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Abstract
When two magnetic nozzles with opposite polarity are placed side by side, a ‘magnetic arch’
(MA) is formed, which connects the field lines of each nozzle into a closed-line configuration.
The plasma expansion and acceleration in this magnetic topology are relevant for clusters of
electrodeless plasma thrusters, as well as novel, non-cylindrical thruster architectures. A
collisionless, quasineutral, two-fluid model of the plasma expansion in a MA, is introduced. The
plasma properties (density, electron temperature, electrostatic potential, ion velocity, electric
currents) in the 2D planar and zero plasma-beta limit are analyzed, and the magnetic thrust
density is discussed. It is shown that the ions coming out of the two nozzles meet on a
shock-like structure to form a single beam that propagates beyond the closed lines of the applied
magnetic field, generating magnetic thrust. A small magnetic drag contribution comes from the
final part of the expansion. The plasma-induced magnetic field is then computed
self-consistently for non-zero plasma-beta expansions, showing that it stretches the MA in the
downstream direction and helps reduce that drag contribution. Finally, the limitations of the
present model are discussed.

Keywords: electric propulsion, electrodeless plasma thrusters, magnetic nozzles,
plasma expansions, fluid models

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetically-guided plasma expansions are a central part of
the operation of electrodeless plasma thrusters (EPTs) [1–4]. A
magnetic nozzle (MN) is commonly used to externally expand
and accelerate the plasma generated by the source [5–8]. This
is the case of e.g. the helicon plasma thruster [9–12] and the
electron-cyclotron plasma thruster [13–15]. Additionally, non-
axisymmetric MNs have been proposed for contactless thrust
vector control [16, 17].

When the plasma consists of warm electrons and relatively
cold ions, as in the devices listed above, the MN is termed
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‘electron-driven.’ TheseMNswork by perpendicularly confin-
ing the expansion of the warm plasma electrons, which must
be well magnetized. This confinement occurs thanks to the
applied magnetic field Ba and the diamagnetic azimuthal elec-
tron current density jθe that forms as a consequence of the
existence of a perpendicular electron pressure gradient and the
E×B drift. This current density gives rise to a magnetic force
density in the plasma. Part of this force density is directed radi-
ally inward (jθeBaz), while the other part is axially outward
(−jθeBar). The former balances the electron pressure (and the
electric force) in the radial direction; the latter gives rise by
reaction to the magnetic thrust, which is the force felt by the
thruster magnetic circuit due to the magnetic field induced by
the plasma. In turn, the parallel electron pressure is balanced
by the self-consistent ambipolar electrostatic field that forms
in the MN. This field confines electrons and accelerates ions,
converting the electron thermal energy into directed kinetic ion
energy [5].

Downstream, the plasma jet must eventually separate from
the turning magnetic lines to prevent the increase of plume
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divergence and the cancellation of thrust [6]. It should be noted
that, at least for hot-electron and cold-ion plasmas, ions do
not need to be magnetized for the MN to operate as intended;
indeed, a high ion magnetization is generally undesirable, as it
makes plasma detachment occur farther downstream, increas-
ing plume divergence angle, and promoting the appearance of
a paramagnetic azimuthal ion current density jθi in the plasma
that results in magnetic drag [5]. However, special devices,
such as the variable specific impulse magnetoplasma rocket
[18], rely on the expansion of hot ions, where ion magnetiza-
tion is a necessity.

A single cylindrical EPT creates a magnetic dipole moment
that may induce secular torques on the spacecraft in the pres-
ence of the geomagnetic field. Flying EPTs in pairs with
opposite magnetic polarities, such that the net dipole moment
cancels out, is a straightforward and natural way to avoid this
issue. Also, the use of more than one thruster (known as ‘clus-
tering’) is a simple way of scaling thrust levels for larger space
missions. A pair of EPTs has the additional benefit that, if each
unit can be throttled independently, some degree of thrust vec-
tor control can be achieved without moving parts. In this con-
figuration, the two MNs interact and their lines connect, res-
ulting in a newmagnetic topology that here we term ‘magnetic
arch’ (MA), sketched in figure 1(a).

Similarly, the MA is an intrinsic part of some novel EPT
geometries, such as the magnetic arch thruster (MAT) concept,
where the cylindrical discharge chamber of traditional EPTs
is replaced by a ‘C’-shaped chamber, enveloped by coils that
create a magnetic field essentially parallel to the walls, as rep-
resented in figure 1(b) [19, 20]. By removing the rear wall that
exists in cylindrical EPTs and ensuring full magnetic shielding
of the remaining walls, it is hypothesized that this geometry
could bring advantages with regards to losses, while reducing
the appearance of external magnetic torques on the spacecraft.

The plasma expansion in an MA is radically different to
that in an axisymmetric MN: while in a single MN the plasma
flux is roughly parallel to the applied field Ba (at least before
detachment is well under way), in an MA the flux is only par-
allel initially; downstream, where the lines of the two MNs
connect, the plasma flux must necessarily traverse the applied
field roughly perpendicularly. Also, while the plasma cur-
rents in the axisymmetric MN are predominantly diamagnetic
(i.e. thrust producing), they are expected to be diamagnetic
and paramagnetic in the upstream and downstream regions of
the MA plasma expansion, respectively. Relatedly, while in
a MN the plasma-induced magnetic field Bp plays a second-
ary role in deforming the shape of the lines, increasing diver-
gence minimally if the MN is well-designed [21], it can play a
more important role in the MA, potentially changing the line
topology of the total field, B= Ba+Bp, with respect to that
of the applied one alone, Ba. Finally, the interaction of the two
plasma jets coming from each end of the device may lead to
collisionless shock-like structures in the plume, not found in
smooth MN plasma expansions [5].

The objective of this work is to present a first model of the
MA plasma expansion to examine the viability of this mag-
netic topology for plasma acceleration and discuss its main
physicalmechanisms, in particular behind ion acceleration and

Figure 1. Sketch of the magnetic lines of two cylindrical EPTs
firing in parallel with opposite magnetic polarities, forming an
external MA (a). Sketch of the magnetic lines of the conceptual
MAT (b), which also features an MA in the plasma expansion
region. In red, the location of the ionization chambers; in black, the
position of magnetic coils; and in blue, selected magnetic lines.

magnetic thrust production. By examining the zero plasma-
beta expansion, β = µ0nTe/B2

a = 0, and expansions with small
β ̸= 0, the effects of the plasma-induced magnetic field on the
shape of the MA and the generated thrust are discussed. The
model is of application to clusters of two cylindrical EPTs
and to the novel MAT configuration described above. Finally,
we identify the main physics currently outside of the present
model that should be included in the future. Nevertheless, the
major limitations of the study can be already stated from the
outset: firstly, we shall only study a 2D planar version of
the MA, rather than a full 3D geometry. Secondly, we shall
ignore plasma kinetics, and employ a collisionless multi-fluid
plasmamodel with a simple polytropic closure for the electron
pressure.

The rest of the document is structured as follows. Section 2
presents the mathematical model of the plasma expansion
in the MA and describes the approach followed to integ-
rate it numerically. Section 3 contains the results of the first
MA simulation using this model in the β= 0 limit, includ-
ing plasma density, ion velocity, electrostatic potential, plasma
currents, and magnetic thrust. Section 3.2 then discusses the
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plasma-induced magnetic field for β ̸= 0, and how its pres-
ence alters the expansion and magnetic thrust with respect to
the β= 0 case. The limitations of the model and its results are
reviewed in section 4. Finally, section 5 briefly summarizes the
main points of this work. A preliminary version of this work
was recently presented in [19].

2. Model

A two-dimensional, two-fluid (ions i and electrons e) model
of the steady-state plasma flow in an MA is considered. The
model takes the following assumptions:

(1) Quasineutral, collisionless, fully-ionized plasma.
(2) Inertialess, quasi-Maxwellian, perfectly-magnetized elec-

trons with a polytropic closure relation.
(3) Cold, singly-charged ions, with arbitrary magnetization,

emitted from each source exit. Moreover, ions are assumed
to remain cold downstream, neglecting the effects of any
shock-like discontinuities on ion temperature/distribution
that may exist in the solution.

(4) Planar-symmetric geometry, as an intermediate step
toward the actual three-dimensional geometry of the
device. We consider the meridian plane of the plume and
assume an infinite plasma with uniform properties in the
perpendicular direction.

To normalize the model, we select the ion massmi, the elec-
tron charge qe, and the radius R of one of the plasma thruster
exits. And, using the properties at the center of one of the two
symmetric thruster outlets (where variables are marked with
subindex 0), the electron temperature Te0 (in energy units) and
the plasma density n0 used for injection. Note that, even if flux
coming from one outlet ever arrives at the other, Te0 and n0
are defined from the single-beamlet injection properties. This
point of the outlets is also chosen as the origin of the electro-
static potential, whereϕ0 = 0. In the following, all symbols are
already appropriately dimensionless. In particular, the dimen-
sionless magnetic field strength at the center of the outlet, B0,
is normalized with

√
miTe0/(eR), and coincides numerically

with the dimensionless ion gyrofrequency Ωi0, which defines
the (initial) ion magnetization degree.

Figure 2 sketches the problem domain. We define a right-
handed reference frame with the plane Oxy coincident with
the exit plane of the plasma sources, and the Oz axis point-
ing downstream. The plane under study is the Oxz plane, and
in the 2D expansion the plasma is infinite and uniform in
the y direction. The plane Oyz is a symmetry plane, and thus
only the upper half of the plane (x⩾ 0, shown in the figure)
will be simulated. Without loss of generality, B is taken to
point axially downstream in this part of the MA. We introduce
the Cartesian vector basis {1x,1y,1z} and the magnetic vec-
tor basis {1b,1⊥,1y}, with 1b = B/B and 1⊥ = 1y× 1b. Both
bases are right-handed and orthonormal.

The applied magnetic field Ba is generated by a set of thin,
infinite electric wires w, each carrying an electric current Iw
along the 1y direction. The arrangement of wires and their elec-
tric currents is antisymmetric about the Oyz symmetry plane,

Figure 2. Sketch of the problem domain of the 2D planar MA
plasma expansion. Only one half of the MA is simulated, taking
advantage of the symmetry plane Oyz (in orange). The plasma
source is located on the left of the domain (purple line), where
plasma inflow conditions are prescribed. The second plasma source
is located below the symmetry plane and is not visible in the sketch.
The rest of the boundaries are free (supersonic for ions) outflow
boundaries (green lines). The applied magnetic field Ba strength
(colormap) and streamlines (black lines) are shown. Magnetic lines
connecting with the source edges and center are shown as thicker
lines. The symbols ⊗ and ⊙ are used to denote the location of
electric wires generating the field, with electric current going into
and out of the paper, respectively. The magnetic sepatratrix line of
the applied field, given by ψBa = 0, is plotted in red.

and the sum of the Iw over all the wires equals zero. The mag-
netic stream function of a single wire w is given by

ψBw =−µ0Iw
2π

lnρw, (1)

where ρw is the polar distance from the wire. Summing over
the wire contributions we obtain the streamfunction ψBa of the
applied field.

The plasma-induced magnetic field Bp has the stream func-
tionψBp given byAmpére’s equation, which reduces to amani-
festly elliptic partial differential equation:

∂2ψBp
∂z2

+
∂2ψBp
∂x2

=−µ0jy ≡−β0B2
a0 jy, (2)

where jy is the out-of-plane plasma electric current and β0 =
µ0/B2

a0 is the β parameter at the centerpoint of the thruster
outlet, already normalized with n0 and Te0.

The total magnetic field B is the sum of the applied and
plasma-induced ones, with ψB = ψBa+ψBp, and

B≡ Ba+Bp =∇ψB× 1y. (3)

When β0 = 0 the plasma-induced magnetic field Bp is negli-
gible with respect to the applied one Ba, and the total field
coincides with the latter. Then, equation (2) may be dropped
from the model. This is the case analyzed in the first part of
section 3.

Note that 1⊥ ≡∇ψB/B and, for any single-variable func-
tion f(ψB),

∇f = ∂f
∂1⊥

1⊥ = B
df
dψB

1⊥.
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The relevant collisionless fluid equations of electrons and
ions are

∂n
∂t

+∇· (nue) = 0, (4)

0=−∇(nTe)+ n∇ϕ − nue×B (5)

∂n
∂t

+∇· (nui) = 0, (6)

∂nui
∂t

+∇· (nuiui ) =−n∇ϕ + nui ×B (7)

where we have already imposed plasma quasineutrality,

n≡ ne = ni. (8)

The electrons are assumed polytropic with the law Te =
nγ−1 on the whole domain, with fixed exponent γ. We note
that

1
n
∇(nTe) =

γ

γ− 1
∇nγ−1,

where the equality holds for γ ̸= 1. Observe that the relevant
dimensionless sound speed is cs =

√
γTe.

Under the assumption of full electron magnetization, elec-
tron streamlines coincide with magnetic lines. Indeed, from
equation (5) we infer that, since there are no pressure gradi-
ents nor electric fields in the (uniform) 1y direction, there is no
electron fluid velocity along 1⊥. Therefore we write the elec-
tron fluid velocity as:

ue = uye1y+ u∥e1b. (9)

With these premises, equation (5) becomes

0=−∇
[

γ

γ− 1
(nγ−1 − 1)−ϕ

]
− uyeB1⊥. (10)

Integrating this equation along the magnetic lines, we find that
the electron energy He is conserved along them,

He(ψB) =
γ

γ− 1
(nγ−1 − 1)−ϕ. (11)

The function −He can also be understood as a thermalized
potential for the electron dynamics.

The out-of-plane electron velocity uye can be computed
from the map of ∇He [5]:

uye(ψB) =− 1
B
∂He

∂1⊥
=−dHe

dψB
=−H ′

e. (12)

This uye results from the sum of the diamagnetic (i.e. pressure-
driven) and E×B drifts, which are the only first-order drifts
in the problem (and indeed, they scale as 1/B). The function
He, its derivative H ′

e, and consequently uye, can be computed
from the boundary conditions at z= 0 on each magnetic line.
This computation can be done a priori, i.e. before solving the
rest of the plasma problem. Observe that only one value of He

may be imposed per magnetic line, and this restricts the set of
valid boundary conditions elsewhere.

Lastly, we note that u∥e does not appear in
equations (5)–(7), and is effectively decoupled from the rest of
the problem. Indeed, it can be computed from equation (4) and
the boundary conditions a posteriori, after all other variables
have been solved for. In the steady state, and for zero perpen-
dicular electron velocity (u⊥e = 0), this equation reduces to

∂

∂1b

(nu∥e
B

)
= 0. (13)

There are two different types of magnetic lines in the MA:
inner lines that connect the two plasma sources through the
symmetry plane, and outer lines that go around the upper part
of the domain without intersecting it. In the β0 = 0 case, the
separatrix between these two behaviors corresponds with the
magnetic line labeled byψB = 0 (see figure 2), inner lines have
ψB < 0, and outer lines have ψB > 0.

In steady state, the electron current on inner lines must
be zero due to the symmetry of the problem, and therefore
u∥e = 0 there. This sets an additional consistency requirement
on the electron velocity boundary conditions on these lines.
On the other hand, outer lines are allowed to carry electron
current, and u∥e ̸= 0 on them in general. For a globally-current
free MA, the total electron current leaving the plasma sources
along these magnetic lines must equal the total ion current
emitted by the sources. This aspect of the model is discussed
in more detail in section 4.

The electron equations have therefore been reduced to (1)
a conservation law for He, (2) an algebraic expression for uye,
(3) a line-wise differential equation for u∥e. Equation (11) may
be regarded as the law that provides the electrostatic potential
on each magnetic line as a function of the electron density and
the magnetic streamline function:

ϕ(n,ψB) =
γ

γ− 1
[nγ−1 − 1]−He(ψB). (14)

Introducing relation (14) into the ion momentum equation (7)
to eliminate ϕ and using (12) to eliminate uye results in the
following set of differential equations for n, uzi, uxi, and uyi:

∂n
∂t

+
∂nuzi
∂z

+
∂nuxi
∂x

= 0 (15)

∂nuzi
∂t

+
∂nuziuzi
∂z

+
∂nuxiuzi
∂x

+
∂nγ

∂z
=−n(H ′

e + uyi)Bx,

(16)

∂nuxi
∂t

+
∂nuxiuzi
∂z

+
∂nuxiuxi
∂x

+
∂nγ

∂x
= n(H ′

e + uyi)Bz, (17)

∂nuyi
∂t

+
∂nuyiuzi
∂z

+
∂nuxiuyi
∂x

= n(uziBx− uxiBz). (18)

In the steady state, each species admits a stream functionψj
such that∇ψj =−nuxj1z+ nuzj1x, for j = e, i. For the magnet-
ized electrons, ψe is a function of ψB. For ions, which are non-
magnetized or only partially-magnetized, streamlines may dif-
fer from magnetic lines.
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The last ion equation (18) can be integrated to yield (see [5]
for the analogous equation in the axisymmetric MN):

uyi+ψB = D(ψi), (19)

where D(ψi) depends only on the ion stream function and can
be determined from the boundary conditions at the thruster
outlet.

Observe that, if uyi = 0 at injection, the ion out-of-plane
velocity uyi develops only when ion streamlines separate from
their initial magnetic field lines; this uyi is positive if the
ion streamline detaches inwardly from the magnetic field
lines (i.e. along −1⊥), and negative if separation is out-
wardly (i.e. along +1⊥). Nevertheless, when ion magnetiza-
tion is weak (B0 ⩽ O(1)), the last term in the ion momentum
equations (the ion magnetic force) is typically small. Then,
if uyi ≪ 1 initially, it remains so everywhere else, and the
electron magnetic force dominates in the right hand side of
equations (16) and (17).

Finally, we define the in-plane ion velocity as ũi = uzi1z+
uxi1x, and the in-plane ion Mach number asMi = ũi /

√
γTe.

2.1. Numerical integration

The differential ion equations (15)–(18) are in conservative
form, and can be formally written as

∂Q
∂t

+∇·F= R, (20)

where

Q=


n
nuzi
nuxi
nuyi

 ,

F=


nuzi nuxi

nu2zi+ nγ nuziuxi
nuziuxi nu2xi+ nγ

nuziuyi nuxiuyi

 ,

R=


0

−n(H′
e+ uyi)Bx

n(H′
e+ uyi)Bz

n(uziBx− uxiBz)

 .
The equations are discretized using a discontinuous Galerkin
(DG) method, which for zeroth-order polynomials coincides
with the finite volume method. The main advantage of the
DG approach is that it enables easily improving the accuracy
of solution by refining the mesh size h and/or increasing the
order of the polynomials p. After multiplying equation (20)
by a test vector V, integrating in an element Dk with boundary
∂Dk, and using integration by parts, the following weak form
is obtained:ˆ

Dk

V · ∂Q
∂t

dΩ+

ˆ
∂Dk

V ·F · 1ndS −
ˆ
Dk

F :∇VdΩ

=

ˆ
Dk

V ·RdΩ,

where dΩ is the area differential and 1ndS is the outward-
oriented area vector differential. Upon summation over all
elements Dk of the domain, the second integral must be sub-
stituted by the corresponding numerical flux integral on all
internal boundaries, taking into account the jump conditions
across neighboring elements:

ˆ
Γint

V ·F · 1ndS=
ˆ
Γint

(V+ −V−) · F̃ · 1ndS, (21)

where Γint are the internal facets of the discretization, superin-
dices ‘+’ and ‘−’ indicate the values of a discontinuous vari-
able on one side and the other side of an internal facet, with 1n
pointing toward the+ side, and F̃ is a numerical flux function.
In this work a local Lax-Friedrichs flux is chosen, given by

F̃=
1
2
(F(Q+)−F(Q−)+α(Q+ −Q−)), (22)

with α computed as the maximum of all eigenvalues of the
normal flux Jacobian (∇F · 1n) evaluated in each side of the
facet.

A similar treatment is applied on the external boundary
facets, denoted by Γext, except that on those facets the + side
corresponds to the weakly imposed boundary conditions. The
external boundary is further decomposed into Γin, Γout, and
Γsym for supersonic inflow, supersonic outflow and symmetry
plane boundaries respectively (see figure 2). At the inflow
boundary, the Q+ vector on the + side is determined by the
desired inflow conditions. At the supersonic outflow boundary,
the Q+ vector is taken equal to Q− (i.e. the value of Q on the
corresponding boundary element of the domain), and finally,
at the symmetry plane the density and parallel flux compon-
ents of Q+ equal those of Q−, while zero perpendicular flux
is imposed (i.e. nuxi = 0).

The discretized plasma problem is initially integrated in
time using a third-order Strong Stability Preserving Runge–
Kutta scheme, given in [22]. As initial conditions for the time
integration, any gross approximation of the expected steady
state flow can be used to speed up convergence. After a suf-
ficient amount of time steps, the steady state version of the
equations are solved for.

In β0 ̸= 0 cases, the plasma-induced magnetic field prob-
lem is integrated using the continuous Galerkin method using
Lagrange elements on the same mesh as the plasma problem.
The weak form of (2) is

ˆ
Ω

∇V ·∇ψBpdΩ=−β0B2
a0

ˆ
Ω

VjydΩ (23)

where V is a test function The boundary conditions used are
Bpz = ∂ψBp/∂x= 0 at the symmetry plane x= 0 as indicated
above, and Bpx =−∂ψBp/∂z= 0 at the thruster exit plane
z= 0. On the rest of the boundary, and on the outside of
the plasma domain shown in figure 2, a thin absorbing layer
with artificial anisotropic magnetic permeability is defined
following [23], a method that is equivalent to a coordin-
ate stretching, to better approximate the transition to infinity
of Bp. Notwithstanding this, it must be noted that the electric
currents inside the thruster discharge chambers and beyond
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the simulation domain (i.e. further downstream) also affect
the value of Bp; as these currents are unknown, and to par-
tially mitigate their influence on the results, the peripheral
part of the domain is cut off from the shown results whenever
β0 ̸= 0.

Then, the self-consistent plasma and magnetic field solu-
tions are determined using an iterative procedure: The plasma
flow is first solved for the B= Ba (i.e. ignoring the plasma-
induced field). This yields a first approximation to the out-
of-plane plasma electric current jy, that is used to compute
ψBp for the next iteration using (2). The plasma flow is then
recomputed for the new total field B= Ba+Bp, and this pro-
cess is repeated until plasma variables and ψBp vary less than a
prescribed tolerance from iteration to iteration, at which point
convergence is reached.

The numerical implementation of the model employs
GMSH [24] and FENICS [25] as open-source building blocks.
The code has been verified successfully by simulating two
simple cases: (1) a plasma flowing in a straight, uniform mag-
netic field; and (2) a 2D planar MN, and comparison against
the existing DIMAGNO code [5]. Mass and momentum are
successfully conserved in the simulation. A convergence study
with mesh size and polynomial order was also conducted and
confirmed the correct behavior of the code.

3. Simulation results

The applied magnetic field used for the simulations presented
in this section is generated by four identical wires contained in
theOxy plane, located at x= 3,7,−3,−7, as shown in figure 2.
The thruster outlet in this half of the MA is located on the
Oxy plane and goes from x= 4 to x= 6, and the normalized
magnetic field at the center point of the thruster outlet, (z,x) =
(0,5), is B0 = 1 (mild initial ion magnetization).

The boundary conditions at the thruster outlet are modeled
as follows:

uzi(0,x) = cs(0,x); n(0,x) = 10−3(x−5)2 ;

uxi(0,x) = 0; ϕ(0,x) = 0;

uyi(0,x) = 0; u∥e(0,x) =

{
0 for ψB < 0
U∥e for ψB ⩾ 0

;

i.e. the plasma density profile is assumed Gaussian, centered
on x= 5 falling three orders of magnitude at the edges of the
outlet, and the axial velocity is given as a function of the local
sound velocity such that the in-plane ions are sonic at the mag-
netic throats (Mi0 = 1) [5]. In the last expression, U∥e is a
constant electron parallel velocity imposed on outer magnetic
lines (i.e. those that can carry electron current), computed such
that the net electric current emitted by the plasma source is
zero.

The electron polytropic exponent is set to γ= 1.2, a value
commonly found empirically in MNs [26]. The out-of-plane
electron velocity at the outlet of the thruster is given by
equation (12) evaluated at z= 0 and the conditions above,

Figure 3. Dimensionless He function and electron out-of-plane
velocity uye resulting from the applied magnetic field and the
upstream plasma conditions. Magnetic lines (black) are included in
the plots for reference (thicker lines correspond to edges and center
of the plasma source).

uye(0,x) =
1
Bz

γ

γ− 1
∂nγ−1

∂x
. (24)

This choice of boundary conditions means that, at the outlet,
there is no x-directed electric field, and the electron pressure
and the electron magnetic force are in balance.

For a smoother numerical solution and to prevent regions
of zero plasma density, we extend these conditions all the way
from x= 3 to x= 7, where the thin wires that generate themag-
netic field are located. This completely determines the value of
He on the whole the domain.

A mesh with cell diameter h= 0.29 and elements of order
p= 1 are used to obtain the plasma solutions shown below,
while in section 3.2, elements of order p= 2 are used for the
computation of the plasma-induced magnetic field.

3.1. Plasma expansion in the β0 = 0 limit

Webegin with the analysis of the plasma expansion when β0 =
0, and the total magnetic field is B= Ba.

The map of He(ψB) plays a crucial role in the plasma
response, as its derivative H ′

e fixes the out-of-plane electron
velocity uye, which in turn defines the electron magnetic force.
The resulting profile of He and the uye that follows from the
boundary conditions are plotted in figure 3. The direction of
the gradient of He causes the electron out-of-plane velocity
uye to be positive and negative below and above the mag-
netic centerline of the plasma outlet, respectively, resulting in
a magnetic force that confines the expanding electrons to their
respective magnetic tubes. This change of sign contrasts with
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Figure 4. Dimensionless plasma density n, electron temperature Te,
electrostatic potential ϕ, in-plane ion velocity ũi and in-plane ion
Mach number Mi. Selected ion streamlines (purple arrowed lines)
are shown in the ũi plot. Magnetic lines (black) are included in the
plots for reference (thicker lines correspond to edges and center of
the plasma source).

the typical situation in an electron-driven MN, where the out-
of-plane electron velocity uye has the same sign everywhere in
the meridian plane [5].

Figure 5. Dimensionless in-plane electric current density
ȷ̃= n(ũi − u∥e1b) (background color and purple arrowed lines). The
separatrix line ψB = 0 is shown in red. Magnetic lines (black) are
included in the plots for reference (thicker lines correspond to edges
and center of the plasma source).

Figure 4 displays the steady-state solutions for the plasma
density n, electron temperature Te, electrostatic potential ϕ,
in-plane ion velocity ũi, and in-plane ion Mach number Mi.
Several aspects of these results stand out. Firstly, the plasma
expansion is initially guided by the magnetic field, and as
the (essentially unmagnetized) ions accelerate, their stream-
lines do not adhere to the magnetic lines, separating inward
with respect to B, as in the axisymmetric MN case [6]. The
plasma density, electron temperature, and electrostatic poten-
tial all decrease axially as the plasma expands in this first
fraction of the domain. Secondly, ion streamlines on the peri-
phery of the MA become essentially straight. Inward detach-
ment proceeds as in an MN for outer magnetic lines above
the separatrix ψB = 0, which curve back and around the upper
part of the domain. However, for inner magnetic lines below
ψB = 0, which eventually curve downward and intersect the
symmetry plane, ion trajectories must traverse magnetic lines
in the outward direction. This changes ion detachment from
being inward-directed to being outward-directed in part of the
domain, in contrast to what occurs in an MN. Thirdly, closer
to the symmetry plane, an oblique shock structure forms at the
location where ion streamlines coming from the two thruster
outlets meet. Ion streamlines are deflected at the shock, and
plasma density, electron temperature, and electrostatic poten-
tial rise across it. In-plane ion velocity and Mach number,
which increase in the first part of the expansion, fall through
the oblique shock, although ions remain supersonic down-
stream of it.

A major conclusion arising from these results is that the
unmagnetized ions are not confined by the MAmagnetic field,
but are able to form a jet that propagates beyond it to infinity.
This observation is crucial to the validity of the MA concept
and therefore for the operation of a cluster of two cylindrical
EPTs with opposing magnetic polarities.

Figure 5 displays the in-plane electric current density, ȷ̃=
n(ũi − u∥e1b), imposing a uniform distribution of electron
macroscopic velocity on the outer magnetic lines (ψB > 0)
to yield a globally current-free solution. As the electron flux
on inner magnetic lines (ψB < 0) must be zero, the ȷ̃ in this
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Figure 6. Magnetic force density in the axial (−jyBx) and radial
(jyBz) directions. White lines separate regions with positive (+) and
negative (−) values of the force densities. Magnetic lines (black) are
included in the plots for reference (thicker lines correspond to edges
and center of the plasma source). Mind the different color scales of
each plot.

region results solely from the ion current. Above the separatrix
lineψB = 0, the strong compensating electron current respons-
ible for making the system globally-current-free dominates.
Clearly, the location of the separatrix line ψB = 0 with respect
to the thruster outlet is a major defining aspect of the MA
plasma expansion with regard to the in-plane electric currents.
This aspect is further discussed in section 4.

Figure 6 depicts the x and z magnetic force densities jyBz
and −jyBx, where jy = n(uyi− uye) is the out-of-plane electric
current density. We note that jy is dominated by the electron
contribution everywhere in the domain, as ion magnetization
is low. Observe that the product jyeB is essentially independ-
ent of the magnitude B0 by virtue of equation (12). Indeed,
this product depends essentially on the initial electron pres-
sure gradient at the thruster outlets, which determines the pro-
file of He.

The two components of the magnetic force density are
largest near the thruster exit plane. The x force density, essen-
tially perpendicular to the magnetic lines in the first part of the
domain, confines the plasma expansion laterally. As it can be
observed from figure 6(a), this confining force points in the
x> 0 direction in the innermost part of the arch (i.e. in the
region between the two plasma sources), while it points along
x< 0 everywhere else, helping reduce the divergence of the
jet.

The z force density gives rise to magnetic thrust, and is
seen to be large and positive at the beginning of the expan-
sion, where n, Te and B are large. A small negative contri-
bution exists downstream on inner magnetic lines, beginning

Figure 7. Magnetic thrust integral up to a z-const surface, as a
function of z. The thick black line corresponds to β0 = 0. The other
lines are for simulations with β0 = 0.02 (blue line), 0.04 (red), 0.08
(green) as indicated in the plot. Values have been normalized with
the total momentum flux at the thruster exit.

at the point where Bx = 0 and lines curve down toward the
symmetry plane. This negative contribution is mostly notice-
able in the region after the shock wave, where plasma dens-
ity (and therefore the out-of-plane current density) increases
locally again. These characteristics are consequential on the
magnetic force density and the generation of magnetic thrust:
while positive thrust is generated initially in the region where
they resemble a traditional MN, the magnetic force generates
drag in the downstream region where the magnetic lines of
each thruster connect, lowering the net thrust of the device.

As follows from the sum of the electron and ion momentum
equations (5) and (7), the magnetic thrust force generated by
the plasma contained in a rectangular control volumeΩ(z) that
spans the domain from the initial plane z= 0 to a variable axial
position z can be equivalently computed as

F(z)−F(0) =
ˆ
Ω(z)

(−jyBx)dΩ

=

ˆ
∂Ω(z)

[(nu2zi+ nγ)1z+ nuxiuzi1x] · 1ndS,

where ∂Ω(z) is the full boundary of the control volume. The
first integral is the volume integral of the axial magnetic force
density in figure 6(b), while the second integral is the flux
integral of total momentum on the boundaries of the integra-
tion domain. Observe that the relative importance of electron
pressure thrust decreases to zero sufficiently far downstream,
and that ion momentum dominates as the expansion converts
electron thermal energy into ion kinetic energy.

Figure 7 displays the thrust force F(z) normalized with
F(0), the initial momentum flux of the plasma coming out
of the sources (directed ion momentum plus electron thermal
momentum). Positive magnetic thrust is produced initially, in
the first part of the expansion. When the plasma approaches
the bend in the magnetic lines and the shock, magnetic thrust
plateaus, and thereafter, a minor contribution of negative thrust
(i.e. magnetic drag) results by which F(z) decreases by a small
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Figure 8. Induced magnetic field strength and lines, derived from
the out-of-plane plasma current jy, normalized with β0Ba0.

amount. As indicated above, this is a natural consequence of
the closed shape of the inner magnetic lines and the maps of n,
uye, which give rise to a negative axial magnetic force density
in the second part of the expansion, as shown in figure 6. In
the present simulation with β0 = 0, the negative contribution
decreases F(z)/F(0) about an 8% at z= 20 with respect to its
maximum, which occurs at z≃ 7.

3.2. Effect of the plasma-induced magnetic field

Figure 8 displays the normalized plasma-induced magnetic
field Bp/(β0Ba0), computed from the jy current density corres-
ponding to the β0 → 0 limit. To mitigate the influence of the
plasma currents beyond the simulation domain on the solution,
the peripheral part of the results has been cut out from this and
following plots.

As noted before, jyBa is essentially independent of Ba0
in the low ion magnetization regime under consideration.
Consequently, by virtue of equation (2), the dimensionless
group Bp/(β0Ba0) is also essentially independent of β0 and
Ba0. The direction of Bp opposes the applied one in the prox-
imity of the symmetry plane, and points roughly axially down-
stream far from it. Hence, the trend of Bp is to stretch the MA
downstream as β0 increases.

Figure 9 displays the self-consistent total magnetic field
B= Ba+Bp and the streamlines for ψB = ψBa+ψBp for dif-
ferent values of β0. As β0 is increased from 0, Bp gains relat-
ive importance. The main effect is the modification of the geo-
metry of the central lines of theMA,which are stretched down-
stream. The separatrix line displaces downward, and some
inner magnetic lines that intersected the symmetry plane for
β0 = 0 are converted into outer lines that go around along the
periphery of the domain instead. As the fraction of inner lines
shrinks and the fraction of outer lines grows, more magnetic
lines can carry electron current away from the device.

For the larger values of β0 shown, a region of very lowmag-
netic field strength forms near the symmetry plane and the
separatrix eventually intersects with it, forming an ‘X’ point
at which B= 0, visible for β0 = 0.08 in figure 9. This brings
about a topology change of the MA, which now features a new

Figure 9. Total magnetic field B= Ba+Bp strength and
streamlines for β0 = 0, 0.02, 0.04 and 0.08. Magnetic lines (black)
are included in the plots for reference (thicker lines correspond to
edges and center of the plasma source). The separatrix line in the
last case is shown as a red line.

magnetic region that forms beyond the ‘X’ point, whose mag-
netic lines are disconnected from the upstream plasma sources.

While the general characteristics of the plasma expan-
sion are qualitatively similar to the β0 = 0 case, the value
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of β0 has a major effect on the generated magnetic thrust
F(z)/F(0). Figure 7 displays the evolution of the thrust force
as a function of β0. It is evident that, while the initial part
of the curve roughly coincides for all cases, the stretching
of the MA reduces the negative drag contribution that occurs
downstream. Indeed, as β0 increases, the magnetic thrust force
generated within the domain rises. For β0 = 0.04, F(z)/F(0)
remains almost flat after a weak maximum, and for β0 = 0.08,
the local maximum disappears altogether, with the relative
thrust gainF(z)/F(0) increasing by 10% at z= 20with respect
to β0 = 0.

These results suggest that the plasma-induced fieldBp plays
a central role in shaping the expansion and the propulsive per-
formance of the device.

4. Discussion

The results from the previous section merit additional discus-
sion. Firstly, the location of the separatrix line and its effect
on electron currents deserves closer inspection, as the global
current-free condition is an essential one that must be satisfied
by any plasma thruster operating in space. It is possible to dis-
tinguish different types of MA, depending on the connectivity
of the magnetic lines passing by the plasma source exit with
the symmetry plane:

(1) If there are both inner lines and outer lines (as defined
in section 2) passing through the plasma source, an open
arch is formed as sketched in figure 10(a). This occurs
when the separatrix falls within the limiting magnetic lines
at the edges of the source, it is the relevant type of MA
for tightly-packedmagnetic generators around the sources,
and the one simulated in this work. The plasma expansion
in the MA can be globally current-free, as long as the elec-
tron current in the lines above the separatrix balances the
emitted ion current. A variant of this configuration has the
last magnetic line passing by the lower edge of the source
intersecting the thruster exit plane, rather than the sym-
metry plane.

(2) If all magnetic lines passing through the outlet are inner
lines, we have a closed arch as in figure 10(b). In this case,
all plasma-carrying lines lie below the separatrix. No elec-
tron current can be extracted from the plasma thrusters in
the fully-magnetized-electrons, collisionless, β0 = 0; this
is a consequence of electrons having zero perpendicular
velocity, u∥e = 0 in this limit. Hence, the ‘closed’ MA
cannot be current-free without invoking additional effects.
This configuration occurs e.g. for larger separation of the
magnetic field generators from the source.

(3) Yet another magnetic configuration could be discussed, if
all the magnetic lines that pass through the outlet are outer
lines. In this case (not sketched), there is no real ‘arch’,
and the separatrix falls below the lower edge of the plasma
source. This situation would arise when e.g. the plasma
sources are not concentric with the magnetic field gener-
ators, and is considered of lesser practical interest.

Figure 10. Sketch of two MA configurations with β0 = 0: open
arch (a) and closed arch (b). Lines represent magnetic field lines.
Thicker blue lines correspond to the edges of the plasma source.
The red line is the separatrix (ψB = 0). Black squares represent the
position of the magnetic field generators.

Interestingly, as shown in section 3.2, the downward dis-
placement of separatrix line as β0 is increased may cause a
change of MA type. In particular, a closed arch is expected to
become an open arch for a sufficiently high value of β0.

Secondly, even in the strict β0 = 0 limit, collisions and an
out-of-plane electric field Ey are mechanisms outside of the
present model that could relax the electron transport in the
perpendicular direction, thus enabling u⊥e ̸= 0 and, as a side
effect and as dictated by the continuity equation, allow u∥e ̸= 0
(and therefore electron current extraction from the sources)
even on inner magnetic lines.

The main effect of non-zero collisions on the in-plane elec-
tron transport can be understood by including a new term in
electron momentum equation (5), which now becomes

0=−∇(nTe)+ n∇ϕ − nue×B−Re, (25)

where Re = nmeνeue is a simple representation of the colli-
sional term. The y projection of this equation yields

u⊥eB= χ−1uye, (26)

with χ = B/(meνe) the local Hall parameter. Hence, a perpen-
dicular electron flux arises, with u⊥e ≠ 0 pointing in the dir-
ection opposite to the confining −euyeB1⊥ force.

An electric field in the out-of-plane direction,Ey1y, can also
enable perpendicular electron flux. TheE×B drift induced by
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this field generates a collisionless u⊥e. This mechanism may
play a role e.g. in 3D MA expansions, where Ey may arise if
the plasma undergoes lateral polarization, but is not present in
the 2D planar geometry studied here.

Thirdly, another major aspect to be discussed is the valid-
ity of the electron model. The profile of He that is defined at
the upstream plane by the boundary conditions on n, Te, and ϕ
fully determinesHe in the rest of the domain, and thereforeH ′

e,
which dictates uye and defines themagnetic force density in the
plume. The map ofHe, together with the map of n, also defines
the electrostatic potential ϕ. As such, He has a central role on
the MA plasma dynamics. However, while it is reasonable to
prescribe He on the plasma-carrying magnetic lines that pass
through the source, it is not evident what should be the condi-
tion on the external lines outside of this main magnetic tube,
where plasma density is negligible. Here, in this first simula-
tion, we have opted to define He by setting n≃ 0 and ϕ= 0 at
the upstream plane for those lines. A similar problem arises in
cases with β0 > 0, if an ‘X’ point forms that bears a new mag-
netic regions beyond it, disconnected from the plasma sources,
as discussed in section 3.2. At present, we have extended the
value ofHe on the last magnetic line before the ‘X’ point to this
new region. Incidentally, note that if He were constant every-
where (which can always be achieved with the right choice
of ϕ upstream), there would be no uye and hence no magnetic
force on the electron fluid, and the magnetic guiding effect of
the MAwould disappear; this conclusion applies to traditional
MNs too [5].

The electronmodel may need to be revisited to include iner-
tia effects, finite Larmor radius effects, and/or more advanced
closure relations based on a kinetic description, which may
play a non-negligible role in some of the regions mentioned
above. Altogether, these effects may modify the He conserva-
tion law and the parallel and perpendicular transport of elec-
trons. Similarly, the assumption of quasineutrality may need to
be dropped in favor of integrating Poisson’s equation, in low
density regions.

Fourthly, the applicability of the 2D planar MA model to
describe the actual 3D MA remains to be assessed. While it is
currently expected that the planar model captures the essence
of the mechanisms at play in the actual MA, adding bounds to
the plasma in the third dimension can have additional effects,
such as the possible set up of a polarization Ey field that further
changes the axial dynamics due to the E×B drift as discussed
above. Bounds in the y direction also demand the closure of
out-of-plane plasma currents jy, which will modify the plasma
solution and the plasma-induced magnetic field with respect
to the 2D planar ones. Additionally, the plasma expansion
is stronger in 3D than in 2D, resulting in a faster-decreasing
plasma density and electrostatic potential.

Fifthly, it is noted that the present model with cold ions
neglects the ion temperature increase that is expected to occur
across the shock structure seen in the solution. Including finite
ion temperature and the ion energy equation in the model
would be a necessary first step to study these aspects con-
sistently. Alternatively, ions could be modeled as two distinct
species, representing the ion beams coming from each plasma
source, and overlapping in the interaction region. Ultimately,

the correct treatment of the collisionless shock requires a kin-
etic model.

Lastly, we note that while the MAmodel remains to be val-
idated against experiment directly, it relies on similar hypo-
thesis to those of the MN model of [5]. That model has
shown good agreement with existing laboratory measure-
ments in the literature, in particular the plasma expansion and
magnetic thrust generation [27, 28], ion-inertia-driven plasma
detachment [29], and the role of the plasma-induced magnetic
field [30].

5. Conclusion

A MA is expected to form when the MNs of two EPTs with
opposing polarities interact. It is also the topology of the mag-
netic accelerator in the novel MAT concept. A first model of
the external expansion of a MA has been presented, which
already describes much of its interesting plasma physics in
spite of its simplifying assumptions.

The ions are seen to form a free jet that traverses the
closed lines of the magnetic field, even if electrons are fully
magnetized. An oblique shock structure forms when the
beams coming out of the two thruster outlets meet. Electron
equations reduce to algebraic relations in the inertialess,
fully-magnetized, polytropic, collisionless limit of the model,
and describe how the out-of-plane electron velocity is fully
determined by themagnetic fieldmap and the upstream bound-
ary conditions.

Electron current can only be extracted along magnetic lines
that do not connect the two sources through the symmetry
plane (i.e. outer lines), in the limits of the model. For a given
applied magnetic field map, these lines are delimited by a sep-
aratrix line; the location of this separatrix with respect to the
thruster outlet determines the type of MA. In the open MA
considered here, a globally-current free solution of the plasma
expansion is possible. If all the lines passing through the out-
let connected with the symmetry plane, no electron current
could be extracted in the strict fully-magnetized, collisionless,
planar, β0 = 0 limit of the electron model, and other mechan-
isms would need to be included to enable it.

Net positive magnetic thrust is produced from the interac-
tion of the out-of-plane plasma currents and the applied field.
These currents are dominated by the electron contribution at
low and mild ion magnetization strengths. It is observed that
most of the positive contribution to thrust comes from the ini-
tial stages of the expansion, while a small negative (drag) con-
tribution results from the region where the magnetic lines bend
back to the device.

The plasma-induced magnetic field Bp has been shown to
stretch the MA downstream when β0 ̸= 0, and to increase the
fraction of electron current-carrying magnetic lines that pass
through the source. The stretched arch has a smaller negat-
ive drag contribution to thrust, and indeed a monotonically
increasing magnetic thrust curve results already for moderate
values of β0. Hence, modeling the plasma-induced magnetic
field is essential for the correct description of the MA dynam-
ics. This contrast with the case of an axisymmetric MN, where
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the deformation of the field caused by Bp plays a rather sec-
ondary role in thrust generation at small β0.

We conclude that the present preliminary analysis supports
the feasibility of the MA topology for plasma acceleration
and magnetic thrust generation, and therefore, we identify no
showstopper to flying pairs of EPTs with opposing polarities
or the novel MAT configuration. More advanced models and
laboratory experiments must ensue to fully ascertain this.
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