
The Journal of Systems & Software 203 (2023) 111723

B
a

b

c

a
t
i
o
u
i
o

b
s
t
t
T

(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

EnhancingWeb Applications Observability through Instrumented
Automated Browsers✩

oni García a,∗, Filippo Ricca b, Jose M. del Alamo c, Maurizio Leotta b

Universidad Carlos III de Madrid, Madrid, Spain
Università di Genova, Genova, Italy
ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain

a r t i c l e i n f o

Article history:
Received 18 June 2022
Received in revised form 17 January 2023
Accepted 19 April 2023
Available online 5 May 2023

Keywords:
Browser automation
Log gathering
Empirical study

a b s t r a c t

In software engineering, observability is the ability to determine the current state of a software system
based on its external outputs or signals such as metrics, logs, or traces. Web engineers rely on the web
browser console as the primary tool to monitor the client-side of web applications during end-to-end
tests. However, this is a manual and time-consuming task due to the different browsers available.
This paper presents BrowserWatcher, an open-source browser extension providing cross-browser
capabilities to observe web applications and automatically gather browser console logs in different
browsers (e.g., Chrome, Firefox, or Edge). We have leveraged this extension to conduct an empirical
study analyzing the browser console of the top-50 public websites manually and automatically. The
results show that BrowserWatcher gathers all the well-known log categories such as console or error
traces. It also reveals that each web browser additionally includes other types of logs, which differ
among browsers, thus providing distinct pieces of information for the same website.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
w
e
(
i
e
f
m
t
m
t
e

a
a
F
e
v
a
a
A

1. Introduction

Observability and monitoring are frequently used interchange-
bly, although slight differences exist between these terms. On
he one hand, IEEE defines monitoring as the process of supervis-
ng, recording, analyzing, or verifying the operation of a system
r component (IEEE, 1990). On the other hand, observability
ses instrumentation tools to provide insights that aid monitor-
ng. In other words, monitoring can happen when a system is
bservable (Niedermaier et al., 2019).
The term observability comes from the classical control theory

y Kalman (1970) and refers to the ability to infer the internal
tate of a system through the collection and analysis of its ex-
ernal outputs (Niedermaier et al., 2019). It allows understanding
he system’s internal state by leveraging its external indicators.
he three pillars of observability are:

- Metrics: measures of system performance over time, such as
response time, transactions per second, or memory usage, to
name a few.

- Logs: lines of text (typically timestamped) that a system
produces when running a piece of code.

✩ Editor: Earl Barr.
∗ Corresponding author.

E-mail addresses: boni.garcia@uc3m.es (B. García), filippo.ricca@unige.it
F. Ricca), jm.delalamo@upm.es (J.M. del Alamo), maurizio.leotta@unige.it
M. Leotta).
ttps://doi.org/10.1016/j.jss.2023.111723
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
- Traces: representation of causally related distributed events
(such as selected logs) that characterize the request flow of
a given operation in a software system.

Observability can be essential for maintaining complex soft-
are systems and determining the root cause of any issue. For
xample, in web testing, when an automated end-to-end test fails
e.g., with Selenium WebDriver1), and since the whole system
s tested, it is usually challenging to discover the underlying
rror cause (García et al., 2020). A relevant source of information
or an end-to-end failed test can be the browser log since it
ight contain client-side error traces that allow determining

he cause of the failure. Nevertheless, log gathering from auto-
ated web browsers can be complex due to the lack of proper

ooling. Therefore, this process is typically manual, costly, and
rror-prone.
To mitigate this problem, this paper presents BrowserWatcher,

novel open-source browser extension designed to observe web
pplications by instrumenting web browsers such as Chrome,
irefox, or Edge. Its features are cross-browser console log gath-
ring, log displaying, tab recording (i.e., capturing the browser
iewport as a media file), Content Security Policy (CSP) disabling,
nd JavaScript/CSS injection. BrowserWatcher can be used as
n extension in any browser implementing the WebExtensions
pplication Programming Interface (API) (Mozilla MDN, 2022a;

1 https://www.selenium.dev/documentation/webdriver/
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111723
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://creativecommons.org/licenses/by/4.0/
mailto:boni.garcia@uc3m.es
mailto:filippo.ricca@unige.it
mailto:jm.delalamo@upm.es
mailto:maurizio.leotta@unige.it
https://www.selenium.dev/documentation/webdriver/
https://doi.org/10.1016/j.jss.2023.111723
http://creativecommons.org/licenses/by/4.0/


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

C
w

c
o
u
a
m
p
a
d
w

e
t
a
v
t
a
s
S
e
S
t
o

2

t
p
o

2

o
t
a
2
t
(
i
e
t

u
l
(
I
d
e
S
J
i
a

b
t
c
v
t

2
b
D
W
h
d
m
2
e
f

2

a

hrome Team, 2022b) (Chrome, Firefox, Edge, etc.) or integrated
ith automated testing tools.
To show its applicability and assess its effectiveness we have

arried out an experimental study in which the browser logs
f the top-50 most popular websites are gathered automatically
sing the major web browsers. To compare these results with
ground truth, the console of each browser is also collected
anually. The comparison reveals that each web browser dis-
lays multiple, sometimes different, types of logs (i.e., errors
nd warnings of different categories) and also shows relevant
ifferences in the logs produced by the same website in different
eb browsers.
The remainder of this paper is structured as follows. Section 2

xplains the background and motivation of this work. Then, Sec-
ion 3 presents the proposed toolset to enhance observability in
utomated end-to-end tests in web applications. Section 4 pro-
ides experimental proof of the presented approach by analyzing
he browser logs of the top-50 most popular websites gathered
utomatically with our solution and also through manual in-
pection. In the light of the results obtained in this experiment,
ection 5 analyzes the impact of browser log gathering in end-to-
nd testing and its implications in cross-browser testing. Then,
ection 6 presents similar works available in the current litera-
ure. Finally, Section 7 summarizes the findings and future steps
f this work.

. Background and motivation

This section presents the Selenium WebDriver architecture,
he automated testing library considered in this paper. Then, it
rovides an example to explain the problem faced that motivates
ur work.

.1. Selenium WebDriver

Software testing consists of the dynamic evaluation of a piece
f software, called System Under Test (SUT). Automated software
esting implies using specific tools and frameworks to implement
nd execute test cases (or simply tests) against the SUT (Bertolino,
007). Depending on the size of the SUT, there are different
esting levels. Some of the most relevant levels are unit testing
i.e., assessing individual elements, such as classes or methods),
ntegration testing (i.e., testing different units as a combined
ntity), and end-to-end testing (i.e., testing the whole system
hrough its user interface) (Quadri and Farooq, 2010).

Selenium WebDriver (often known as simply Selenium, like its
mbrella project) is an open-source library that allows control-
ing web browsers programmatically using different languages
such as Java, JavaScript, Python, Ruby, and C#) (García, 2022).
n other words, Selenium WebDriver is a library that allows the
evelopment of end-to-end tests for web applications (Leotta
t al., 2016a). A recent survey about software testing recognized
elenium as the most valuable testing framework, followed by
Unit and Cucumber (Cerioli et al., 2020). All in all, Selenium
s frequently considered the de-facto framework for browser
utomation (García et al., 2020).
Selenium WebDriver uses the native capabilities of each

rowser to support the automation. For this reason, a test using
he SeleniumWebDriver API requires an intermediate component
alled driver in the Selenium jargon. Each browser vendor pro-
ides a specific driver. For example, the necessary driver to con-
rol Chrome with Selenium WebDriver is called chromedriver,2

2 https://chromedriver.chromium.org/
2

Fig. 1. Selenium WebDriver architecture.

Fig. 2. WebDriverManager usage statistics.

geckodriver3 for Firefox, or msedgedriver4 for Edge. A driver is
a component that receives incoming messages from Selenium
WebDriver tests using a standard protocol called W3C Web-
Driver (Stewart and Burns, 2022), based on JSON messages over
HTTP. The driver translates each W3C WebDriver message to a
native command that the browser can understand, such as the
DevTools protocol in Chromium-based browsers (such as Chrome
and Edge) or Marionette in Firefox. Therefore, as illustrated in
Fig. 1, the Selenium WebDriver architecture has three layers
composed by the test using the Selenium WebDriver API, the
driver, and the browser.

WebDriverManager5 is an open-source Java helper library for
Selenium WebDriver. Its primary feature is automated driver
management for the drivers (e.g., chromedriver or geckodriver)
required by Selenium WebDriver (García et al., 2021; Leotta et al.,
022). It also discovers browsers installed in the local system,
uilds WebDriver objects (such as ChromeDriver, Firefox-
river, etc.), or runs browsers in Docker containers seamlessly.
ebDriverManager was first released in 2015 and since then, it
as become a well-known helper utility for Selenium WebDriver
evelopers. Fig. 2 shows the evolution of the WebDriverManager
onthly downloads and unique IPs from May 2021 to April
022 according to the Maven Central Sonatype Statistics.6 For
xample, WebDriverManager was downloaded 1,354,172 times
rom 312,621 unique IPs in April 2022.

.2. Motivational example

As introduced before, logs are one of the pillars of observ-
bility. In the end-to-end testing arena, the browser console

3 https://github.com/mozilla/geckodriver
4 https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
5 https://bonigarcia.dev/webdrivermanager/
6 https://oss.sonatype.org/

https://chromedriver.chromium.org/
https://github.com/mozilla/geckodriver
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://bonigarcia.dev/webdrivermanager/
https://oss.sonatype.org/


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723
Fig. 3. Example of log error trace in the browser console.
Table 1
Traceable log categories (i.e., types of logs that BrowserWatcher is able to monitor and gather).
Category Description Example

console-log Regular messages (i.e., calls
to console.log)

console-warn Warning messages (i.e.,
calls to console.warn)

console-error Error messages (i.e., calls to
console.error)

console-info Informative messages (i.e.,
calls to console.info)

console-other Other console methods,
such as console.dir,
console.time,
console.timeEnd,
console.table, or
console.count)

js-error JavaScript error traces (e.g.,
uncontrolled exceptions)

unhandled-
rejection

Error when a JavaScript
Promise with no rejection
handler is rejected

csp-violation Error when a Content
Security Policy (CSP)
constraint is violated

xhr-error Error responses from
XMLHttpRequest
2
u
F

(
t
s
f
e

can contain relevant data to debug and discover the underlying
cause of a failed test. Consider the following example. A sample
webpage7 playing the role of REST client makes requests to an
external REST service (García, 2022). After each request, the re-
sponse is displayed in the document body. As illustrated in Fig. 3,
one of the requests (the one triggered by the 404 button) uses
a non-existing endpoint. As a result, no response is displayed on
the page, and an error trace appears in the browser console.

A typical end-to-end test automated with SeleniumWebDriver
would interact with the page buttons to send requests, waiting for
the results to be displayed in the body. In case of error, the test

7 https://bonigarcia.dev/selenium-webdriver-java/rest-client.html
 a

3

typically fails for a timeout or non-existing element exception
(e.g., triggered by a locator expression unable to find the element
of interest in the web page (Leotta et al., 2021, 2016b; Nass et al.,
023)). Having access to the browser console would be key to
nderstanding the cause, in this case, a bad request (404 Not
ound) to a remote endpoint.
This scenario shows an example of a particular error type

labeled as xhr-error in Table 1) that can be debugged using
he browser console. Moreover, as explained in the upcoming
ections, other log categories can contain relevant information
or failure analysis. Another typical example is the uncaught
xceptions due to JavaScript or CSP violations, to name a few. In
ddition, warnings can be interesting to gather. These messages

https://bonigarcia.dev/selenium-webdriver-java/rest-client.html


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

a
t
p
t

n
s
t
n
g
a
t
i
b
f
t
b
c
2
l
i
g
a

3

p
d
c
b
l

3

Fig. 4. Example of console log gathering through BrowserWatcher.
t
J
b
n
e
w
2
c
c

re symptoms that do not provoke an immediate problem in
he SUT but are alerting to a situation that can lead to future
roblems. Some examples of these warnings are deprecations in
he JavaScript or CSS code.

Therefore, gathering logs from automated tests with Sele-
ium WebDriver can be paramount for failure analysis. Moreover,
olving warnings in advance is a good practice to prevent fu-
ure problems. Unfortunately, the W3C WebDriver protocol does
ot provide any standard mechanism for browser console log
athering. Alternatively, there are some browser-specific mech-
nisms for log gathering, such as the Chrome DevTools Pro-
ocol (CDP) log module (Chrome Team, 2023) or the custom
mplementation for log gathering (through the browser capa-
ility called goog:loggingPrefs) implemented by the driver
or Chrome (i.e., chromedriver) (Solntsev, 2019). Nevertheless,
hese non-standard features are unavailable in non-Chromium-
ased browsers like Firefox. The evolution of W3C WebDriver is
alled WebDriver BiDirectional (BiDi) protocol (Burns and Smith,
022), which will support functionality and events related to
ogging. Unfortunately, BiDi is still in draft status, and its adoption
s scarce in browsers and drivers. As a result, automated log
athering is an open issue in improving the observability of web
pplications in major browsers.

. Proposed toolset

This paper contributes to the browser automation space by
roposing BrowserWatcher, an open-source tool that provides
ifferent features to observe web applications. Web engineers
an use BrowserWatcher as a regular extension installed on a
rowser or through instrumented browsers controlled with Se-
enium WebDriver and managed by WebDriverManager.

.1. BrowserWatcher

BrowserWatcher8 is an open-source browser extension ex-
plicitly designed to enhance observability in web applications.
BrowserWatcher has been implemented on top of the WebEx-
tensions API, a set of cross-browser JavaScript APIs to modify and
enhance the browser’s capabilities (Mozilla MDN, 2022a; Chrome
Team, 2022b). These features provided by BrowserWatcher can
be used manually, using its Graphical User Interface (GUI), and
programmatically through a JavaScript API. These features are the
following:

8 https://bonigarcia.dev/browserwatcher/
4

- Console log gathering. BrowserWatcher allows gathering dif-
ferent types of browser logs. The data gathered from the
console and listeners are stored in a custom property of the
console object called _bwLogs. Fig. 4 shows a screenshot
of a sample web page9 which writes several logs in the
console, and how BrowserWatcher gathers this information.

- Console log displaying. When this feature is enabled, Browser-
Watcher allows displaying the log gathered in the webpage
under monitoring as dialog notifications in real-time. Fig. 5
shows a screenshot illustrating it. This feature can be helpful
for manual inspection of the generated logs. Also, it can be
used in conjunction with tab recording (explained next) to
keep track of the logs during automated web navigation.

- Console tab recording. BrowserWatcher allows recording
what is happening in a browser tab (e.g., when a user
is navigating a website) and exporting the recording as a
media file using WebM video format. This feature is based
on the tabCapture API (Chrome Team, 2022c).

- JavaScript and CSS injection. BrowserWatcher allows inject-
ing custom JavaScript code, libraries, and CSS stylesheets.
This feature allows customizing web pages with external
client-side logic and styles (e.g., to track the mouse move-
ments, among many other tuning capabilities).

- Disabling CSP. Content Security Policy10 (CSP) is the name of
an HTTP response header aimed at improving the security
of a website by instructing the browser about the resources
it is allowed to load for that page e.g. allowing images to
be loaded from anywhere but restricting a form action to
a given endpoint. Nevertheless, developers might want to
bypass the CSP headers received from the server for testing
purposes (e.g., to inject custom JavaScript code, as explained
above, even when CSP is enabled).

Regarding log gathering, BrowserWatcher has been designed
o collect well-known log categories, such as console logs or
avaScript error traces. The implementation of this feature is
ased on JavaScript using the so-called monkey patching tech-
ique (also known as runtime hooking). This technique allows
xtending or modifying the default behavior of a piece of soft-
are at runtime without changing its primary purpose (Hunt,
019). In particular, BrowserWatcher overrides the JavaScript
onsole prototype to monitor the calls of its methods (e.g.,
onsole.log). Moreover, BrowserWatcher implements different

9 https://bonigarcia.dev/selenium-webdriver-java/console-logs.html
10 https://content-security-policy.com/

https://bonigarcia.dev/browserwatcher/
https://bonigarcia.dev/selenium-webdriver-java/console-logs.html
https://content-security-policy.com/


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

u
e
n
(
l
l

B
T
f

3

w
D
S
t
l
t
T
S
b

Fig. 5. Example of log displaying with BrowserWatcher.
Table 2
WebDriverManager API methods for browser monitoring through Browser-
Watcher.
WebDriverManager method Description

watch() Enable log gathering
watchAndDisplay() Enable log gathering and displaying
getLogs() Read the captured logs
startRecording() Start tab recording
stopRecording() Stop tab recording
disableCsp() Disable CSP headers

JavaScript event listeners that write information in the browser
console (e.g., error traces). To implement this feature, the
BrowserWatcher extension manifest uses permissions to allow
the execution of client-side inline content scripts. These scripts
are configured to be executed before any Document Object Model
(DOM) element is constructed or any other script is run. This
behavior ensures that the patched console prototype is always
sed by all the JavaScript logic handled by the SUT, even for
arly calls (e.g., for eager page loading strategies, like in Sele-
ium WebDriver (García, 2022)) or when a page change happens
i.e., during manual or automated web navigation). This early
oading mechanism can be achieved thanks to the WebExtensions
ifecycle (Chrome Team, 2021).

All in all, and given the technical possibilities of JavaScript,
rowserWatcher is capable of gathering a set of log categories.
able 1 summarizes these log categories, called traceable logs
rom now on in this paper.

.2. WebDriverManager integration

As of version 5.2.0, WebDriverManager is able to monitor
eb applications through BrowserWatcher. To that aim, Web-
riverManager instruments the browsers to be controlled with
elenium WebDriver by installing BrowserWatcher on them at
he beginning of the automated session and before the SUT is
oaded. Then, WebDriverManager provides several API methods
hat allow invoking the features provided by BrowserWatcher.
able 2 summarizes these methods. Then, Fig. 6 shows a basic
eleniumWebDriver test using the log gathering feature provided
y BrowserWatcher through WebDriverManager.
5

4. Experimentation

We focus on the browser console logs for the experimental
validation of this work. Logs are considered one of the pillars
of observability. Hence, the information in the browser logs is
paramount for developers in failure analysis (also known as trou-
bleshooting) of automated end-to-end tests. Therefore, this em-
pirical study aims to assess the effectiveness of BrowserWatcher
in gathering the logs generated by different browsers. From this
overall goal, the following Research Questions (RQs) are derived:

RQ1. What are the differences between the logs gathered
automatically with BrowserWatcher and WebDriverManager and
the actual logs in the browser console?

RQ2. Are there any differences between the logs gathered in
the major web browsers (both automatically and manually)?

To investigate these RQs quantitatively, we have to implement
an end-to-end automated test suite based on Selenium Web-
Driver and WebDriverManager plus BrowserWatcher to evaluate
different SUTs using different browsers. In addition, we need to
gather the browser logs manually. We will consider manually
collected logs as our ground truth.

4.1. Design and settings

The first aspect we need to decide for designing the experi-
mentation is which browsers are the most used nowadays. We
focus on desktop browsers, considering mobile browsers a possi-
ble future line. Thus, we can find different online statistics about
browser desktop usage. Fig. 7 shows a bar chart of the desktop
browser market share worldwide from Apr 2021 to Apr 2022 ac-
cording to StatCounters.11 The top-4 desktop browsers, according
to these statistics, are Chrome, Safari, Edge, and Firefox. Never-
theless, we cannot use Safari for the automated analysis since
the Selenium WebDriver API does not allow installing browser
extensions programmatically in Safari (therefore, WebDriverMan-
ager does not support it). In conclusion, we focus on the following
desktop browsers in the experiment: Chrome, Edge, and Firefox.

11 https://gs.statcounter.com/browser-market-share/desktop/worldwide/
#monthly-202104-202204-bar

https://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-202104-202204-bar
https://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-202104-202204-bar


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

t

Fig. 6. Example of Selenium WebDriver test using the monitoring capabilities provided by WebDriverManager plus BrowserWatcher.
Fig. 7. Desktop browser market share worldwide (Apr 2021–Apr 2022).
Source: StatCounters.

Another aspect we need to select is the SUT (i.e., the target
website) for the experimentation. We aim to gather heteroge-
neous logs. Thus, we use existing popular websites worldwide as
SUT. To that aim, we rely on the information published by Alexa
Top Sites, a web service that provides lists of websites ordered by
Alexa Traffic Rank (Amazon, 2022). The list of top-50 websites,
according to this source on April 19, 202212 is presented in
Table 3. We use a unique identifier for each website (S01 to S50)
to refer to each website in the subsequent sections.

Finally, we implement a Selenium WebDriver automated end-
to-end test case using WebDriverManager and BrowserWatcher.
This test is parameterized using the cartesian product of the
target browsers (Chrome, Edge, and Firefox) and the SUTs (top-50
websites) as arguments. In other words, the test is executed 150
times, one time per browser and website. For each execution, the
test performs the following steps:

1. BrowserWatcher injection. The test invokes the methods
watch() and create() provided by WebDriverManager.
These methods allow the creation of a Selenium WebDriver
session in which BrowserWatcher is injected before the
DOM is loaded. This way, the browser logs gathering starts
from the beginning of the automated session.

2. Website load. The test invokes the Selenium WebDriver
method get() to load the root page of the different SUTs.

12 https://web.archive.org/web/20220319013139/https://www.alexa.com/
opsites
6

The default page loading strategy used by Selenium Web-
Driver (called normal) waits until for entire page is loaded.
This happens when the DOM readyState property is com-
plete, meaning that the document and all sub-resources
(such as JavaScript files or CSS stylesheets) have finished
loading (García, 2022).

3. Log gathering. The test invokes the WebDriverManager
method getLogs() to collect the browser log per execu-
tion.

4. File writing. The test creates a text file per execution con-
taining the results (e.g., 01_google.com_CHROME.txt).

The 150 text files generated from the automated tests are the
first set of evidence used for data analysis and answering the RQs.
In addition to this information, we need to gather the browser
console manually for the same input sources. In other words,
we need to visit the 50 target websites using Chrome, Edge, and
Firefox and collect the console logs manually. As a result, we
generated manually another 150 text files.

For replicability, we open-sourced the source code and the
generated assets for this experimentation on GitHub.13 This
repository contains the Selenium WebDriver test for the auto-
matic log gathering. In addition, it includes some shell scripts
(for Windows and Bash) designed to save time in the manual
gathering step by loading the 50 target websites on the different
browsers.

The experiment was done on May 3, 2022. The automated and
manual log gathering processes were carried out from Madrid
(Spain) on a Windows PC with an AMD Ryzen 7 64-bit CPU
and 16 GB of RAM. The browsers used for the experiment were
Chrome 101.0.4951.67, Edge 101.0.1210.53, and Firefox 100.0.1.
The resulting text files containing the gathered logs (both auto-
mated and manual) are published in the abovementioned GitHub
repository and are analyzed in the following subsection.

4.2. Results

To answer the RQs, we compared every single text file gen-
erated in the automated tests (e.g., Chrome browser and S01
website) with its corresponding output of the manual process.

This comparison was a manual process since the logs gath-
ered manually and automatically have different formats, even
for the same log entries. Fig. 8 illustrates these differences with

13 https://github.com/bonigarcia/webdrivermanager-log-gathering

https://web.archive.org/web/20220319013139/https://www.alexa.com/topsites
https://web.archive.org/web/20220319013139/https://www.alexa.com/topsites
https://github.com/bonigarcia/webdrivermanager-log-gathering


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

a
a
c
c
v
b
f

e
f
c

Table 3
Top-50 websites according to Alexa Top Sites on April 19, 2022.
Id Website Id Website Id Website

S01 google.com S02 youtube.com S03 baidu.com
S04 facebook.com S05 instagram.com S06 qq.com
S07 bilibili.com S08 yahoo.com S09 wikipedia.org
S10 amazon.com S11 twitter.com S12 zhihu.com
S13 linkedin.com S14 reddit.com S15 whatsapp.com
S16 taobao.com S17 live.com S18 chaturbate.com
S19 bing.com S20 sina.com.cn S21 sohu.com
S22 csdn.net S23 tmall.com S24 weibo.com
S25 zoom.us S26 microsoft.com S27 jd.com
S28 github.com S29 google.com.hk S30 netflix.com
S31 163.com S32 office.com S33 vk.com
S34 canva.com S35 microsoftonline.com S36 1688.com
S37 aparat.com S38 naver.com S39 twitch.tv
S40 pornhub.com S41 stackoverflow.com S42 amazon.in
S43 yahoo.co.jp S44 xvideos.com S45 myshopify.com
S46 paypal.com S47 tiktok.com S48 aliexpress.com
S49 douban.com S50 apple.com
Fig. 8. Example of log comparison (manual vs. automatic) for https://yahoo.com.
concrete example: the logs gathered for S08, both manually
nd automatically. As shown in the picture, the content seems
ompletely different. Nonetheless, analyzing its content, it can be
hecked that it corresponds to the same log entries: three CSP
iolations and two console.log calls. Since this comparison can
e an error-prone task, the results were double-checked by the
our authors of this paper before further analysis.

We counted the matching log entries in each file, grouping
ach entry per category. At the end of this process, we found the
irst relevant finding of this investigation. In addition to the log
ategories gathered by BrowserWatcher, presented in Table 1 and
called traceable in this paper, we found other types of logs. From
now on, we refer to these categories using the term non-traceable
in contrast to the traceable logs introduced in Section 3.1. On
the one hand, traceable logs can be collected using JavaScript’s
listeners and monkey-patched objects. On the other hand, to the
best of our knowledge, non-traceable logs cannot be gathered
using these techniques, and therefore, they are out of the scope
of a browser extension like BrowserWatcher.

Furthermore, we discovered that some non-traceable logs ap-
peared in all the browsers under study (Chrome, Edge, and Fire-
fox), and some of them were browser-specific. This way, we
group these non-traceable log categories as follows:

- General: Log categories found in Chrome, Edge, and Firefox
(Table 4).

- Chromium-specific: Log categories found both in Chrome and
Edge (Table 5).

- Chrome-specific: Log categories found only in Chrome

(Table 6).

7

- Edge-specific: Log categories found only in Edge (Table 7).
- Firefox-specific: Log categories found only in Firefox
(Table 8).

Table 9 shows the numeric results of the log gathered both
manually and automatically, providing the details about the non-
traceable log categories. We use these results to continue with the
data analysis and answer the RQs in the following subsections.

4.2.1. RQ1: Automatically vs. manually gathered logs
The traceable logs category is the only type of logs present in

the manual and automated processes. Therefore, we can directly
compare the results in each browser (Chrome, Edge, and Firefox)
in the automated and the manual processes. The following pic-
tures (Fig. 9 for Chrome, Fig. 10 for Edge, and Fig. 11 for Firefox)
show a comparison of the matching log entries in the traceable
category, both in the automated and the manual analysis.

These results reveal that BrowserWatcher gathers all traceable
logs. Nevertheless, we find relevant differences when considering
the logs that cannot be collected automatically with Browser-
Watcher (i.e., the non-traceable logs) as well. Therefore, consid-
ering the whole number of logs (i.e., traceable and non-traceable,
as shown in Table 9), 76 entry logs were captured in Chrome
out of 220 (i.e., 36% effectiveness), 72 entry logs were captured
in Edge out of 239 (i.e., 30.12%), and 145 out of 993 in Firefox
(i.e., 14.60%).

The following pictures display these results using bar charts.
First, Fig. 12 shows the non-traceable logs that are present in all
the target browsers in this study (i.e., Chrome, Edge, and Firefox).
Second, Fig. 13 shows the non-traceable logs in the Chromium-

based browsers (i.e., Chrome and Edge). Finally, Fig. 14 shows

https://yahoo.com


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

d
b

Table 4
General log categories (i.e., non-traceable types of logs that have been found on Chrome, Edge, and Firefox).
Category Description Example

load-error HTTP errors (e.g., 451
Unavailable) when
loading resources

mixed-content Load of HTTP resources
over an HTTPS session

js-deprecated Use of JavaScript deprecated
elements

xhr-warn Warnings when invoking
XMLHttpRequest
ResponseType objects

css Warning when applying CSS
styles
Table 5
Chromium log categories (i.e., non-traceable types of logs that have been found on Chrome and Edge).
Category Description Example

devtools Problems related to
DevTools (Chrome Team,
2022a)

x-frame Problems related to the
X-Frame-Options HTTP
response header

corb Cross-Origin Read Blocking
(CORB) blocked responses

header-error Error with
Permissions-Policy
headers

manifest Problems with the webapp
manifest (Cáceres et al.,
2022)

cross-origin Problems with Cross-Origin
Resource Sharing (CORS)
(Hossain, 2014)
Table 6
Chrome log categories (i.e., non-traceable types of logs that have been found only on Chrome).
Category Description Example

notifications-
permission

Temporarily stop an origin
from requesting a
permission

session-local-
storage

Warning due to the session
or local storage is disabled
the non-traceable logs present only in a given browser (Chrome,
Edge, or Firefox).

In the light of these results, the answer to RQ1 is two-folded,
epending on the log type. On the one hand, the difference
etween the traceable logs gathered manually and automatically
8

is only syntactic. This fact means that the content of traceable
logs automatically gathered is syntactically different from the
ground truth (i.e., the manually collected logs), but its content
is semantically equivalent (as illustrated, e.g., in Fig. 8). In other
words, both sets of logs refer to identical log entries.



B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

e
O
M
(
o
t

4

g
p
a

Table 7
Edge log categories (i.e., non-traceable types of logs that have been found only on Edge).
Category Description Example

tracking-
prevention

Warnings due to tracking
prevention, which is Edge’s
feature that restricts
trackers to access
browser-based storage and
network

intervention Warnings due to lazy
images loading they are
likely to be viewed
Table 8
Firefox log categories (i.e., non-traceable types of logs that have been found only on Firefox).
Category Description Example

cookies Warnings due to cookies

csp-warn Warnings due to CSP

referrer-policy Use of less restricted policies

ignored-
unsupported

Problems related to observable
performance characteristics
(Peña Moreno, 2022)

sanitizer Downloadable font rejected by
sanitizer

media Unsupported MIME types

quirks-mode Page in Quirks Mode (i.e., a
backward compatibility
mechanism used in old
browsers)

x-content-type Problems related to the
X-Content-Type- Options
HTTP response header

http2 Problems related to HTTP/2

charset Problems related to the
document character encoding
Table 9
Number of manual and automated gathered logs in Chrome, Edge, and Firefox.

Automated Manual

Traceable Traceable General Chromium-
specific

Chrome-
specific

Edge-
specific

Firefox-
specific

Total

Chrome 76 76 35 103 6 N/A N/A 220
Edge 72 72 30 59 N/A 76 N/A 239
Firefox 145 145 68 N/A N/A N/A 780 993
a
c
a
o
c
w

On the other hand, there are relevant differences when consid-
ring all the possible log categories (i.e., the non-traceable logs).
verall, we conclude that the toolset composed of WebDriver-
anager and BrowserWatcher behaves correctly for the managed

i.e., traceable) log categories. Nevertheless, it shows limitations
n other log categories (called non-traceable in this work) as
hese cannot be collected through JavaScript.

.2.2. RQ2: Differences in the logs of different browsers
The second RQ investigates the differences between the logs

enerated in different browsers. We divide the analysis into two
arts to answer this question. First, we focus on traceable logs
nd then we analyze non-traceable ones.
 t

9

We find relevant differences between the traceable logs gen-
erated on different browsers. Fig. 15 illustrates these differences,
showing that the number of log entries is different for all the cate-
gories. Interestingly, there is a significant distinction: the number
of CSP violations. To understand this discrepancy, we check the
individual log captures. For instance, Fig. 16 shows the logs avail-
ble when loading S25 in Chrome, Edge, and Firefox. The browser
onsole in Chrome contains an uncontrolled JavaScript exception
nd warnings related to the local and session storage. Then, Edge
nly reports the same JavaScript exception. Finally, the Firefox
onsole is entirely different. Regarding CSP, it contains several
arnings and one violation. Although the CSP implementation in

he browsers under study are equivalent (Deveria and Schoors,



B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

2
C

a
a
p
l
E

Fig. 9. Traceable log categories in Chrome (automated vs. manual analysis).
Fig. 10. Traceable log categories in Edge (automated vs. manual analysis).
Fig. 11. Traceable log categories in Firefox (automated vs. manual analysis).
a
022), Firefox is more verbose (i.e., it displays CSP warnings that
hrome and Edge do not).
When coming to non-traceable general logs (Fig. 12), there

re several relevant differences among browsers. First, Chrome
nd Edge display many log entries related to mixed-content com-
ared to Firefox. On the other side, Firefox displays much more
ogs related to css and js-deprecation compared to Chrome and
dge. To illustrate these differences with examples, Fig. 17 shows
10
n example of the mixed-content displayed when loading S21.
Then Fig. 18 shows the differences related to css in S17. Finally,
Fig. 19 shows that only Firefox displays problems related to
js-deprecation when loading S48.

Concerning non-traceable Chromium logs (Fig. 13), the only
significant deviation appears in the devtools category. This dif-
ference is clearly illustrated in Fig. 20, in which Chrome displays
more entries related to this category when navigating S12.



B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

m
(
a
s

a
b
a
p
e

Fig. 12. General log categories in Chrome, Edge, and Firefox (manual analysis).
Fig. 13. Chromium log categories in Chrome and Edge (manual analysis).
Fig. 14. Browser-specific log categories in Chrome, Edge, and Firefox (manual analysis).
Finally, for non-traceable browser-specific logs (Fig. 14), the
ost numerous categories appears in Firefox. First, referrer-policy

an example can be seen on Fig. 19). Second, cookies (for instance,
s shown also on Fig. 19). And finally, csp-warn (for example,
hown in 16).
In conclusion, and answering RQ2, we conclude that there

re relevant differences in the logs displayed by the different
rowsers. First, in the logs collected automatically (i.e., the trace-
ble logs), the main difference occurs in the CSP violations re-
orted by Firefox, which are much more numerous than the CSP
rrors reported by Chrome and Edge. Second, concerning the logs
11
gathered manually (i.e., the non-traceable logs), there are several
log categories with heterogeneous results in the target browsers
of this study, such as mixed contents (more numerous in Chrome
and Edge than in Firefox), CSS and JavaScript deprecation warn-
ings (reported more times in Firefox than in Chrome and Edge),
or DevTools messages (reported more in Chrome than in Edge).

4.3. Threats to the research quality

When assessing the research quality, the reliability and valid-
ity of the results need to be considered.



B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

i
t
e
a
a
i
t
c
w

Fig. 15. Traceable log categories in Chrome, Edge, and Firefox (same results in manual and automated analysis).
Fig. 16. Logs in Chrome, Edge, and Firefox when loading https://zoom.us.
To minimize the threat to reliability, our experimental setting
s consistent, and our results are reproducible. Firstly, to ensure
he consistency of our experiment, we reduced the influence of
xternal factors that might create variation in the results. For ex-
mple, the same test was run for each website and browser. In the
utomated process, the test ended once the page was loaded. This
s done automatically with Selenium WebDriver by listening to
he complete Document Object Model (DOM) readiness state (Gar-
ía, 2022). Accordingly, in the manual process the test ended
hen the browser indicated the page was loaded by checking
12
the spinner displayed in the app icon during the page loading.
Admittedly, we cannot ensure the results will be the same across
time, as the websites may change. Besides, modern websites
can use lazy loading strategies to update web components after
loading the DOM. However, to reduce this threat, we carried out
manual and automated tests on the same day, with a difference
of around one hour between the automated and the manual tests.
Also, to minimize the threat to observer consistency, manual
and automated tests used sandboxed browsers (i.e., using a fresh
profile and default configuration per test).

https://zoom.us


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723
Fig. 17. Logs in Chrome, Edge, and Firefox when loading https://sohu.com.
Secondly, to support the reproducibility of our experiment all
the tests, assets, and results are publicly available on GitHub.
Furthermore, being integrated within GitHub Actions processes,
the experiment is automatically reproduced in a Continuous In-
tegration (CI) build.14

We took different measures to address the other threats to
validity. Firstly, we conducted an appropriate sampling, working
with the top-50 websites worldwide and the major browsers
that allow automated testing, representing more than 84% market
share. We acknowledge that the results obtained are not gener-
alizable to other browsers though (e.g. Safari), as this requires
further work we plan to address once these browsers adopt the
upcoming WebDriver BiDi protocol.

Secondly, to address the construct validity, and due to the lack
of comparable studies, we manually collected a ground truth to
compare our automated results. This fact is in itself a relevant
contribution other researchers can leverage upon as this data set
is also available on GitHub. Furthermore, different actions were
taken to avoid bias when comparing the logs collected manu-
ally and automatically. First, the log categories were discussed
by all the team members until a common understanding of all
the covered aspects was reached. Finally, the classification and
comparison of logs was double-checked by the four authors.

14 https://github.com/bonigarcia/webdrivermanager-log-gathering/actions
13
5. Discussion

This work is an effort to improve the observability capabilities
of web applications through a cross-browser extension called
BrowserWatcher. This extension has been built on top of the
WebExtensions API. This way, any modern web browser can
benefit from its observability features, such as log gathering or
tab recording.

Among all the features provided by BrowserWatcher, and be-
cause of its importance in failure analysis, we focused on the
capability for gathering browser logs in this paper. Log gathering
is not part of the standard mechanism for browser automation
(i.e., the W3C WebDriver protocol). Therefore, there is no cross-
browser mechanism widely adopted to date for performing this
task in automated tests.

To overcome this problem, as of version 5.2.0, WebDriver-
Manager allows instrument web browsers with BrowserWatcher,
providing a simple API to gather logs from automated Selenium
WebDriver tests. The main benefit of this approach is the seam-
less implementation of cross-browser log gathering (including in
Firefox, which was not possible to date). Thanks to the experi-
mental validation, we checked that the well-known log categories
(such as console and error traces) are collected seamlessly with
this toolset. Nevertheless, the proposed approach has a significant
limitation. Since it is based on JavaScript APIs, there are several
log categories (e.g., related to DevTools, mixed content, or CSS,

https://sohu.com
https://github.com/bonigarcia/webdrivermanager-log-gathering/actions


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

a
l
p
r

B
b
l
i
o
f
a

a
n
B
l
b
c
t
O
B
t
e

s
d

Fig. 18. Logs in Chrome, Edge, and Firefox when loading https://live.com.
W
h
r
b
(
r
2
D
T
M
m
b
i
f

m
c
d
w
B

6

i
s

mong others) that remain uncollected. We believe that these
ogs, called non-traceable in this paper, should be considered by
ractitioners (such as researchers and developers) in future work
elated to client-side browser logs.

We use the presented toolset (i.e., WebDriverManager plus
rowserWatcher) to browse popular websites with different
rowsers automatically. The differences found in the gathered
ogs revealed that web applications behave differently depend-
ng on the web browser used to render them. Therefore, in
ur opinion, cross-browser testing (i.e., using different browsers
or end-to-end testing) is essential to ensure consistent web
pplication behavior across all browsers.
This paper focused on Selenium WebDriver as the browser

utomation tool. Nevertheless, other browser automation tech-
ologies (such as Cypress, Playwright, or Puppeteer) can also use
rowserWatcher. For instance, when using Cypress (which uses
ocal browsers), developers can install BrowserWatcher in the
rowser to be automated with Cypress. Then, a Cypress script
an interact with BrowserWatcher using JavaScript (for example,
o collect the browser logs or record the automated session).
n the other hand, Playwright and Puppeteer scripts can use
rowserWatcher similarly to Selenium WebDriver, i.e., installing
he BrowserWatcher using its own API and interacting with the
xtension using the BrowserWatcher JavaScript API.
As a final remark, it is worth mentioning that the standard

olution for gathering the browser console is currently being
eveloped at the time of this writing. The evolution of the W3C
 s

14
ebDriver protocol is the W3C WebDriver BiDi protocol. BiDi
as a module for log gathering, implemented thanks to the bidi-
ectional communication between driver and browser. The first
rowser supporting BiDi has been Firefox. As of version 101
released on May 31, 2022), a WebDriver BiDi session can be
equested using the classic WebDriver protocol (Mozilla MDN,
022b). Hence, we plan to support the log gathering in Web-
riverManager using the W3C BiDi protocol in future releases.
he idea is to enhance the log gathering feature in WebDriver-
anager to be as complete as possible. To that aim, we plan to
ake this feature configurable between BrowserWatcher (cross-
rowser, based on JavaScript), the goog:loggingPrefs capabil-
ty and CDP (only available for Chromium-based browsers), and
inally, through BiDi (the standard option in the future).

Nevertheless, it is unclear if BiDi will provide a comprehensive
echanism to gather all types of logs, including the non-traceable
ategories found in this piece of research. We believe these logs
eserve further attention in future research (e.g., in client-side
eb observability) and development (e.g., to be considered in the
iDi standard).

. Related works

Although the error logs occurring on browser console are held
n high regard by practitioners during testing and debugging
essions, there are few scientific papers dealing with them. By
earching the web, it is possible to find various web articles, blogs

https://live.com


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

Fig. 19. Logs in Chrome, Edge, and Firefox when loading https://live.com.

Fig. 20. Logs in Chrome and Edge when loading https://zhihu.com.

15

https://live.com
https://zhihu.com


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

a
t
e
a
(
s
i
s

6

s
d
t
3
w
a
1
l
p
r
I
t
e
t
i
b
i
p

(
J
m
t
D
f
s
J
h
O
i

s
o

j

c

e

t
c
s
c
d
v
a
e
o
w
t
a
m
c

6

i
t
T
t
t
r
d
d
i
m
W

m
W
I
W
v

nd posts (e.g.,1516) that explain how to use a console and analyze
he errors contained therein. There are also some web articles
xplaining how to retrieve error logs using the LogEntries class
nd get() method provided by the Selenium WebDriver API
e.g.,17). We have decided to divide the related works into three
ub-sections: error analysis in JavaScript code, approaches able to
dentify errors and anomalies through console log analysis, and
tudies related to WebDriverManager.

.1. JavaScript errors

A work that emphasizes the importance of monitoring client-
ide web applications is that of Filipe and Araujo (2016). To
emonstrate the limitations of current monitoring tools, the au-
hors ran an experiment to reveal web page errors in a sample of
,000 web sites (selected similarly to us using Alexa — top-ranked
ebsites) including network and JavaScript errors. The results the
uthors obtained from their analysis are impressive: as many as
6% of the top 1,000 sites have errors in their own resources;
ess popular sites have even more. The errors considered in that
aper are: HTTP errors (4xx and 5xx), broken links and errors
elated to resources: fonts, style sheets, images and JavaScript.
t is interesting to note that a large proportion of errors are due
o JavaScript and in particular for the most popular websites to
xternal resources. The authors conclude the paper by presenting
hree possible different approaches to improve client observabil-
ty (which they call transparency). Among these approaches the
rowser extension solution is sketched, which we also considered
n our proposal, to get the most important metrics from the web
age interaction.
The goal of another empirical work presented by Ocariza et al.

2013) is that of understanding the root causes and impact of
avaScript faults in web applications. They discovered that the
ajority of JavaScript faults are DOM-related, that means that

hey are caused by interactions of the JavaScript code with the
OM. The authors conclude that most JavaScript faults originate
rom developer mistakes committed in the JavaScript code it-
elf, and not in server-side or HTML code, and as consequence
avaScript developers need development/testing tools that can
elp them to find JavaScript errors and reason about the DOM.
ur BrowserWatcher tool that enhances client-side observability
s one of the authors’ desired tools.

Another work with the aim of analyzing the JavaScript errors
hown in the console of a browser (specifically Firefox) is that
f Ocariza et al. (2011). They used FireBug, an add-on to the

Firefox web browser, nowadays no longed maintained,18 to catch
the error messages. Similarly to us the evaluation set consists of
50 websites from the Alexa top 100 most visited websites. The
contributions of this work are varied as well as the implications
for developers, testers and tool builders. Among the contributions
we mention the systematic methodology they developed to exe-
cute web applications in multiple testing speeds, and gather their
error messages from which we were partly inspired to carry out
our experiment.

6.2. Automated anomaly detection through console logs

Console logs are used not only in web applications but also
for automatic anomaly detection in complex systems, for instance

15 https://wordpress.org/support/article/using-your-browser-to-diagnose-
avascript-errors/
16 https://yoast.com/help/how-to-find-javascript-errors-with-your-browsers-
onsole/
17 https://thoughtcoders.com/blog/selenium-code-to-test-browser-console-
rror-logs/
18 https://getfirebug.com/
 W

16
composed of hundreds of software components running on thou-
sands of computing nodes (Bao et al., 2018). Differently from our
proposal which focuses on the problems of effectively collecting
logs from different browsers, in the context of complex systems
the major problem lies in the analysis of the logs. Indeed, a huge
quantity of run-time data is continuously collected and stored
in log files. Analyzing them to identify causes and locations of
problems in case of system malfunctions and failures is a complex
and useful task. There is thus a great demand for automatic
anomaly detection approaches based on log analysis (Bao et al.,
2018). As a consequence, several researchers proposed different
solutions. To try to solve this problem several approaches are
possible, including:

- Rule-based techniques learn rules that capture the normal
behavior of a system. An instance that is not covered by
any such rule is considered as an anomaly (Chandola et al.,
2009).

- Time series analysis-based techniques analyze the entire log
as a single sequence of repeating messages and try to find
anomalies with time series analysis methods (e.g., Yaman-
ishi and Maruyama (2005)).

- Learning-based techniques rely on Machine learning to de-
tect anomalies. Depending on the type of data involved
and the machine learning techniques employed, anomaly
detection approaches can be further classified into two sub-
categories (He et al., 2016): supervised anomaly detection
and unsupervised anomaly detection.

All these techniques could be useful also in the web applica-
ion context: indeed the top-50 websites considered in this study
an be considered complex systems, in particular from a server-
ide perspective. However, our study focuses on the browsers
onsole logs (so only client-side). During the experimentation we
iscovered that in general the amount of logs gathered when
isiting a single web page is not huge and can be reasonably
nalyzed by hand (as we did during our empirical study). How-
ver, BrowserWatcher allows to gather logs during the execution
f test suites where each test script potentially visits dozen of
eb pages: in that usage scenario the techniques presented in
he literature could help to quickly analyze the logs and finding
nomalies. Thus, BrowserWatcher can be also considered a funda-
ental enabler to perform such advanced analyses on client-side
onsole logs.

.3. WebDriverManager

WebDriverManager, the tool that among other things makes
t possible to use BrowserWatcher, has been reported the first
ime in the Selenium ecosystem survey by García et al. (2020).
hat survey, conducted in 2019 by 72 participants from 24 coun-
ries, revealed how practitioners use Selenium WebDriver in Web
esting. Focusing only on the driver management part, the study
evealed that 39% circa of the respondents declared to manage
river managers manually, while 35% circa of the respondents
eclared to carry out this process automatically. The remain-
ng users (i.e., 26% circa) claimed not to know how drivers are
anaged in their test suites. This result shows the spread of
ebDriverManager.
The complete methodology to carry out the driver manage-

ent process (i.e., download, setup, and maintenance) and the
ebDriverManager tool are presented in García et al. (2021).

n addition to presenting in detail the architecture and API of
ebDriverManager that paper evaluated, by means of a sur-

ey, also the usability of WebDriverManager. Respondents found

ebDriverManger useful and usable. Nevertheless, the benefits of

https://wordpress.org/support/article/using-your-browser-to-diagnose-javascript-errors/
https://wordpress.org/support/article/using-your-browser-to-diagnose-javascript-errors/
https://yoast.com/help/how-to-find-javascript-errors-with-your-browsers-console/
https://yoast.com/help/how-to-find-javascript-errors-with-your-browsers-console/
https://thoughtcoders.com/blog/selenium-code-to-test-browser-console-error-logs/
https://thoughtcoders.com/blog/selenium-code-to-test-browser-console-error-logs/
https://getfirebug.com/


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

W
m

i
e
t
i
t
s

p
s
t

S
S
s
w
b
n
S
i

7

m
t
c
B
s
W
u
(

w
o
h
t
v
A
w

t
d
w
t
b
w
p
k
t

p
l
c
e
a

D
f
p
t
f

–

ebDriverManager (development effort reduction and improved
aintainability) were not considered in the survey.
The benefits of WebDriverManager were instead considered

n a subsequent work (Leotta et al., 2022) where a controlled
xperiment with 25 MSc students was conducted. Results of
he experiment show that the adoption of WebDriverManager,
nstead of manual driver management, significantly reduces the
ime required to setup/update a multi-browser test suite (average
aving of more than 33% of the time).
WebDriverManager was mentioned, as a useful tool, by many

ractitioners also in the context of a survey aimed at under-
tanding the challenges (and the possible solutions) of end-to-end
esting with Selenium WebDriver (Leotta et al., 2023).

Finally, in another paper again García et al. (2022) describe
elenium-Jupiter, a JUnit 5 extension for Selenium WebDriver.
elenium-Jupiter aims to ease the development of end-to-end test
uites using WebDriverManager and facilitating the integration
ith Docker. Selenium-Jupiter allows advanced features for cross-
rowser testing, load testing, and troubleshooting. Now since the
ew version of WebDriverManager contains Browser Watcher,
elenium-Jupiter will also be enriched with features related to
mproving observability in web applications.

. Conclusions

End-to-end automated testing is one of the most popular
echanisms to ensure quality and reduce defects in web applica-

ions. Nevertheless, failure analysis in these types of tests can be
hallenging, especially for complex systems. This paper presented
rowserWatcher, a browser extension that can be used to in-
trument web browsers and observe web applications. Browser-
atcher is built on top of the WebExtensions API. Internally, it
ses monkey-patched objects and listeners to collect browser logs
e.g., console and error traces) while a website is exercised.

We believe this tool can be helpful for many practitioners
orldwide. Therefore, to ease its usage and reach a broader range
f developers, we integrated it into WebDriverManager, a popular
elper tool (mainly used for automated driver management) of
he Selenium ecosystem. This way, the observability features pro-
ided by BrowserWatcher are available through a straightforward
PI used to control instrumented browsers programmatically
ith Selenium WebDriver.
We performed experimental validation of the proposed toolset

o assess BrowserWatcher in gathering the logs generated by
ifferent browsers (Chrome, Edge, and Firefox) on 50 popular
ebsites. We checked that the log categories (named traceable in
his paper) managed with the above-mentioned JavaScript capa-
ilities are always gathered with BrowserWatcher. Nevertheless,
e discovered other log categories (named non-traceable in this
aper) that cannot be collected with JavaScript to the best of our
nowledge. We consider this an open question that should drive
he practitioners’ attention in future research and development.

Another finding of the experimental study presented in this
iece of research is that the same website can produce different
ogs in different web browsers. This result reinforces the value of
ross-browser testing (i.e., using different types of browsers for
nd-to-end web testing) to ensure that web applications behave
s expected in any browser.
We plan to keep maintaining both BrowserWatcher and Web-

riverManager to benefit the test automation community. In
uture work, we plan to support the log gathering mechanism
rovided by the W3C BiDi protocol in WebDriverManager when
his feature is available in all major browsers. Another possible
uture research is to extend this work to mobile browsers.
17
CRediT authorship contribution statement

Boni García: Conceptualization, Methodology, Software, Val-
idation, Writing – original draft, Writing – review & editing.
Filippo Ricca: Methodology, Validation, Writing – review & edit-
ing. Jose M. del Alamo: Conceptualization, Validation, Writing

review & editing. Maurizio Leotta: Methodology, Validation,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

All the source code and data from the experimental validation
is public available in open source GitHub repositories (linked in
the paper).

Acknowledgments

This work was partially supported in part by the Ministerio
de Ciencia e Innovación-Agencia Estatal de Investigación, Spain
(10.13039/501100011033) through the H2O Learn project un-
der Grant PID2020-112584RB-C31, in part by the Madrid Re-
gional Government through the e-Madrid-CM Project, Spain un-
der Grant S2018/TCS-4307, and in part supported by the Comu-
nidad de Madrid and Universidad Politécnica de Madrid, Spain
through the V-PRICIT Research Programme Apoyo a la realización
de Proyectos de I+D para jóvenes investigadores UPM-CAM, un-
der Grant APOYOJOVENES-QINIM8-72-PKGQ0J. Funding for Ar-
ticle Processing Charge (APC): Universidad Carlos III de Madrid
(Read & Publish Agreement CRUE-CSIC 2023).

References

Amazon, 2022. Alexa top sites. https://www.alexa.com/topsites. (Online Accessed
19 April 2022).

Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., Zhang, K., 2018. Execution anomaly detection
in large-scale systems through console log analysis. J. Syst. Softw. 143,
172–186. http://dx.doi.org/10.1016/j.jss.2018.05.016.

Bertolino, A., 2007. Software testing research: Achievements, challenges, dreams.
In: Future of Software Engineering. FOSE’07, IEEE, pp. 85–103.

Burns, D., Smith, M., 2022. WebDriver bidi. Editor’s draft. https://w3c.github.io/
webdriver-bidi/. (Online Accessed 27 May 2022).

Cáceres, M., Christiansen, K.R., Giuca, M., Gustafson, A., Murphy, D., Kosti-
ainen, A., 2022. Web application manifest, W3C working draft. https://https:
//www.w3.org/TR/appmanifest/. (Online Accessed 29 May 2022).

Cerioli, M., Leotta, M., Ricca, F., 2020. What 5 million job advertisements tell us
about testing: a preliminary empirical investigation. In: Proceedings of the
35th Annual ACM Symposium on Applied Computing. pp. 1586–1594.

Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: A survey. ACM
Comput. Surv. 41 (3), http://dx.doi.org/10.1145/1541880.1541882.

Chrome Team, 2021. Content scripts. https://developer.chrome.com/docs/
extensions/mv3/content_scripts/. (Online Accessed 3 January 2023).

Chrome Team, 2022a. Chrome DevTools. https://developer.chrome.com/docs/
devtools/. (Online Accessed 29 May 2022).

Chrome Team, 2022b. Chrome extension API. https://developer.chrome.com/
docs/extensions/reference/. (Online Accessed 28 May 2022).

Chrome Team, 2022c. tabCapture API. https://developer.chrome.com/docs/
extensions/reference/tabCapture/. (Online Accessed 28 May 2022).

Chrome Team, 2023. Chrome DevTools protocol, log module. https://
chromedevtools.github.io/devtools-protocol/tot/Log/. (Online Accessed 4 Jan
2023).

Deveria, A., Schoors, L., 2022. Browser support tables for content security policy
(CSP) in web browsers. https://caniuse.com/?search=CSP. (Online Accessed
28 May 2022).

Filipe, R., Araujo, F., 2016. Client-side monitoring techniques for web sites.
In: 2016 IEEE 15th International Symposium on Network Computing
and Applications. NCA, pp. 363–366. http://dx.doi.org/10.1109/NCA.2016.
7778642.

https://www.alexa.com/topsites
http://dx.doi.org/10.1016/j.jss.2018.05.016
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb3
https://w3c.github.io/webdriver-bidi/
https://w3c.github.io/webdriver-bidi/
https://w3c.github.io/webdriver-bidi/
https://https://www.w3.org/TR/appmanifest/
https://https://www.w3.org/TR/appmanifest/
https://https://www.w3.org/TR/appmanifest/
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb6
http://dx.doi.org/10.1145/1541880.1541882
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/extensions/reference/
https://developer.chrome.com/docs/extensions/reference/
https://developer.chrome.com/docs/extensions/reference/
https://developer.chrome.com/docs/extensions/reference/tabCapture/
https://developer.chrome.com/docs/extensions/reference/tabCapture/
https://developer.chrome.com/docs/extensions/reference/tabCapture/
https://chromedevtools.github.io/devtools-protocol/tot/Log/
https://chromedevtools.github.io/devtools-protocol/tot/Log/
https://chromedevtools.github.io/devtools-protocol/tot/Log/
https://caniuse.com/?search=CSP
http://dx.doi.org/10.1109/NCA.2016.7778642
http://dx.doi.org/10.1109/NCA.2016.7778642
http://dx.doi.org/10.1109/NCA.2016.7778642


B. García, F. Ricca, J.M. del Alamo et al. The Journal of Systems & Software 203 (2023) 111723

G
G

G

G

H

H

H

I

K

L

L

L

L

L

M

M

N

N

O

O

arcía, B., 2022. Hands-on Selenium WebDriver with Java. O’Reilly Media.
arcía, B., Gallego, M., Gortázar, F., Munoz-Organero, M., 2020. A survey of the

selenium ecosystem. Electronics 9 (7), 1067.
arcía, B., Kloos, C.D., Alario-Hoyos, C., Munoz-Organero, M., 2022. Selenium-

jupiter: A junit 5 extension for selenium WebDriver. J. Syst. Softw.
111298.

arcía, B., Munoz-Organero, M., Alario-Hoyos, C., Kloos, C.D., 2021. Automated
driver management for selenium WebDriver. Empir. Softw. Eng. 26 (5), 1–51.

e, S., Zhu, J., He, P., Lyu, M.R., 2016. Experience report: System log analysis for
anomaly detection. In: 2016 IEEE 27th International Symposium on Software
Reliability Engineering. ISSRE, pp. 207–218. http://dx.doi.org/10.1109/ISSRE.
2016.21.

ossain, M., 2014. CORS in Action: Creating and Consuming Cross-Origin APIs.
Simon and Schuster.

unt, J., 2019. Monkey patching and attribute lookup. In: A Beginners Guide To
Python 3 Programming. Springer, pp. 325–336.

EEE, 1990. IEEE standard glossary of software engineering terminology. In:
IEEE Std 610.12-1990. IEEE, pp. 1–84. http://dx.doi.org/10.1109/IEEESTD.
1990.101064.

alman, R.E., 1970. Lectures on Controllability and Observability. Tech. rep,
Department of Operations Research, Stanford University, Stanford, CA.

eotta, M., Clerissi, D., Ricca, F., Tonella, P., 2016a. Approaches and tools for
automated end-to-end web testing. In: Memon, A. (Ed.), Adv. Comput. 101,
193–237. http://dx.doi.org/10.1016/bs.adcom.2015.11.007.

eotta, M., García, B., Ricca, F., 2022. An empirical study to quantify the setup
and maintenance benefits of adopting WebDriverManager. In: Vallecillo, A.,
Visser, J., Pérez-Castillo, R. (Eds.), Proceedings of 15th International Confer-
ence on the Quality of Information and Communications Technology. QUATIC
2022, In: CCIS, vol. 1621, Springer, pp. 31–45. http://dx.doi.org/10.1007/978-
3-031-14179-9_3.

eotta, M., García, B., Ricca, F., Whitehead, J., 2023. Challenges of end-to-end
testing with selenium WebDriver and how to face them: A survey. In:
Proceedings of 16th IEEE International Conference on Software Testing,
Verification and Validation. ICST 2023, IEEE, p. (in press).

eotta, M., Ricca, F., Tonella, P., 2021. SIDEREAL: Statistical adaptive generation
of robust locators for web testing. In: Xie, T., Hierons, R.M. (Eds.), J. Softw.
Test. Verif. Reliab. (STVR) 31, http://dx.doi.org/10.1002/stvr.1767.

eotta, M., Stocco, A., Ricca, F., Tonella, P., 2016b. ROBULA+: An algorithm for
generating robust XPath locators for web testing. In: Canfora, G., Dalcher, D.,
Raffo, D. (Eds.), J. Softw. Evol. Process (JSEP) 28 (3), 177–204. http://dx.doi.
org/10.1002/smr.1771.

ozilla MDN, 2022a. Browser extensions. https://developer.mozilla.org/en-US/
docs/Mozilla/Add-ons/WebExtensions. (Online Accessed 28 May 2022).

ozilla MDN, 2022b. Firefox 101 release notes. https://developer.mozilla.org/en-
US/docs/Mozilla/Firefox/Releases/101. (Online Accessed 31 May 2022).

ass, M., Alégroth, E., Feldt, R., Leotta, M., Ricca, F., 2023. Similarity-based web
element localization for robust test automation. ACM Trans. Softw. Eng.
Methodol. (TOSEM) (in press). http://dx.doi.org/10.1145/3571855.

iedermaier, S., Koetter, F., Freymann, A., Wagner, S., 2019. On observabil-
ity and monitoring of distributed systems–an industry interview study.
In: International Conference on Service-Oriented Computing. Springer, pp.
36–52.

cariza, F., Bajaj, K., Pattabiraman, K., Mesbah, A., 2013. An empirical study of
client-side JavaScript bugs. In: 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement. pp. 55–64. http://dx.doi.
org/10.1109/ESEM.2013.18.

cariza, Jr., F.S., Pattabiraman, K., Zorn, B., 2011. JavaScript errors in the wild: An
empirical study. In: 2011 IEEE 22nd International Symposium on Software
Reliability Engineering. pp. 100–109. http://dx.doi.org/10.1109/ISSRE.2011.28.
18
Peña Moreno, N., 2022. Performance timeline level 2, W3C working draft. https:
//w3c.github.io/performance-timeline/. (Online Accessed 29 May 2022).

Quadri, S., Farooq, S.U., 2010. Software testing–goals, principles, and limitations.
Int. J. Comput. Appl. 6 (9), 1.

Solntsev, A., 2019. How to get browser logs. https://selenide.org/2019/12/16/
advent-calendar-browser-logs/. (Online Accessed 28 May 2022).

Stewart, S., Burns, D., 2022. WebDriver, W3C working draft. https://www.w3.
org/TR/webdriver/. (Online Accessed 27 May 2022).

Yamanishi, K., Maruyama, Y., 2005. Dynamic syslog mining for network failure
monitoring. In: Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining. KDD ’05, Association
for Computing Machinery, New York, NY, USA, pp. 499–508. http://dx.doi.
org/10.1145/1081870.1081927.

Boni Garcia is an Associate Professor (with tenure) at Universidad Carlos III de
Madrid in Spain. His main research interest is software engineering focusing on
automated testing. He is a Staff Software Engineer at Sauce Labs in the Open
Source Program Office. He is a committer at the Selenium project and creator
of several projects belonging to its ecosystem, such as WebDriverManager,
Selenium-Jupiter, or BrowserWatcher. He wrote the books Mastering Software
Testing with JUnit 5 (Packt Publishing, 2017) and Hands-On Selenium WebDriver
with Java (O’Reilly Media, 2022). He is the author of more than 45 research
papers in different journals and conferences.

Filippo Ricca is an Associate Professor at the University of Genova, Italy. He
received his PhD degree in Computer Science from the same University, in 2003,
with the thesis ‘‘Analysis, Testing and Re-structuring of Web Applications’’. He is
author (or coauthor) of more than 100 research papers published in international
journals and conferences/workshops. In 2011 he was awarded the ICSE 2001 MIP
(Most Influential Paper) award, for the paper: ‘‘Analysis and Testing of Web
Applications’’ and in 2018 he was awarded the ICST MIP award. From 1999 to
2006, he worked with the Software Engineering group at ITC-irst (now FBK-
irst), Trento, Italy. During this time he was part of the team that worked on
Reverse engineering, Re-engineering and Software Testing. His current research
interests include Web application testing and empirical studies in Software
Engineering. The research is mainly conducted through empirical methods such
as case studies, controlled experiments and surveys.

Jose M. del Alamo is currently an Associate Professor (with tenure) with the
Universidad Politécnica de Madrid (DIT-UPM). His research interests include
issues related to personal data management, including personal data disclosure,
identity, privacy and trust management, and considering these aspects to
advance software and systems engineering methodologies with a focus on their
quality assessment. Dr. Del Alamo has been the Co-Chair of the IEEE International
Workshop on Privacy Engineering, co-located to the IEEE Symposium on Security
and Privacy, since 2015.

Maurizio Leotta is a Researcher at the University of Genova, Italy. He received
his PhD degree in Computer Science from the same University, in 2015, with the
thesis ‘‘Automated Web Testing: Analysis and Maintenance Effort Reduction’’.
He is author or coauthor of more than 90 research papers published in
international journals and conferences/workshops. His current research interests
are in software engineering, with a particular focus on the following themes:
Web, Mobile, and IoT application testing, functional test automation, empirical
software engineering, business process modeling and model-driven software
engineering.

http://refhub.elsevier.com/S0164-1212(23)00118-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb18
http://dx.doi.org/10.1109/ISSRE.2016.21
http://dx.doi.org/10.1109/ISSRE.2016.21
http://dx.doi.org/10.1109/ISSRE.2016.21
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb21
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb23
http://dx.doi.org/10.1016/bs.adcom.2015.11.007
http://dx.doi.org/10.1007/978-3-031-14179-9_3
http://dx.doi.org/10.1007/978-3-031-14179-9_3
http://dx.doi.org/10.1007/978-3-031-14179-9_3
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb26
http://dx.doi.org/10.1002/stvr.1767
http://dx.doi.org/10.1002/smr.1771
http://dx.doi.org/10.1002/smr.1771
http://dx.doi.org/10.1002/smr.1771
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/101
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/101
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/101
http://dx.doi.org/10.1145/3571855
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb32
http://dx.doi.org/10.1109/ESEM.2013.18
http://dx.doi.org/10.1109/ESEM.2013.18
http://dx.doi.org/10.1109/ESEM.2013.18
http://dx.doi.org/10.1109/ISSRE.2011.28
https://w3c.github.io/performance-timeline/
https://w3c.github.io/performance-timeline/
https://w3c.github.io/performance-timeline/
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00118-8/sb36
https://selenide.org/2019/12/16/advent-calendar-browser-logs/
https://selenide.org/2019/12/16/advent-calendar-browser-logs/
https://selenide.org/2019/12/16/advent-calendar-browser-logs/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
http://dx.doi.org/10.1145/1081870.1081927
http://dx.doi.org/10.1145/1081870.1081927
http://dx.doi.org/10.1145/1081870.1081927

	Enhancing Web Applications Observability through Instrumented Automated Browsers
	Introduction
	Background and Motivation
	Selenium WebDriver
	Motivational Example

	Proposed Toolset
	BrowserWatcher
	WebDriverManager Integration

	Experimentation
	Design and Settings
	Results
	RQ1: Automatically vs. Manually Gathered Logs
	RQ2: Differences in the Logs of Different Browsers

	Threats to the Research Quality

	Discussion
	Related Works
	JavaScript Errors
	Automated Anomaly Detection through Console Logs
	WebDriverManager

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


