, among other
ariables of interest, the avoided emissions in the power sector.

.1. Approach for predicting counterfactual electricity demand

In order to understand the impact of the COVID-19 crisis on electricity demand, a first step is to predict counterfactual demand in
he absence of the pandemic. Building on the Neyman–Rubin potential outcomes framework (Neyman, 1923; Rubin, 1974), let 𝐸𝑡(𝑝)
enote electricity demand at time 𝑡 and at potential states 𝑝. Let 𝑝 = 1 for outcomes that were affected by the pandemic, and 𝑝 = 0
or outcomes in the absence of the crisis. We also assume that there exists a vector of covariates 𝐗𝑡(𝑝), with realizations that may
lso depend on 𝑝. Let 𝑡 = 𝑝𝑟𝑒 denote time periods before the pandemic, while 𝑡 = 𝑝𝑜𝑠𝑡 denotes time periods during the pandemic.
he counterfactual potential outcome that we aim to identify can then be defined as 𝐸𝑝𝑜𝑠𝑡(0), which is by definition unobservable.
Our proposal is to use pre-pandemic data to predict 𝐸𝑝𝑜𝑠𝑡(0) based on the vector of covariates 𝐗𝑡(𝑝). The first necessary assumption

s that electricity consumption behaviour did not change in anticipation of the pandemic. Therefore the outcomes that we observe
or the periods before the pandemic (𝐸𝑝𝑟𝑒) are assumed to be equal to the potential outcomes in case the pandemic had never
appened. Formally, that can be stated as follows.

ssumption 1 (No Anticipatory Effects).

𝐸𝑝𝑟𝑒 = 𝐸𝑝𝑟𝑒(0) . (Asm. 1)

(Asm. 1) is common for event studies. In the context of this paper, a violation of this assumption implies that pre-pandemic
utcomes (at least in part) cannot be used to understand counterfactual consumption, because such outcomes would have already
een affected by the pandemic.
Similarly, another assumption is that the covariates 𝐗𝑡 are independent of the pandemic itself:

14 Consistent with our results in this paper, the International Energy Agency (2021) reports a rebound in emissions, after the temporary decline during 2020.
As the executive director of the IEA reported, ‘our numbers show we are returning to carbon-intensive business-as-usual.’ Conversely, the effects on economic
activity seem to be more persistent (IMF, 2021).
15 See Section 4 below.
16 For instance, in a simple dynamic model, Bretschger and Karydas (2019) show that abatement implies that economic growth starts from a lower level, but
5

it reaches a higher steady state due to reduced pollution and damages.
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Assumption 2 (Covariates are Independent of Treatment (The Pandemic)).

𝐗𝑡(0) = 𝐗𝑡(1) = 𝐗𝑡 . (Asm. 2)

Note that if (Asm. 2) does not hold, then the researcher would have to implement yet another counterfactual prediction procedure
(to predict the counterfactual realizations of the covariates). In practice, one could force Asm. 2 to hold by using only exogenous
covariates such as weather and date/time fixed effects.

Now let the relationship between covariates and demand in absence of the pandemic be defined as follows:

𝐸𝑝𝑟𝑒(0) = 𝑔(𝐗𝑝𝑟𝑒(0)) + 𝜀𝑝𝑟𝑒
such that E[𝐸𝑝𝑟𝑒(0)|𝐗𝑝𝑟𝑒(0)] = 𝑔(𝐗𝑝𝑟𝑒(0)) .

(4)

Under (Asm. 1) and (Asm. 2), we can rewrite Eq. (4) as:

𝐸𝑝𝑟𝑒 = 𝑔(𝐗𝑝𝑟𝑒) + 𝜀𝑝𝑟𝑒
such that E[𝐸𝑝𝑟𝑒|𝐗𝑝𝑟𝑒] = 𝑔(𝐗𝑝𝑟𝑒) .

(4)′

We also assume that the relationship between 𝐸𝑡(0) and the covariates would not have changed over time. This is our key
identifying assumption, which allows us to rewrite Eq. (4) also for post-pandemic time periods, as follows.

Assumption 3 (Stability of the Counterfactual Function).

𝐸𝑝𝑜𝑠𝑡(0) = 𝑔(𝐗𝑝𝑜𝑠𝑡(0)) + 𝜀𝑝𝑜𝑠𝑡 ,

such that E[𝐸𝑝𝑜𝑠𝑡(0)|𝐗𝑝𝑜𝑠𝑡(0)] = 𝑔(𝐗𝑝𝑜𝑠𝑡(0)) .
(Asm. 3)

(Asm. 3) implies that the same function 𝑔() from the pre-pandemic period can be used to obtain the counterfactual electricity
consumption in the post-pandemic period. Under (Asm. 1) and (Asm. 2), we can rewrite (Asm. 3) as:

E[𝐸𝑝𝑜𝑠𝑡(0)|𝐗𝑝𝑜𝑠𝑡] = 𝑔(𝐗𝑝𝑜𝑠𝑡) , (5)

thus identifying our counterfactual outcome of interest.
Since 𝑔() is in practice unknown, we must estimate it. We aim to do so, focusing on the context of Spain. For our outcome

of interest (𝐸𝑡), we have thus collected hourly aggregate electricity demand data, measured in MWh, from the Spanish electricity
system operator (ESIOS, 2020), spanning from the 1st of January, 2015 to the 31st of December, 2020. To remain consistent with
(Asm. 2), we have collected data on a set of covariates 𝐗𝑡 that are exogenous to the pandemic: weather variables and date/time fixed
effects. Daily data from the universe of Spanish weather stations were collected from AEMET (2020). Those were then aggregated
to the province level.17 The following key weather variables were available: minimum, maximum and median temperature; solar
radiation; precipitation; prevailing wind direction, and wind speed. In terms of date/time fixed effects, we considered: month of the
year; day of the month; day of the year; week of the year; daily time trends; monthly time trends; hour of the day; and holidays.
Including transformations (squares, cubes, and up to 3 lags) for the weather variables, we therefore considered a total of 1642
variables. With these data, our estimation procedure is as follows.

Step 1. Estimate: 𝐸𝑝𝑟𝑒 = 𝑔(𝐗𝑝𝑟𝑒) + 𝜖𝑝𝑟𝑒 , where 𝑝𝑟𝑒 denotes years 2015–2019 ,

such that 𝐸̂𝑝𝑟𝑒 = 𝑔̂(𝐗𝑝𝑟𝑒) .

Step 2. Predict: 𝐸̂2020 = 𝑔̂(𝐗2020) , using data from year 2020.

Therefore, we use data from 2015–2019 to build a model for counterfactual electricity demand in 2020. By using data available
only prior to 2020, we argue that (Asm. 1) is likely to hold, given that the timing of the pandemic and its widespread consequences
were unexpected. Several models could be considered for our predictive task. Our proposal is to use a machine learning (ML)
algorithm which we show has high predictive accuracy. Recent literature has demonstrated that ML methods improve predictive
accuracy for energy demand forecasts, since they are able to capture nonlinearities and complex interactions in the relationships
between demand and available covariates.18

The use of machine learning is also becoming increasingly popular within causal frameworks in energy economics (Burlig et al.,
2020; Christensen et al., 2021; Knittel and Stolper, 2019), potentially because it is a field in which required assumptions are
particularly more likely to hold. Prior literature has shown, for example, that it is possible to accurately forecast energy demand
using only exogenous covariates, such as weather realizations. Additionally, concerns about indirect effects through price changes
are appeased in this setting, given that electricity demand is found to be highly inelastic to price or income variations, especially
in the short-run (Csereklyei, 2020; Fabra et al., 2021). Those may be considered arguments in favour of the ‘‘stability’’ (Asm. 3) of
the functions used to predict electricity demand. Otherwise, if demand were price-elastic, then counterfactual demand predictions
would need to account for potential price changes associated with the policy/event being analysed.

(Asm. 3) from our framework is essentially untestable, given that counterfactuals are never observed. However, building on the
ML literature, we propose a procedure that can provide insight regarding the stability over time of the function that relates energy

17 Further details about the weather data can be found in Appendix A.
18 Among others, see: Schneider et al. (2019), Ghoddusi et al. (2019), Guo et al. (2018), Robinson et al. (2017) and Ahmad et al. (2014).
6
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demand and the covariates that we use. Namely, we implement forward chaining cross-validation (Hyndman and Athanasopoulos,
2018) to assess out-of-sample prediction errors of the models that we consider. We split the pre-pandemic sample into five years,
and for each cross-validation iteration, we use a single year as the validation set, while all prior years are the training set. This
cross-validation procedure is further illustrated in Appendix B.1. Note that this procedure implies that the size of the training set
increases with each iteration. Consequently, one may expect lower errors for later years in the sample.19 Nevertheless, we are
articularly interested in assessing the out-of-sample errors obtained in this way for the year of 2019, which is temporally closer
o the year of the crisis and is expected to better reflect errors for the counterfactual predictions in 2020. In Appendix Figure B.3
e show that validation set errors from forward chaining are similar to errors from a held out ‘‘test’’ set with observations from
anuary 1st to March 10th, 2020.
Within this general framework, we can consider many models for counterfactual predictions, not only machine learning

lgorithms. We then select the best-performing model based on out-of-sample errors in 2019. In the following section we present
esults for the models that we considered, focusing on the one that produces the lowest prediction errors.

.2. Counterfactual prediction results

We consider a suite of machine learning algorithms (ML) and fixed effects regression specifications (FE) to build our model for
ounterfactual electricity consumption. Specifically, in terms of ML we focus on Gradient Boosted Trees (GBT; Chen and Guestrin,
016). This is a regression tree-based method that inherently allows for nonlinearities and high-order interactions between variables.
he algorithm starts with a simple (base) regression tree, to which complexity is added by iteratively increasing the number of trees
hat constitute the model.20 Model complexity also depends on how we set the algorithm’s hyperparameters (e.g. the total number
f trees considered, the maximum depth of each tree, the number of observations in terminal nodes, and the relative importance of
ach new tree).
To benchmark the results from GBT, we also consider FE regressions with increasing complexity: (i) month-of-year FE; (ii) week-

f-year FE; (iii) day-of-year FE; (iv) day-of-year FE plus hour-of-day FE interacted weather variables.21 All the specifications also
nclude the weather variables described in Section 3.1 above.
Out of all that we considered, the best-performing model was a GBT with the following hyperparameters: 2000 trees; max. tree

epth of 10; min. of 20 observations in the terminal nodes of the trees; and shrinkage parameter (importance of each new tree)
f 0.05. As shown in Appendix Table B.1 and Figure B.4, that model achieved an average out-of-sample error (for 2019) of −234
Wh and RMSE of 809 MWh, which represent, respectively, about 0.8% and 2.8% of the average hourly demand of 28,528 MWh.
n contrast, the best-performing fixed effects regression specification achieved an average error of −616 MWh, thus 2.6 times the
verage error from the ML approach. The RMSE from the fixed effects approach was also substantially higher, at 1095 MWh.
Appendix Table B.1 presents the RMSE from all models considered. Further, Appendix Figure B.4 compares the distribution

f residuals obtained from an ML approach versus that from a fixed effects specification. Assessing the residuals is relevant in
his prediction context, since those can reveal systematic prediction biases. We find that the FE specification produces a residuals’
istribution that is shifted to the left, thus suggesting systematic overestimation of electricity demand. Conversely, the residuals’
istribution from the ML approach is more closely centred around zero, such that biases are less likely.
Finally, Fig. 1 compares realized (in blue) and predicted (in red) electricity demand in 2019 and 2020. We present a smoothed

ourly series (for real demand) and 95% Confidence Bands (for predicted demand), based on 30-day moving averages and standard
eviations. All predictions are based on the best-performing GBT describe above, and are made out-of-sample (i.e. the model was
rained excluding the observations represented in the figure). The comparison of predicted and realized curves in 2019 serve as an
dditional check that the model performs well. Although predictions for any given hour must be interpreted with caution, it can be
oted that real and predicted seasonality patterns are closely matched.22 The predictions in 2020 represent the counterfactuals
(from a model without any information about the pandemic). A clear divergence of the realized and predicted curves can be
noted in 2020, starting in mid-March, illustrating the effects of the pandemic. Strong reductions in electricity demand can be noted
especially between April and July. However, by mid-October the curves are already overlapping, suggesting that aggregate electricity
consumption returned to normal levels. In the following section we investigate the difference between the two curves in greater
detail.

19 In Appendix Table B.1 we show that, with the machine learning algorithms used in this paper, later validation years have lower errors, but with evidence
f diminishing returns from additional observations. We therefore choose not to drop any years for the training set used for counterfactual predictions in 2020.
20 The algorithm relies on numerical optimization in function space. The optimization minimizes the expected value of a loss function based on the Euclidean
istance between the observed outcome and the predicted value from a linear combination of many regression trees. Consistency properties of this algorithm
re shown in Biau and Cadre (2021).
21 In our view, specification (iv), also referred to as FE 4 in the Appendix, is the one which is the closest to a ‘fully saturated’ regression model typically
onsidered in empirical applications in economics. Our specification (iv) includes a total of 1029 control variables. That specification is also the most comparable
o Santiago et al. (2021), who build a model based on daily averages of electricity demand (analogous to day-of-year fixed effects).
22 In Appendix Figure B.7 we extend the analysis of validation set errors to include 2018. With that, we show that there are no clear patterns in terms
f months of the year with larger errors in the pre-pandemic period. Thus we cannot clearly identify if any months of 2020 would be particularly prone to
rediction bias.
7
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Fig. 1. Realized and Predicted Electricity Demand. Notes: This figure presents realized (in blue) and predicted (in red) hourly demand in Spain. Predictions
follow the approach described in Section 3.1, using Gradient Boosted Trees. To smooth out intra-day and intra-month variation, we present smoothed series
and 95% Confidence Bands (CB) based on 30-day moving averages and standard deviations. The vertical red line represents the beginning of year 2020. All
predictions are made out-of-sample: predictions for 2019 use a model trained with data from 2015–2018; predictions for 2020 use a model trained with data
from 2015–2019. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. Impact of the crisis on electricity demand

To assess the impact of the COVID-19 crisis on electricity demand in Spain, we follow a two-step approach. The first step is to
obtain counterfactual predictions as described in the above section. The second step is to compute the differences between realized
and counterfactual demand, at each time 𝑡: 𝑏𝑡 = 𝐸𝑡 − 𝐸̂𝑡. Suppose that we want to summarize the effect of the crisis for the whole
ear of 2020. Then we can calculate the average:

𝑏̄2020 =
∑

𝑡∈2020
(𝐸2020 − 𝐸̂2020)

/

𝑁2020 , (6)

here 𝑏̄2020 will be our estimate, in MWh, of the average effect of the crisis in 2020; 𝐸2020 is realized electricity demand for all
ours of the year; 𝐸̂2020 is counterfactual predicted demand; and 𝑁2020 is the total number of hours in the year. The estimate can
lso be transformed to percentage terms by taking 𝑏̄2020 and dividing it by the average counterfactual in the same period.
Note that our measure of the change in demand is obtained by taking the difference between an observed and a predicted

ariable. When summarizing those effects, we should therefore take into account the true variability in the data, as well as the
ncertainty and errors from the predictive step. We propose to use the prediction errors from validation samples to adjust the
ariance associated with our estimates. We define the variance of our estimates as follows:

𝜎2𝑒 = 𝜎2𝑏 + 𝜎2𝑐𝑣 , (7)

here 𝜎2𝑏 is the variance of 𝑏𝑡 for a given subsample, and 𝜎2𝑐𝑣 is the variance of the prediction errors for a comparable validation
ubsample. For example, if we want to summarize the effects for the whole year of 2020, then the comparable validation subsample
ould be the whole year of 2019. Alternatively, if we want to summarize effects only for the summer, then the comparable validation
ubsample should also be comprised only of observations during the summer. We can use 𝜎2𝑒 to calculate standard errors and
onfidence intervals for our estimates. In Appendix B.5 we provide more details about inference. One key assumption is that the
wo variance components are independent (Heskes, 1996).
Considering observations from March 2020 until the end of the year, we find that the pandemic was associated with an average

eduction of 1513.69 MWh in electricity demand in Spain, with a 95% confidence interval of [1472.16 1555.21] MWh. That
epresents a reduction of about 5.39%, compared to the average counterfactual consumption during the same period. To investigate
f the lockdowns were associated with a change in intraday demand patterns, we plot average percent reductions by hour of the day.
hose results are presented in Fig. 2. We also disaggregate them into four periods with varying stringency of movement restrictions:
8

a) 1st Partial Lockdown (March 11th–March 28th); (b) Full Lockdown (March 29th–April 10th); (c) Partial Lockdowns and Looser
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Fig. 2. Reduced demand by hour of the day. Notes: This figure presents intraday differences between realized and counterfactual electricity demand in Spain,
across four distinct time periods of 2020. Lockdown stringencies vary across the four panels presented. We estimate percent average changes by hour of the day.

Restrictions (April 11th–August 14th), (d) Second Wave and Beyond (August 15th–December 31st).23 Overall, stronger demand
eductions are observed during early morning and mid-afternoon hours. The effects are especially striking for the full lockdown
eriod (panel b), where demand at 8 am reduced by about 26%, on average. Nevertheless, during partial lockdown periods the
ffects were also significant at that hour, reaching almost 11%. Results suggest that intraday demand patterns were already returning
o normal after August 15, but at slightly lower levels compared to the counterfactual.

.4. Electricity market simulations

We now use our hourly estimates of counterfactual electricity demand in order to simulate electricity market outcomes in the
bsence of the pandemic. By also performing simulations with realized electricity demand, we can assess the impact of the pandemic
n carbon abatement.

he model. Our simulations rely on the model developed by De Frutos and Fabra (2012), which reflects key technological and
nstitutional features of electricity markets. In particular, the model allows for strategic behaviour by firms under the assumption
hat they compete by submitting step-wise supply functions, i.e., a finite set of price-quantity pairs for each of their production

23 These cutoffs were based on authors’ compilation of official government announcements and news reports. See Bover et al. (2020) for a more detailed
9

description of these measures.
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Table 1
Power sector carbon emissions under realized and counterfactual scenarios.
MtCO2 Counterfactual demand Realized demand Difference

Competitive Strategic Competitive Strategic Competitive Strategic

Coal 3.23 3.68 3.08 3.52 0.15 0.16
Gas 21.69 21.52 18.00 17.85 3.69 3.67
Cogen + Others 11.16 11.56 10.87 11.49 0.29 0.07

Total 36.07 36.76 31.94 32.86 4.13 3.90

Notes: This table reports total emissions in 2020 under all four scenarios considered in our simulations (using realized or
counterfactual demand, and assuming either competitive or strategic firm behaviour). It also breaks total emissions in sources.
The last two columns provide the difference across scenarios.

nits.24 The auctioneer collects all bids, determines the market clearing price at the intersection between demand and supply, and
alls the winning plants to produce (i.e., all plants that offered prices at or below the market clearing price).
De Frutos and Fabra (2012) show that all the Nash equilibria satisfy the following properties. In equilibrium, one firm acts as

he price-setter, and all the others behave as non-price setters. The non-price setters produce the same as if they were bidding at
marginal costs, while the price-setter sets the price that maximizes its profits over the residual demand. Therefore, unless the only
equilibrium involves competitive bidding, the price-setter produces less than if it were bidding at marginal costs. The only potential
deviation that one needs to check is whether the non-price setters find it profitable to charge a price above the candidate equilibrium
price. Equilibrium existence is always guaranteed, as the non-price setters never want to deviate from the highest-price candidate
equilibrium.

These properties guide the algorithm that we have used in our simulations, allowing it to be very efficient in the equilibrium
search process.25 Along with the Nash equilibrium, the algorithm also characterizes the competitive equilibrium, at which all firms
id at marginal costs.
We have run simulations of the Spanish electricity market under two scenarios, one with realized demand and another one with

ounterfactual demand. The difference between the two scenarios gives the effect of the pandemic on the power sector. Since the
imulations are conducted at an hourly basis, we have performed 8760 simulations under each scenario for the whole year of 2020.
ppendix A contains details on the data sources we have used for the simulations.

esults of the simulations. Fig. 3 plots the evolution of the simulated generation mix under the two scenarios, using realized and
ounterfactual demand.26 The pattern of carbon-free generation (nuclear, hydro and renewables) remains unchanged across the two
cenarios given their lower marginal costs. Instead, coal and gas plants provide the buffer that absorbs the demand reductions.
ndeed, their 2020 production goes down under the scenario with realized demand relative to the counterfactual by 4.8% and
0.5%, respectively. Interestingly, these reductions differ from the ones obtained by comparing the realized generation by coal and
as plants in 2019 and 2020. In particular, actual coal generation in 2020 fell by 55% relative to 2019, while gas generation fell
y 25% (REE, 2020b). The main reason for this disparity is that a bulk of the coal plants have gone offline during 2020, leading
o a sharp drop in their production from 2019 to 2020, and only a mild drop when comparing 2020 with the counterfactual of
o COVID-driven demand reductions. Note also that 2020 has been a particularly humid and sunny year as compared to 2019
indeed, hydro and solar PV production have increased by 24% and 68%, respectively). This highlights the importance of using a
ounterfactual scenario rather than changes from one year to the other. Indeed, in the context of the Spanish power market, using
he year-on-year changes would overestimate the emission reductions caused by the pandemic.
As shown in Table 1, changes in the generation mix across scenarios have a direct translation on the amount of carbon emissions

voided. Overall, emissions dropped by 4.13 Million Tons (assuming competitive behaviour) or 3.90 Million Tons (assuming strategic
ehaviour).27 This represents a fall in emissions of 11.5% and 10.6%, respectively. In percentage terms, 90%–95% of these emissions
eductions came from CCGTs, given that these plants absorbed the vast reduction in power demand. Note that the estimated carbon
batement is less than half of the year-on-year power sector emissions reduction (27.9% according to REE (2020b)) since, as already
noted, not all of that can be attributed to the pandemic.

We also run simulations using counterfactual predictions from a fixed effects regression, rather than machine learning. We find
that abatement estimates are substantially higher with these simulations: assuming competitive behaviour, abatement was 5.82
Million Tons (almost 50% higher than those from ML).28 This is in line with the results from Section 3.2, where we find that FE
odels overestimate counterfactual demand. The implication is that natural gas plants would have been dispatched more often,
hus leading to higher counterfactual emissions.
Returning to the simulations with the best-performing ML algorithm, we are also able to assess the effects of the pandemic on

ther variables of interest, even if not directly related to the main question addressed in this paper. For example, results suggest

24 For simplicity, hydro units are not allowed to bid strategically. Rather, we assume that their production is allocated to shave the peaks of demand net of
enewables on a monthly basis. Hence, our equilibrium provides a lower bound on the degree of market power that can be exercised.
25 This algorithm is called ENERGEIA, and it is available from the authors upon request. See nfabra.uc3~m.es/energeia/ for a description.
26 The figures assume that firms behave competitively. Assuming strategic behaviour has almost no impact on the energy mix by technology.
27 Using a value of 40 Euro/Ton of CO2, this represents a saving of 156–165 Million Euro.
28 Results can be found in the Appendix, Table B.2.
10
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Fig. 3. Simulated generation mix. Notes: This figure represents the evolution of the simulated generation mix in the Spanish electricity market during 2020.
Simulations in panel (a) have been computed with realized electricity demand; those in panel (b) with the estimated counterfactual demand. The simulations
assume that firms behave competitively; strategic behaviour only has a minor impact on the generation mix by technology. ‘‘Solar’’ includes both solar PV and
solar thermal. ‘‘Oth. Renewables’’ includes cogeneration, waste and other renewables. We present averages for each day, to smooth out intra-day variation.
11
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Fig. 4. Market prices under realized and counterfactual scenarios. Notes: This figure compares daily averages of market prices obtained from the simulation with
ealized demand (in blue) versus those from simulations with predicted demand (in red). We present 7-day rolling averages, to smooth out intra-week variation
n prices. Results assuming competitive behaviour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)

hat the reduction in electricity demand in 2020 caused average electricity market prices to fall from 37.5 e/MWh to 36.5 e/MWh
(if firms are assumed to behave competitively) or from 40.3 e/MWh to 40.0 e/MWh (if they are assumed to behave strategically).
he magnitude of the price effect is limited because CCGTs still set the market price during most hours, with the exception of those
ours when demand fell so much that market prices were set by renewables instead. Fig. 4 depicts the curve of simulated prices
under realized and counterfactual demand. Lower prices can be noted especially during the most stringent lockdown periods.

Our simulations also suggest that the pandemic drove down firms’ market revenues because both production and prices fell.
In particular, market revenues fell by 6.6% (if competitive behaviour is assumed) or by 4.6% (if strategic behaviour is assumed).
However, since generation costs went down by a larger extent (by 11.3% or 11.0%, respectively), firms’ profits also fell but less (4.1%
or 1.5% respectively) compared to the fall in market revenues. Note that the effects are always milder when strategic behaviour is
assumed. The reason is markup adjustment.

Before closing this section, two caveats are in order. First, COVID-19 has also likely affected the prices of fossil fuels to the extent
that it has affected their demand. Accordingly, the counterfactual simulations would have to be computed with counterfactual fossil
fuel prices rather than with the realized prices. However, computing such counterfactual prices is complex as fossil fuel prices are
determined by other factors that have also been affected by the pandemic itself. One option would be to use the future prices of
fossil fuels that were published before the pandemic hit the international markets. The drawback of using these is that they lack
variability that critically shapes electricity price patterns. In any event, we have run the simulations with the futures prices quoted
on December 31st, 2019, and the results regarding emissions remain unchanged. Second, the pandemic might have also affected
the availability of nuclear power stations. Indeed, three of them were shut down during the most critical times of the pandemic,
making it reasonable to suspect that their availability would have been higher in the absence of the pandemic. To check whether
this would have had any implications on our estimates, we have run the simulations under the assumption that nuclear plants were
fully available across the year. The results barely change.29 Last, note that this potential concern does not apply to renewables or
hydro given that their availability is exogenously determined.

4. Carbon emissions from other sectors

The focus of this paper is on the power sector, which is a big contributor to overall emissions but certainly not the only one. In
order to capture emission reductions in other sectors of the economy, we rely on data provided by the Carbon Monitor (Liu et al.,

29 More in detail, we find that nuclear production would have been 0.6% higher, leading to a slightly lower emissions reduction of 0.03 Million Tons as
12

ompared the emissions reduction reported below.
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Table 2
CO2 emissions by sector.

Counterfactual emissions Realized emissions Emissions reductions

MtCO2 Sector share MtCO2 Sector share MtCO2 Pct.

Domestic Aviation 5.64 2.5% 3.00 1.5% 2.63 46.68%
Ground Transport 84.83 37.5% 75.40 37.1% 9.43 11.12%
Industry 62.25 27.5% 55.63 27.4% 6.62 10.64%
Residential 36.70 16.2% 36.14 17.8% 0.56 1.53%

Power 36.76 16.3% 32.86 16.2% 3.90 10.61%

Notes: Data on Domestic Aviation, Ground Transport, Industry, and Residential are from Carbon Monitor (Liu et al., 2020b). For
those sectors, ‘‘counterfactual’’ refers to emissions in 2019, while ‘‘realized’’ refers to emissions in 2020. For the Power sector,
we take estimates from Table 1, under the strategic scenario.

020b). Carbon Monitor produces estimates of daily carbon emissions by downscaling measures that exist at the monthly or annual
evel. Several factors are taken into account for a dynamic downscaling. For example, the authors collected detailed monthly data
n industrial activity indices and emissions factors. Those are then further downscaled to daily levels by weighting according to the
hare of electricity generation in a given day. In terms of estimates for ground transport, a key data source is hourly congestion
ata across several cities in Spain. For domestic aviation, the authors collected data on daily kilometres flown and emissions factors
or airplanes arriving at and departing from Spain. Finally, for residential emissions, the main factors are fuel consumption for
eating/cooling, as well as their relationship with heating degree days.30
Fig. 5 summarizes their results across different sectors. The figure plots daily emissions from 2019 and 2020. For time periods

fter lockdowns were implemented, clear patterns of emission reductions can be observed for domestic aviation, ground transport,
nd industry. Conversely, emissions from the residential sector appear to have remained stable. Table 2 compares 2019 and 2020 in
terms of total emissions. Domestic aviation was the sector with the highest reduction in percentage terms (46.7%), but it represents
a relatively small reduction in absolute terms (2.6 Million Tons). Ground transport and industry reduced their emissions by 9.4 and
6.6 Million Tons, respectively. Those values are substantially larger than our estimated reductions for the power sector (3.9 to 4.1
Million Tons, as reported in Table 1), consistently with findings from prior literature on global CO2 reductions due to the pandemic
(Le Quéré et al., 2020). It should be noted that the reductions presented in Table 2 are likely less accurate than our power sector
estimates given that, as already argued, 2019 emissions may not be the ideal counterfactual for 2020 emissions in the absence of
the pandemic. Nevertheless, these results serve to illustrate and compare the relative magnitudes across sectors.

We argue that the relatively smaller carbon reductions from the power sector may be partly attributed to the low price and income
elasticities of energy demand, especially in the short-run.31 The power sector, being crucial to all other sectors of the economy, seems
to have experienced relatively smaller reductions in activity and thus carbon emissions than other sectors of the economy (Le Quéré
et al., 2020). That may have been further aggravated because increases in residential electricity demand partly offset the decreases in
electricity demand from other sectors during the crisis (Bover et al., 2020). Finally, we note that the emissions factors for electricity
generation in Spain have been steadily decreasing over the last five years, thanks to investments in renewables and less dependence
on coal (REE, 2020a), and are in any case lower than the emissions rates in other sectors of the economy (notably, transport or
aviation). The implication is that a reduction in electricity demand results in a relatively smaller reduction in emissions relative to
other sectors.

By adding estimates of reductions across all sectors of the economy, we find that the crisis was associated with approximately
23.14 Million Tons of carbon abatement in 2020.

5. The implicit cost of carbon abatement

5.1. GDP loss caused by the pandemic

To assess the short-run GDP loss caused by the pandemic, we use data from the Spanish Statistical Office (INE, 2020), and from
the Bank of Spain. Our approach is to compare counterfactual GDP versus realized GDP during the crisis. To construct counterfactual
GDP, we rely on quarter-on-quarter growth rate forecasts by the Bank of Spain.

The Bank of Spain’s macroeconomic projections are made and published on a quarterly basis. They are constructed by
combining the results of econometric models and expert judgement. In this paper, to construct the counterfactual GDP, we use
the macroeconomic projections generated in November 2019, thus before any information about the pandemic was available. As it
is usual in the last quarter of the year, those projections were prepared jointly by all the Eurosystem central banks in what is called
the Broad Macroeconomic Projection Exercise.32

30 Liu et al. (2020a) provide further details on the estimation of daily carbon emissions.
31 For estimates of the short-run elasticity of electricity demand by Spanish households, see Fabra et al. (2021). For results on short-run versus long-run price
lasticity see, for example, Labandeira et al. (2017) for a meta-analysis, and Deryugina et al. (2020) for quasi-experimental estimates. For evidence on income
lasticity see, for example, Krishnamurthy and Kriström (2015).
32 Twice a year, on the second and fourth quarters, projections are prepared for the macroeconomic variables of the euro area and of the individual member
13

states, ensuring they are consistent with each other, and applying a common set of external assumptions.
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Fig. 5. Daily CO2 emissions from other sectors. Notes: Data from Carbon Monitor (Liu et al., 2020b). This figure compares CO2 emissions in Spain from 2019
and 2020, across different sectors, excluding the power sector. The lines represent 7-day rolling averages of daily carbon emissions.

We take the forecasted quarter-on-quarter growth rates of nominal GDP from 2020Q1 onward and apply them to the actual GDP
published by INE for the last quarter of 2019.33 Results are presented in Fig. 6, which compares counterfactual and observed GDP
across quarters. It can be noted that the biggest differences happened during the second quarter, as expected due to the stricter
lockdowns. We note that GDP levels were still far from normal in the last quarter of 2020. The total GDP loss in 2020 was 169.37
Billion Euros.34

We compare that GDP loss to the total emissions reductions calculated in the previous sections. We compute the implicit cost of
carbon by dividing the short-run GDP loss (169.37 Billion Euros) over the total number of emissions avoided (23.14 Million Tons),
resulting in an implicit cost of carbon of 7319 Euro/Ton. Note that this calculation omits the long-run effects of the crisis, which
might affect both future emissions as well as economic growth. It also omits other social costs caused by the growth reduction, such
as those associated with increased unemployment, firms’ closures, or deterioration of economic expectations, among others. If these
costs were taken into account, the implicit cost of carbon would further increase.

33 Notice that when quarter-on-quarter (qoq) growth rate forecasts were made, there was no information on 2019Q4. In that case, there may have been some
orecasting error for 2019Q4, which would have carried over to 2020Q1. We note that these errors were small, nevertheless we decided to apply the growth
ate forecasts to the actual figures published later by INE for 2019Q4. The Bank of Spain does not publish the exact qoq growth rates for the forecasting horizon
nd only publishes annual figures. However, the forecasting department kindly provided those past estimations for nominal GDP qoq growth rates for the four
uarters of 2020. Those figures were 0.94%, 0.83%, 0.83% and 0.79%.
34 According to figures taken from the Bank of Spain (2016), in 90% of the cases, the projection error of 1-quarter-ahead real GDP forecast is lower than 1pp
n absolute terms and the projection error of 4-quarter-ahead forecast is lower than 2pp in absolute terms. Something similar would apply to inflation. Taking
hese errors as granted, a sensitivity analysis could be done using the lower band projection in the 90th percentile: i.e., a lower projected nominal growth of
2pp in the first quarter, −2.6pp in the second, −3.3pp in the third and −4pp in the fourth. This would lead to a lower loss of 37 billions with respect to the
14

70 billions of the baseline scenario.
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Fig. 6. Spanish quarterly GDP. Notes: Data from INE (2020) and Bank of Spain. The graph presents Spanish quarterly GDP. Counterfactual GDP was projected
by taking GDP growth rates that were forecasted by the Bank of Spain in November 2019 (i.e. in the absence of information about the pandemic). All values
were adjusted to represent Euros in the last quarter of 2019.

5.2. External validity

As a proof of concept, we estimate the crisis’ implicit cost of carbon abatement for two other countries: Italy and France. Both
countries implemented early movement restrictions similar to those in Spain. We model counterfactual electricity demand in those
countries with the approach described in Section 3.1. That allows us to estimate the pandemic’s impact on electricity demand. We
can then calculate the associated carbon abatement in that sector, assuming that the difference in demand would have been supplied
by natural gas plants. For carbon abatement in other sectors we again use data from Carbon Monitor (Liu et al., 2020b). Finally, we
obtain Italy’s and France’s GDP growth rate data from the OECD (2021). More details on data used for these analyses are presented
in Appendix C.

Our estimates suggest that the pandemic led to power sector abatement of 6.77 MtCO2 (3.95%) in France and 2.54 MtCO2
(2.45%) in Italy.35 Considering all sectors, carbon reductions associated with the pandemic were 30.96 MtCO2 for France and 20.60
MtCO2 for Italy. The short-term GDP losses associated with the pandemic were 179.11 Billion Euros for France and 145.48 Billion
Euros for Italy. Finally, the resulting implicit costs of carbon are 5785 Euro/Ton for France and 7062 Euro/Ton for Italy. These
figures are remarkably similar to the one estimated for Spain, despite the vast differences in economic and power sector structures
across these countries. Detailed results for France and Italy are presented in Appendix C.

5.3. Investing in renewable energy

Emissions can be decoupled from growth through low carbon investments, including those aimed at improving energy efficiency,
increasing interconnection capacity, storage, or renewable energy, among others. For concreteness, and given its relevance, here
we focus on the deployment of renewable investments for power generation, whose costs can be more readily estimated. This
provides a benchmark with which to assess the implicit cost of carbon abatement during the pandemic. Nevertheless, since an
optimal decoupling strategy would involve a combination of all those options, the resulting implicit costs of carbon should only be
interpreted as illustrative of the orders of magnitude involved.

In this section, we employ the same simulation model as the one used and described in Section 3.4 to shed light on the following
questions: how much investment in power sector renewables would have been needed to achieve emission reductions similar to
those caused by the pandemic? How would have market outcomes changed in the absence of the pandemic had renewables been
scaled up to that level? According to the simulation results reported in Table 1, emissions in the power sector went down by 3.9–4.1
Million Tons. The same outcome could have been achieved through alternative policies, plausibly in combination with one another.

35 We assume that abatement comes from reduced dispatch of natural gas plants (CCGTs), which have an emissions factor of 370 gCO2/kWh (IEA, 2011).
This could be considered an upper bound for these countries. For instance, in France, nuclear power, which is carbon free, could have been reduced instead.
A lower bound would assume an emissions factor at the average carbon intensity for these countries: 49 gCO2/kWh for France and 272 gCO2/kWh for Italy
Climate Transparency, 2020). The resulting lower-bound reductions are 0.9 MtCO2 in France and 1.87 MtCO2 in Italy.
15
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Table 3
Investment costs and emission reductions in the power sector.

Emission reductions (MtCO2) Investment costs (M EUR) Implicit cost of carbon (EUR/Ton)

Competitive Strategic Total Annualized Competitive Strategic
Investment+O&M

Pandemic 4.13 3.90 – – – –
Solar investments 4.53 4.21 6890.11 275.60 60.80 65.44
Wind investments 4.06 3.78 6122.97 244.92 60.34 64.81

Notes: This table provides the emission reductions triggered by the pandemic (first row), or triggered by investments in renewables: solar PV (second row), or
onshore wind (third row). Investment and O&M data come from (IRENA, 2020). The exchange rate for EUR/USD is assumed to be 0.89, which was the average
for 2019. The lifetime of the renewable plants is assumed to be 25 years. The implicit cost of carbon is obtained by dividing the fourth column (Annualized
Investment) by either the first or second columns. Values from that division may not necessarily match what is reported in the table due to rounding error.

We have considered a mix of alternative investments in renewable energy that lead to emission reductions of a similar magnitude:
expanding solar PV capacity only, or onshore wind capacity only. According to our simulations, if solar PV capacity had been
7812 MW bigger by the beginning of 2020 (which represents a 90% increase over existing capacity), carbon emissions would have
decreased by 4.2–4.5 Million Tons (using counterfactual demand). These are just slightly higher than the emission reductions caused
by the pandemic. Similarly, if onshore wind capacity had been 2582 MW bigger (or approximately 10% above the actual installed
capacity) by the beginning of 2020, carbon emissions would have decreased by 3.8–4.0 Million Tons. This is just about the same
figure as the amount of emission reductions caused by the pandemic.

Using the most recent cost estimates provided by IRENA (2020),36 we have computed the total costs of the investments plus
the operation and maintenance costs (O& M).37 Assuming that the new plants have a lifetime of 25 years,38 these would result in
investment plus O&M costs for the year 2020 of 276 Million Euro and 245 Million Euro for the two options, respectively. Table 3
summarizes the results.

Similarly to what we did in the previous section, we have computed the implicit cost of carbon for the two investment options:
60.8–65.4 Euro/Ton for the solar PV investments and 60.3–64.8 Euro/Ton for the onshore wind investments.39

In addition to the environmental benefits, these investments would contribute to keeping electricity prices and generation costs
down. The demand-weighted average prices in the counterfactual scenario (no pandemic and no renewable investments) are 37.8
e/MWh (competitive) and 40.4 e/MWh (strategic), and they fall down to 35.7 e/MWh (competitive) and 39.6 e/MWh (strategic)
under the scenario with solar investments, and to 31.5 e/MWh (competitive) and 34.8 e/MWh (strategic) under the scenario with
wind investments. It is clear that the price depressing effect of wind investments, at least in this context, is stronger both under
the assumptions of competitive and strategic behaviour. Also, renewable investments would reduce generation costs: expressed in
savings per Euro invested, these amount to 1.3 e/MWh in the case of solar, and to 2.2 e/MWh in the case of wind.

While simulations are useful to quantify the market impacts of renewable investments and the implicit cost of carbon abatement,
there are nevertheless some caveats. Notably, we have assumed that the availability factors of the new renewable investments are
the same as the ones of the existing projects. This might lead to overestimating renewable production, and hence, carbon abatement,
to the extent that the new sites are likely to be less productive than the ones that were exploited first. If so, our implicit cost of
carbon would be slightly under-estimated. Nevertheless, it is important to note that our model allows for renewable curtailment if
their supply exceeds total demand. Hence, the increased incidence of curtailment as renewable investment ramps up does not lead
to an overestimation of carbon abatement. Last, our model only analyzes the generation impacts and the costs associated with them,
without summing up the costs of other infrastructures that would also be needed to support the renewables deployment. Notably,
this would require reinforcing the transmission and distribution grids and scaling up storage.

We want to conclude this section by stressing again that these figures omit long-run effects. Notably, the renewable investments
create other positive externalities beyond the environmental benefits (including learning by doing economies, as pointed out by
several authors; see Borenstein, 2012; Gillingham and Stock, 2018). Furthermore, as reported in previous studies, low carbon
investments contribute to wealth and employment creation through their multiplier effects. For instance, the UK’s Office for National
Statistics (2019) reports that the turnover and employment multipliers for solar PV investments in 2017 were 1.87 and 1.96,
respectively.

36 These cost estimates are based on the analysis of around 17,000 renewable installations from around the world, together with data from 10,700 auctions
nd power purchase agreements for renewables.
37 In particular, in 2019, the total investment costs of solar PV and onshore wind in Spain were 766 USD/kW and 1552 USD/kW, respectively. These data
re obtained, respectively, from Figure 3.4 and Figure 2.5 from IRENA (2020). IRENA estimates O&M costs of 9 USD/kW per year for solar PV in Europe. For
onshore wind, the estimates range from 33–56 USD/kW per year, of which we take the average, 44.5 USD/kW.
38 These are industry standards, although lifetimes could be even longer according to experts (NREL, 2020; Wiser and Bolinger, 2019).
39 We note that our estimates of implicit cost of carbon are slightly higher than those reported by Gillingham and Stock (2018). However, they are in line with

those reported by Callaway et al. (2018) for the case of California, which is more comparable to Spain. There are a couple of reasons for these disparities. First,
as discussed by Callaway et al. (2018), these implicit costs depend on the technologies being displaced. Given that Spain is advanced in the energy transition,
renewable investments displace mostly gas plants, which are already less carbon intensive than coal. Second, investment and operation and maintenance costs
also depend on the region being studied. Moreover, investment costs have been falling, and our cost data are more recent.
16
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6. Conclusions

In this paper we have computed the implicit cost of carbon abatement caused by the COVID-19 pandemic. We benchmark this
igure against the costs of reducing emissions through power sector renewable investments under a counterfactual scenario of no
ecrease in electricity demand. The comparison of both figures suggests that structural reductions in emissions should be anchored
n sustained and ambitious policies to foster the deployment of clean energy solutions, allowing economic growth to be decoupled
rom carbon emissions.
We believe that the Spanish experience provides valuable insights for other countries, notably those at a similar stage of

evelopment. However, it is important to note that the effects of the carbon abatement strategies need not be linear. First, as
oted by Jorgenson (2014), the relationship between growth and emissions is heterogeneous across countries and over time. And
second, as noted by Callaway et al. (2018), there is substantial variation in the costs per Ton of CO2 avoided, as these depend
on the quantity of emissions displaced by the low carbon technologies and therefore on the state of the energy transition in each
country. Nevertheless, there is a substantial difference between the implicit costs of carbon abatement during the pandemic versus
those from renewable investments, which contributes to the robustness of our overall conclusion. Namely, transforming our current
energy system, to decouple it from economic growth, seems to be a feasible and desirable strategy to tackle climate change.

Appendix A. Online appendix and replication files

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.euroecorev.2022.104165.
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